JPS63275352A - Control apparatus of artificial respiratory machine - Google Patents

Control apparatus of artificial respiratory machine

Info

Publication number
JPS63275352A
JPS63275352A JP10934387A JP10934387A JPS63275352A JP S63275352 A JPS63275352 A JP S63275352A JP 10934387 A JP10934387 A JP 10934387A JP 10934387 A JP10934387 A JP 10934387A JP S63275352 A JPS63275352 A JP S63275352A
Authority
JP
Japan
Prior art keywords
respiration
artificial
patient
points
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10934387A
Other languages
Japanese (ja)
Inventor
Kazuhiko Muramatsu
和彦 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP10934387A priority Critical patent/JPS63275352A/en
Publication of JPS63275352A publication Critical patent/JPS63275352A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate an abnormal state by making the respiration of a patient and artificial respiration synchronous, by estimating the next inhalation start time of the patient on the basis of the output data of a respiration detector detecting respiration operation to control the operating time of an artificial respiratory machine. CONSTITUTION:In the respiration wave form detected by a respiration detector 21, points A, C show inhalation start points and points B, D show exhalation start points. The cycle and timing of inhalation and exhalation are analyzed on the basis of said respiration wave form by a control apparatus 22 and an artificial respiratory machine 23 is controlled to perform the artificial respiration synchronous to the respiration wave form. By this method, artificial respiration made synchronous so as to help unassisted respiration can be performed even with respect to a newborn high in a respiration rate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、患者、特に新生児に人工呼吸を行う際に用い
る人工呼吸器の制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a control device for a ventilator used when performing artificial respiration on a patient, particularly a newborn baby.

〔従来の技術〕[Conventional technology]

新生児に特発性呼吸窮迫症候群のような障害がある場合
、従来においては、人工呼吸器を用いて、意見の自発呼
吸とは無関係に加圧するという方法で人工呼吸を行って
いる。
Conventionally, when a newborn baby has a disorder such as idiopathic respiratory distress syndrome, artificial respiration is performed using a ventilator by applying pressure regardless of spontaneous breathing.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このような従来の人工呼吸法は、意見に自発呼吸がない
場合は、問題はないが、意見に自発呼吸があるのになお
かつ人工呼吸をしなければならない場合に不都合が生じ
ている。すなわち、成人においては、呼吸数が毎分16
〜20と多くないので、人工呼吸器と患者の呼吸を同調
させることが可能である。しかし、病的新生児では毎分
60〜100 と呼吸数が極めて多く、従来の医療技術
では意見の一呼吸に同調させることができなかった。そ
のため、医学的にはファイティングと呼ばれる意見の呼
吸と人工呼吸器による加圧とがぶつかり合う異常状態が
しばしば発生している。
Such conventional artificial respiration methods pose no problem when the patient is not spontaneously breathing, but they are inconvenient when artificial respiration must be performed even though the patient is spontaneously breathing. That is, in adults, the respiratory rate is 16 per minute.
~20, which is not a large number, so it is possible to synchronize the respiration of the ventilator and the patient. However, sick newborns have an extremely high respiratory rate of 60 to 100 breaths per minute, and conventional medical techniques have not been able to synchronize their breathing with each breath. As a result, an abnormal situation, medically called "fighting," often occurs in which breathing and pressurization by a ventilator collide.

本発明は、このような従来の問題点に鑑みてなされたも
のであり、意見の呼吸と人工呼吸とを同調させて、異常
状態を解消することを目的とする。
The present invention has been made in view of these conventional problems, and aims to eliminate abnormal conditions by synchronizing human respiration and artificial respiration.

〔問題点を解決するための手段〕[Means for solving problems]

この目的を達成するため、本発明の人工呼吸器制御装置
は、患者の呼吸動作を検出する呼吸検出器を設け、この
呼吸検出器の出力データから求めた呼吸回数、吸気時間
、呼気時間等のデータに基づいて患者の次の吸気開始時
間を推定して人工呼吸器の動作タイミングを制御する手
段を備えたことを特徴とする。
In order to achieve this objective, the ventilator control device of the present invention is provided with a respiration detector that detects the patient's breathing motion, and calculates the number of breaths, inspiratory time, expiratory time, etc. obtained from the output data of this respiration detector. The present invention is characterized by comprising means for estimating the patient's next inspiration start time based on the data and controlling the operation timing of the ventilator.

〔作用〕[Effect]

本発明は、人工呼吸器を患者の自刃による呼吸動作に同
調して制御するようにしている。第1図に示すように、
本発明は、患者(意見)Pの呼吸のパターン゛を検出す
る呼吸検出器21と、人工呼吸器23を制御する制御装
置22とを備えている。呼吸検出器21によって検出し
た呼吸波形を第2図に示している。この呼吸波形におい
て、A点、0点は吸気開始点、B点、D点は呼気開始点
を表す。A点〜B点の間及びC点〜D点の間が吸気時間
、B点〜C点の間が呼気時間である。この呼吸検出器2
1によって検出された呼吸波形に基づき、制御装置22
によって吸気、呼気の周期及びタイミングを分析し、人
工呼吸器23を制御して呼吸波形に同調した人工呼吸を
行うようにする。
According to the present invention, the ventilator is controlled in synchronization with the patient's self-induced breathing motion. As shown in Figure 1,
The present invention includes a breathing detector 21 that detects the breathing pattern of a patient (opinion) P, and a control device 22 that controls a respirator 23. A respiratory waveform detected by the respiratory detector 21 is shown in FIG. In this respiratory waveform, point A and point 0 represent the start point of inhalation, and points B and D represent the start point of exhalation. The period between points A and B and between points C and D is the inhalation time, and the period between points B and C is the expiration time. This breathing detector 2
Based on the respiratory waveform detected by the control device 22
The period and timing of inhalation and exhalation are analyzed, and the artificial respirator 23 is controlled to perform artificial respiration in synchronization with the respiratory waveform.

これにより、呼吸数が多い新生児に対しても、自刃によ
る呼吸を助けるように同調した人工呼吸を行うことが可
能となる。
This makes it possible to perform synchronized artificial respiration to help newborns with a high breathing rate to help their own breathing.

〔実施例〕〔Example〕

以下、本発明の特徴を、図面に示す実施例に基づいて具
体的に説明する。
Hereinafter, features of the present invention will be specifically explained based on embodiments shown in the drawings.

第3図は、第1図に示した人工呼吸器制御装置の実施例
を示すブロック図である。lは呼吸検出のための高周波
信号を発生させるキャリア信号発生器である。このキャ
リア信号は、第1図に示したように意見Pの胸部に貼り
付けた電極a、b間に流す電流を一定にするための定電
流回路2を通して患者の胸部に流される。2個の胸部電
極にキャリア信号を与えて両電極間の抵抗を測定すると
、呼吸運動により抵抗が変化する。これをアイソレーシ
ョントランス3によりAC信号と分離して取り出し、ア
ンプ4により増幅する。この増幅信号を整流回路5によ
り直流に変換し、さらにアンプ6で増幅して、第2図に
示したような呼吸波形検出用カフを得る。この呼吸波形
のアナログデータをコンピュータ処理するため、A/D
コンバータ8を用いてディジタル信号に変換する。コン
ピュータ9では、呼吸波形の解析を行う。すなわち、呼
吸波形のディジタルデータを5〜10m5毎に取り込み
、波形の最大値、最小値の認識を行う。これにより、第
2図に示したように、吸気開始時点。
FIG. 3 is a block diagram showing an embodiment of the ventilator control device shown in FIG. 1. 1 is a carrier signal generator that generates a high frequency signal for respiration detection. This carrier signal is passed through the patient's chest through a constant current circuit 2 for keeping the current flowing between electrodes a and b attached to the chest of opinion P constant, as shown in FIG. When a carrier signal is applied to two chest electrodes and the resistance between the two electrodes is measured, the resistance changes due to respiratory movement. This signal is separated from the AC signal by an isolation transformer 3, extracted, and amplified by an amplifier 4. This amplified signal is converted into direct current by a rectifier circuit 5, and further amplified by an amplifier 6 to obtain a respiratory waveform detection cuff as shown in FIG. In order to process the analog data of this respiratory waveform by computer, A/D
A converter 8 is used to convert it into a digital signal. The computer 9 analyzes the respiratory waveform. That is, digital data of the respiratory waveform is captured every 5 to 10 m5, and the maximum and minimum values of the waveform are recognized. As a result, as shown in FIG. 2, the time point at which inspiration begins.

呼気開始時点、吸気時間、呼気時間を演算する。Calculate the exhalation start point, inspiration time, and expiration time.

第2図に示す呼気相の一定の時点たとえばイ点で人工呼
吸器の加圧スイッチをオンにし、意見の吸気相に一致し
て人工呼吸器の加圧が行われるようにB点−イ点間の時
間を決定する。次に、呼気開始時点Bを認識し、B点−
イ点間の時間の後にオン−オフスイッチlOがオンとな
るように設定する。
The pressurization switch of the ventilator is turned on at a certain point in the expiratory phase shown in Figure 2, for example, point A, and the pressure switch is turned on from point B to point A so that the pressurization of the ventilator is performed in accordance with the inspiratory phase. Determine the time between. Next, recognize the exhalation start point B, and
The on-off switch 10 is set to turn on after the time between the two points.

人工呼吸器11は、スイッチオンになった後の一定の時
間(イ点−C点)が経過してから加圧を開始する。また
、コンピュータ9は、呼吸波形以外のデータをもとに人
工呼吸器を制御する。人工呼吸を行う場合、一般的に、
加圧する圧力を増強したり、加圧する時間、すなわち吸
気時間を長くしたり、あるいは吸気時の陽圧を高くする
こと等により、血中酸素分圧を上昇させることができ、
また炭酸ガス排泄を促進させることができる。人工呼吸
中に連続的に血液中の酸素分圧、炭酸ガス分圧をモニタ
ーし、これらのデータをもとに人工呼吸器の気体ロジッ
ク回路37−2.37−3.37−4.37−5 (第
4図参照) の設定条件を制御し、血液中酸素分圧。
The respirator 11 starts pressurizing after a certain period of time (point A-C) has elapsed after being turned on. Further, the computer 9 controls the ventilator based on data other than the respiratory waveform. When performing artificial respiration, generally
Blood oxygen partial pressure can be increased by increasing the pressurization pressure, lengthening the pressurization time, that is, the inhalation time, or increasing the positive pressure during inhalation.
It can also promote carbon dioxide excretion. The oxygen partial pressure and carbon dioxide partial pressure in the blood are continuously monitored during artificial respiration, and based on these data, the gas logic circuit of the ventilator 37-2.37-3.37-4.37- 5 (see Figure 4) to control the blood oxygen partial pressure.

炭酸ガス分圧をコントロールする。たとえば、酸素分圧
が低い場合には吸気時間を長くし、炭酸ガス分圧が多い
場合には加圧する圧を高くする。
Controls the partial pressure of carbon dioxide. For example, when the partial pressure of oxygen is low, the intake time is increased, and when the partial pressure of carbon dioxide is high, the pressure to be pressurized is increased.

第4図に、本発明において用いる人工呼吸器の構成を示
す。外部のボンベから圧縮空気と圧縮酸素が供給され、
酸素・空気混合器31で所定の割合に混合される。この
混合気体は流量調節器32により所定の流量に調節され
、患者接続口33に接続された吸気バイブ34により患
者の気道に送気される。
FIG. 4 shows the configuration of a respirator used in the present invention. Compressed air and compressed oxygen are supplied from external cylinders,
The oxygen/air mixer 31 mixes them at a predetermined ratio. This mixed gas is adjusted to a predetermined flow rate by a flow rate regulator 32, and is delivered to the patient's airway by an inhalation vibrator 34 connected to a patient connection port 33.

呼気バイブ35は呼気バルブ接続口36に接続され、気
体ロジック回路37を介して排気される。気体ロジック
回路37は、オン−オフスイッチlOにおいてスイッチ
がオンになった時点より一定時間たった後に加圧を開始
する吸気開始設定回路37−1と、吸気時間設定回路3
7−2と、呼気時間設定回路37−3と、加圧圧力設定
回路37−4と、接続陽圧設定回路37−5とを備えて
いる。前述した呼吸波形解析の結果得られたデータをも
とに、患者呼吸と人工呼吸器とを同調させる場合、コン
ピュータからの信号は吸気開始設定回路37−1に人力
される。また、経皮027C02モニター等のデータを
もとに、人工呼吸の制御を行う。たとえば、血中酸素分
圧が少ない場合には呼気時間設定回路37−3により吸
気時間(加圧する時間)を長くする。また加圧圧力設定
回路37−4を変更して加圧圧力を増強を行う。
The exhalation vibrator 35 is connected to an exhalation valve connection port 36 and exhausted through a gas logic circuit 37. The gas logic circuit 37 includes an intake start setting circuit 37-1 that starts pressurization after a certain period of time from when the on-off switch IO is turned on, and an intake time setting circuit 3.
7-2, an exhalation time setting circuit 37-3, a pressurization pressure setting circuit 37-4, and a connection positive pressure setting circuit 37-5. When synchronizing the patient's respiration and the ventilator based on the data obtained as a result of the above-mentioned respiratory waveform analysis, a signal from the computer is input manually to the inspiration start setting circuit 37-1. In addition, artificial respiration is controlled based on data from the transcutaneous 027C02 monitor, etc. For example, when the blood oxygen partial pressure is low, the exhalation time setting circuit 37-3 lengthens the inhalation time (pressurization time). Further, the pressurizing pressure setting circuit 37-4 is changed to increase the pressurizing pressure.

第3図に示した呼吸波形検出器(インピーダンス換気遣
モニター)のほか、呼気中の酸素分圧。
In addition to the respiratory waveform detector (impedance ventilation monitor) shown in Figure 3, the partial pressure of oxygen in exhaled air.

炭酸ガス分圧を瞬時に測定し、呼気、吸気の時相を検出
する呼気ガスモニター、挿管チューブやマスクに装着し
て呼気、吸気量を測定し、換気量を測定するニューモタ
コメータ、水銀の入ったビニルチューブを胸に巻きつけ
、チューブ両端の抵抗を測ると呼吸により抵抗が変化す
ることを利用し、この抵抗の変化により呼吸波形を測定
する水銀ストレーンゲージを用いることができる。さら
に、皮膚に特殊な電極を装着し、加温することにより血
液中から浸透してくる酸素9 炭酸ガスの分圧を測定す
る経皮02/COzモニターを用いるこ上もできる。
An expiratory gas monitor that instantaneously measures the partial pressure of carbon dioxide and detects the time phase of exhalation and inspiration; a pneumotachometer that is attached to an intubation tube or mask to measure expiration and inspiration volume, and ventilation volume; and a mercury-containing A mercury strain gauge can be used to measure the respiratory waveform by wrapping a vinyl tube around the chest and measuring the resistance at both ends of the tube, taking advantage of the fact that the resistance changes with breathing. Furthermore, it is also possible to use a transdermal 02/COz monitor that measures the partial pressure of oxygen 9 and carbon dioxide gas penetrating from the blood by attaching a special electrode to the skin and heating it.

このように、別のモニターから得られる呼吸状態の情報
をも七に、より細かな人工呼吸器の制御を行うことがで
きる。
In this way, more detailed control of the ventilator can be performed using information on the respiratory status obtained from another monitor.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明においては、患者の呼吸
動作を検出してこれにより人工呼吸器上吸気相、呼気相
のタイミングが同調するよう、な制御を行うようにして
いる。このため、呼吸数が多い新生児等に対しても、自
刃による呼吸と人工呼吸器による呼吸の動作のぶつかり
あい、すなわちファイティングが解消され、異常状態の
発生を防止することができる。自刃による呼吸を助ける
ことになるので、肺の加圧による障害を減少でき、また
投与酸素濃度を減少させることもでき、医学的効果は大
である。
As described above, in the present invention, the patient's breathing movement is detected and control is performed so that the timing of the inspiratory phase and the expiratory phase on the ventilator are synchronized. Therefore, even for newborns with a high breathing rate, the conflict between the self-breathing and the artificial respirator's breathing operations, that is, fighting, is eliminated, and abnormal conditions can be prevented from occurring. Since the self-scissor aids breathing, it is possible to reduce damage caused by pressurization of the lungs, and it is also possible to reduce the administered oxygen concentration, which has great medical effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の概略構成を示す説明図、第2図は呼吸
波形と呼吸器の変化の説明図、第3図は本発明の実施例
の構成を示すブロック図、第4図は本発明において適用
する人工呼吸器の構成例のブロック図である。 1:キャリア信号発生器 2:定電流回路 3;アイソレーンヨントランス 4−アンプ      5:整流回路 6;アンプ      7:呼吸波形検出出力3:A/
Dコンバータ 9:コンピュータ10;オン−オフスイ
ッチ 11:人工呼吸器 21;呼吸検出器    22:制御装置23;人工呼
吸器 31;酸素・空気混合器 32;流量調節器33:患者
接続口    34:吸気パイプ35:呼気バイブ  
  36:呼気バルブ接続口37;気体ロジック回路 特許出願人  村 松  和 彦 代  理  人   小  堀   益 (ほか2名)
第4図 37−25/−Q
FIG. 1 is an explanatory diagram showing a schematic configuration of the present invention, FIG. 2 is an explanatory diagram of changes in respiratory waveforms and respiratory organs, FIG. 3 is a block diagram showing the configuration of an embodiment of the present invention, and FIG. FIG. 1 is a block diagram of a configuration example of a respirator applied in the invention. 1: Carrier signal generator 2: Constant current circuit 3; Isolation transformer 4-amplifier 5: Rectifier circuit 6; Amplifier 7: Respiratory waveform detection output 3: A/
D converter 9: computer 10; on-off switch 11: ventilator 21; respiration detector 22: control device 23; ventilator 31; oxygen/air mixer 32; flow regulator 33: patient connection port 34: suction Pipe 35: Exhalation vibe
36: Exhalation valve connection port 37; Gas logic circuit patent applicant Kazuhiko Muramatsu Masato Kobori (and 2 others)
Figure 4 37-25/-Q

Claims (1)

【特許請求の範囲】[Claims] 1、患者の呼吸動作を検出する呼吸検出器を設け、この
呼吸検出器の出力データから求めた呼吸回数、吸気時間
、呼気時間等のデータに基づいて患者の次の吸気開始時
間を推定して人工呼吸器の動作タイミングを制御する手
段を備えたことを特徴とする人工呼吸器制御装置。
1. A respiration detector is provided to detect the patient's breathing movement, and the patient's next inspiration start time is estimated based on data such as the number of breaths, inspiration time, and expiration time obtained from the output data of this respiration detector. A ventilator control device characterized by comprising means for controlling the operation timing of a ventilator.
JP10934387A 1987-05-02 1987-05-02 Control apparatus of artificial respiratory machine Pending JPS63275352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10934387A JPS63275352A (en) 1987-05-02 1987-05-02 Control apparatus of artificial respiratory machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10934387A JPS63275352A (en) 1987-05-02 1987-05-02 Control apparatus of artificial respiratory machine

Publications (1)

Publication Number Publication Date
JPS63275352A true JPS63275352A (en) 1988-11-14

Family

ID=14507817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10934387A Pending JPS63275352A (en) 1987-05-02 1987-05-02 Control apparatus of artificial respiratory machine

Country Status (1)

Country Link
JP (1) JPS63275352A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0621056A1 (en) * 1993-04-14 1994-10-26 Msa (Britain) Limited Respiratory protective device
WO1997015343A1 (en) * 1995-10-23 1997-05-01 Resmed Limited Inspiratory duration in cpap or assisted respiration treatment
AU699726B2 (en) * 1995-10-23 1998-12-10 Resmed Limited Inspiratory duration in CPAP or assisted respiration treatment
US6237593B1 (en) 1993-12-03 2001-05-29 Resmed Limited Estimation of flow and detection of breathing CPAP treatment
US8997739B2 (en) 1996-10-16 2015-04-07 Resmed Limited Vent valve apparatus
US9974911B2 (en) 1996-09-23 2018-05-22 Resmed Limited Method and apparatus for providing ventilatory assistance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS598972A (en) * 1982-07-07 1984-01-18 佐藤 暢 Respiration synchronous type gas supply method and apparatus in open type respiratory system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS598972A (en) * 1982-07-07 1984-01-18 佐藤 暢 Respiration synchronous type gas supply method and apparatus in open type respiratory system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0621056A1 (en) * 1993-04-14 1994-10-26 Msa (Britain) Limited Respiratory protective device
US6237593B1 (en) 1993-12-03 2001-05-29 Resmed Limited Estimation of flow and detection of breathing CPAP treatment
WO1997015343A1 (en) * 1995-10-23 1997-05-01 Resmed Limited Inspiratory duration in cpap or assisted respiration treatment
AU699726B2 (en) * 1995-10-23 1998-12-10 Resmed Limited Inspiratory duration in CPAP or assisted respiration treatment
US9974911B2 (en) 1996-09-23 2018-05-22 Resmed Limited Method and apparatus for providing ventilatory assistance
US8997739B2 (en) 1996-10-16 2015-04-07 Resmed Limited Vent valve apparatus
US9770571B2 (en) 1996-10-16 2017-09-26 Resmed Limited Vent valve assembly

Similar Documents

Publication Publication Date Title
US11541200B2 (en) Ventilation system
US20230177882A1 (en) Methods and apparatus for oxygenation and/or co2 removal
US5513631A (en) Triggering of patient ventilator responsive to a precursor signal
US4686974A (en) Breath synchronized gas-insufflation device and method therefor
US4915103A (en) Ventilation synchronizer
CA2265586C (en) Method and apparatus for breathing during anesthesia
JPS5948106B2 (en) respiratory monitoring device
Le Souëf et al. Forced expiratory maneuvers
Fletcher et al. Passive respiratory mechanics
Gilbert et al. The first few hours off a respirator
US9981098B2 (en) Apparatus for assisted ventilation and corresponding regulation method
JPS63275352A (en) Control apparatus of artificial respiratory machine
KR102528366B1 (en) Bilevel high flow therapy apparatus and method for controlling thereo
Eichenwald et al. Hypercapnia increases expiratory braking in preterm infants
Yamada et al. Respiratory muscle pressure analysis in pressure-support ventilation
McAslan Automated respiratory gas monitoring of critically injured patients
RU2336859C2 (en) Method for artificially pulmonary ventilation and device for its implementation
Johansson et al. Effects on breathing mechanics and gas exchange of different inspiratory gas flow patterns during anaesthesia
Baer et al. End-tidal oxygen concentration and pulse oximetry for monitoring oxygenation during intratracheal jet ventilation
CN115335101A (en) Improvements relating to gas monitoring
CN108525095A (en) A kind of respiratory assistance apparatus
JP4464520B2 (en) Intermittent positive pressure ventilator
Woolner et al. An analysis of the performance of a variable venturi-type oxygen mask
Venkataraman et al. Ventilators and modes
KR102578530B1 (en) APPARATUS AND METHOD FOR PERFORMING BILEVEL HIGH FLOW THERAPY BASED ON SpO2