JPS63274801A - Diamond probe - Google Patents

Diamond probe

Info

Publication number
JPS63274801A
JPS63274801A JP10998187A JP10998187A JPS63274801A JP S63274801 A JPS63274801 A JP S63274801A JP 10998187 A JP10998187 A JP 10998187A JP 10998187 A JP10998187 A JP 10998187A JP S63274801 A JPS63274801 A JP S63274801A
Authority
JP
Japan
Prior art keywords
probe
tip
diamond grains
grains
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10998187A
Other languages
Japanese (ja)
Other versions
JP2565336B2 (en
Inventor
Makoto Okano
真 岡野
Fumiki Sakai
坂井 文樹
Shigeru Wakiyama
茂 脇山
Hiroyuki Funamoto
船本 宏幸
Hironobu Ito
浩信 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Seiko Instruments Inc filed Critical Agency of Industrial Science and Technology
Priority to JP62109981A priority Critical patent/JP2565336B2/en
Publication of JPS63274801A publication Critical patent/JPS63274801A/en
Application granted granted Critical
Publication of JP2565336B2 publication Critical patent/JP2565336B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a hard and sharp probe tip by laminating diamond grains having electrical conductivity to the part of a metallic bar having a sharp pointed tip. CONSTITUTION:A rod wire such as stainless steel wire having about 1mm diameter or tungsten wire having about 0.3mm diameter is cut to an arbitrary length and the tip thereof is mechanically or electrolytically polished to prepare a metallic part 1 of the probe. This probe is placed in a gaseous mixture composed of hydrogen, gaseous methane and diborane and the diamond grains 2 are laminated and deposited thereon by using the nonpolar discharge of about 2.45GHz microwaves. After the surface of the diamond grains 2 is subjected to sputter cleaning, chromium is ion-implanted by about 150kv acceleration voltage. The grains deposited in such a manner are analyzed by the Raman scattered spectra of the laser to confirm that the grains are the diamond grains. The electrical conductivity is checked by measuring the resistance value. The shape condition at the microtip is observed by a scanning electron microscope.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、分析機器および走査型トンネル顕微鏡の分
野において、検出部に用いる検出探針に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a detection probe used in a detection section in the fields of analytical instruments and scanning tunneling microscopes.

〔発明の概要〕[Summary of the invention]

この発明は、先端を尖らせた金属棒の先端部に、導電性
を存するダイヤモンド粒を積層させたダイヤモンド探針
で、最終の先端半径は、ダイヤモンド粒の角部又は微小
粒形になることで、極めて鋭い探針先端の形成を可能に
したものであり、産業上有益なダイヤモンド探針である
This invention is a diamond probe in which conductive diamond grains are laminated on the tip of a metal rod with a sharp tip, and the final tip radius is formed by forming a corner of the diamond grain or a micro-grain shape. This makes it possible to form an extremely sharp tip of the probe, making it an industrially useful diamond probe.

〔従来の技術〕[Conventional technology]

試料表面と検出探針先端部間に流れるトンネル電流を検
出し、トンネル電流が一定になるように、試料表面と検
出探針先端部間の微小距離を制御して、原子構造を観察
する走査型トンネル顕微鏡においては、分解能は、探針
の先端部状態で決まり、分解能を上げる為には、より鋭
い探針の形成が必要である。そして、従来は、白金やタ
ングステン棒の先端を機械的な研磨により円錐状に尖ら
せたものや、電解研磨により先端を形成するもの(特開
昭61−32326号公報、電解研磨による針状体の形
成方法)が知られている。
A scanning type that detects the tunnel current flowing between the sample surface and the tip of the detection probe, and controls the minute distance between the sample surface and the tip of the detection probe so that the tunnel current remains constant to observe the atomic structure. In a tunneling microscope, the resolution is determined by the state of the tip of the probe, and in order to increase the resolution, it is necessary to form a sharper probe. Conventionally, the tip of a platinum or tungsten rod was sharpened into a conical shape by mechanical polishing, or the tip was formed by electropolishing (Japanese Unexamined Patent Publication No. 61-32326, a needle-shaped rod by electropolishing). (formation method) is known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上に示した従来の製法による探針において、機械的な
研磨では、探針先端が滑らかに伸延された形態とならず
、その結果鋭い先端形状が得られないとか、細かい線径
では、砥石を当てると逃げが発生する為、線径が限定さ
れてしまう。又、電解研磨法によると、逆に線径が細か
い方が反応時間が短くできて有利であるが、反応を止め
るタイミングがずれると探針先端部で反応をし、鋭い形
状が得られないといった問題がある。
With the probes manufactured by the conventional method shown above, mechanical polishing does not result in a smoothly elongated tip of the probe, resulting in a sharp tip shape, and with small wire diameters, the tip of the tip cannot be sharpened. If you hit it, it will escape, so the wire diameter is limited. In addition, according to the electrolytic polishing method, on the contrary, a smaller wire diameter is advantageous because the reaction time can be shortened, but if the timing of stopping the reaction is off, the reaction will occur at the tip of the probe, making it impossible to obtain a sharp shape. There's a problem.

更に、上記のような機械的な研磨や電解研磨による探針
は走査トンネル顕微鏡の走査において、試料表面に粗位
置出しを行なう際、探針と試料表面が軽く接触しただけ
で先端がつぶれてしまい、粗位置出し機構がしっかりし
ていない状態では、探針の取り換えを、頻繁に行なう必
要があるという問題があった。
Furthermore, when using a mechanically polished or electrolytically polished probe as described above, when performing rough positioning on the sample surface during scanning with a scanning tunneling microscope, even a light contact between the probe and the sample surface can cause the tip to collapse. However, if the coarse positioning mechanism is not stable, there is a problem in that the probe needs to be replaced frequently.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題点を解決するために、この発明は、先端を尖
らせた金属棒の先端部に導電性を有するダイヤモンド粒
を積層させることにより、探針先端部において、ダイヤ
モンド粒の角部又は微小粒形が最先端となるようにし、
極めて鋭く、硬い先端からなる探針を作製することを可
能にした。
In order to solve the above problems, the present invention stacks conductive diamond grains on the tip of a metal rod with a sharpened tip. Ensure that the grain shape is at the cutting edge,
This made it possible to create a probe with an extremely sharp and hard tip.

〔作用〕[Effect]

上記に示した方法により探針を作製することにより探針
の最先端が、結晶性が良い比較的大きなダイヤモンド粒
の角部又は、たとえ、結晶性が悪いダイヤモンド粒でも
、加工によって形製された金属先端部形状より微小な粒
形を付けることにより、極めて鋭く、硬い先端からなる
探針を作製することが可能となる。
By manufacturing the probe using the method described above, the leading edge of the probe can be formed by processing the corner of a relatively large diamond grain with good crystallinity, or even a diamond grain with poor crystallinity. By creating a particle shape that is smaller than the shape of the metal tip, it is possible to produce a probe with an extremely sharp and hard tip.

C実施例〕 本実施例は、走査型トンネル顕微鏡の検出部に用いた検
出探針に関するもので、以下、図面に基づいて説明して
い(こととする。
Example C] This example relates to a detection probe used in a detection section of a scanning tunneling microscope, and will be described below based on the drawings.

第4図に示す探針製作工程に従い、先ず、ロンド線を任
意の長さに切断しく本実施例では、φ11のステンレス
製ロンド線を約20sl長に切断、また、φ0.3 t
aのタングステン製ロンド線を約20鶴長に切断)、先
端を機械研磨(先端部120°の円錐状)又は、電解研
磨(タングステン線)した後、ダイヤモンド合成を行っ
た。
According to the probe manufacturing process shown in FIG. 4, first, the rond wire is cut to an arbitrary length. In this example, a φ11 stainless steel rond wire is cut to a length of approximately 20 sl, and a φ0.3 t.
The tungsten rondo wire of a was cut into approximately 20 square lengths), and the tip was mechanically polished (the tip had a conical shape of 120°) or electrolytically polished (tungsten wire), and then diamond synthesis was performed.

ダイヤモンドに導電性をもたせる方法として本実施例で
は、2種類の方法を用いた。
In this example, two methods were used to impart conductivity to diamond.

(第1実施例) ダイヤモンド合成として、水素、炭化水素(CHe)及
びダイヤモンド粒の抵抗値を下げる効果のあるジボラン
(BJi)の混合ガス中で、マイクロ波無極放電を用い
てダイヤモンドを析出する方法(マイクロ波プラズマC
VD法)により行った。
(First Example) A method for diamond synthesis in which diamond is deposited using microwave nonpolar discharge in a mixed gas of hydrogen, hydrocarbon (CHe), and diborane (BJi), which has the effect of lowering the resistance value of diamond grains. (Microwave plasma C
(VD method).

第5図に示した装置を用い、析出条件としては、第1表
に示す内容で行った。
Using the apparatus shown in FIG. 5, the precipitation conditions were as shown in Table 1.

第1表       合成条件 (第2実施例) ダイヤモンド合成としてまず、水素と炭化水素(CHJ
の混合ガス中で、マイクロ波プラズマCVD法によりダ
イヤモンド粒を析出させた。析出条件は第2表に示す。
Table 1 Synthesis Conditions (Second Example) For diamond synthesis, first, hydrogen and hydrocarbon (CHJ
Diamond grains were precipitated by microwave plasma CVD in a mixed gas of . The precipitation conditions are shown in Table 2.

第2表       合成条件 次に、このダイヤモンド粒に導電性をもたせる為、ダイ
ヤモンド粒の表面をスパッタクリーニングした後、Cr
をイオン注入した。Crの注入量は2 xlQl? 1
ons/cd、  Crイオン注入加速Tll 圧’t
t150kv、探針温度を200℃に設定して行なった
Table 2 Synthesis conditions Next, in order to make the diamond grains conductive, after sputter cleaning the surface of the diamond grains,
was ion-implanted. Is the amount of Cr implanted 2xlQl? 1
ons/cd, Cr ion implantation acceleration Tll pressure't
The test was carried out at a temperature of 150kv and a probe temperature of 200°C.

以上、2種類の方法で、析出した粒をレーザーラマン散
乱スペクトルにより分析し、ダイヤモンド粒であること
を確認した。また、抵抗値を測定し、導電性を有するこ
とを確認した。更に、走査型電子顕微鏡により、探針先
端を観察したところ、第1図、第2図に示す様なダイヤ
モンド粒による微小な先端が形成されていることが1i
11認できた。
The precipitated grains were analyzed by laser Raman scattering spectroscopy using the two methods described above, and it was confirmed that they were diamond grains. Furthermore, the resistance value was measured and it was confirmed that it had electrical conductivity. Furthermore, when the tip of the probe was observed using a scanning electron microscope, it was found that a minute tip was formed by diamond grains as shown in Figures 1 and 2.
I was able to confirm 11.

そして、この様にして作製した探針を走査型トンネル顕
微鏡の検出部探針として実際に装置に組込み実験したと
ころ、従来品にあった問題もなく安定した高分解能が得
られることを確認することができた。
When the probe thus prepared was actually incorporated into a device as a detection probe of a scanning tunneling microscope and tested, it was confirmed that stable high resolution could be obtained without the problems encountered with conventional products. was completed.

〔発明の効果〕 この発明によると以上説明した様に、先端を尖らせた金
属棒の先端部に導電性を有するダイヤモンド粒を積層さ
せることにより、探針の最先端がダイヤモンド粒の形状
により決まり、極めて鋭い探針先端が再現よく形成され
、また、ダイヤモンド粒による為、極めて硬い探針先端
を作製することが可能になった。
[Effects of the Invention] According to the present invention, as explained above, by stacking conductive diamond grains on the tip of a metal rod with a sharpened tip, the tip of the probe is determined by the shape of the diamond grains. , an extremely sharp probe tip was formed with good reproducibility, and since it was made of diamond particles, it became possible to produce an extremely hard probe tip.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の探針先端部を示す断面図、第2回は探
針の先端拡大断面図、第3図はダイヤモンド粒を示す平
面図、第4図は探針製作工程説明図、第5図はダイヤモ
ンド合成装置を示す説明図である。 1・・・探針金属部 2・・・ダイヤモンド粒の積層部 以上
Fig. 1 is a sectional view showing the tip of the probe of the present invention, the second is an enlarged sectional view of the tip of the probe, Fig. 3 is a plan view showing diamond grains, Fig. 4 is an explanatory diagram of the probe manufacturing process, FIG. 5 is an explanatory diagram showing a diamond synthesis apparatus. 1... Probe metal part 2... Laminated part of diamond grains or more

Claims (1)

【特許請求の範囲】[Claims] 先端を尖らせた金属棒の先端部に導電性を有するダイヤ
モンド粒を積層させ、極めて鋭く、硬い先端からなるこ
とを特徴とするダイヤモンド探針。
A diamond probe is characterized by having an extremely sharp and hard tip made by laminating conductive diamond grains on the tip of a metal rod with a pointed tip.
JP62109981A 1987-05-06 1987-05-06 Scanning tunnel microscope Expired - Lifetime JP2565336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62109981A JP2565336B2 (en) 1987-05-06 1987-05-06 Scanning tunnel microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62109981A JP2565336B2 (en) 1987-05-06 1987-05-06 Scanning tunnel microscope

Publications (2)

Publication Number Publication Date
JPS63274801A true JPS63274801A (en) 1988-11-11
JP2565336B2 JP2565336B2 (en) 1996-12-18

Family

ID=14524056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62109981A Expired - Lifetime JP2565336B2 (en) 1987-05-06 1987-05-06 Scanning tunnel microscope

Country Status (1)

Country Link
JP (1) JP2565336B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0335411U (en) * 1989-08-11 1991-04-08
JPH0348702U (en) * 1989-09-21 1991-05-10
GB2243688A (en) * 1990-04-30 1991-11-06 De Beers Ind Diamond Probes
JPH0438054U (en) * 1990-07-30 1992-03-31
KR100687796B1 (en) 2006-03-02 2007-03-02 고려대학교 산학협력단 Device and method for measuring dopant profiling of semiconductors
WO2020179773A1 (en) * 2019-03-05 2020-09-10 昭和電工株式会社 Probe production method and surface observation method
WO2022116521A1 (en) * 2020-12-04 2022-06-09 国仪量子(合肥)技术有限公司 Quantum diamond precision magnetic measurement system based on single spin

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4343993A (en) * 1979-09-20 1982-08-10 International Business Machines Corporation Scanning tunneling microscope

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4343993A (en) * 1979-09-20 1982-08-10 International Business Machines Corporation Scanning tunneling microscope

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0335411U (en) * 1989-08-11 1991-04-08
JPH0348702U (en) * 1989-09-21 1991-05-10
GB2243688A (en) * 1990-04-30 1991-11-06 De Beers Ind Diamond Probes
JPH0438054U (en) * 1990-07-30 1992-03-31
KR100687796B1 (en) 2006-03-02 2007-03-02 고려대학교 산학협력단 Device and method for measuring dopant profiling of semiconductors
WO2020179773A1 (en) * 2019-03-05 2020-09-10 昭和電工株式会社 Probe production method and surface observation method
JPWO2020179773A1 (en) * 2019-03-05 2021-11-25 昭和電工株式会社 Manufacturing method of probe, surface observation method
WO2022116521A1 (en) * 2020-12-04 2022-06-09 国仪量子(合肥)技术有限公司 Quantum diamond precision magnetic measurement system based on single spin

Also Published As

Publication number Publication date
JP2565336B2 (en) 1996-12-18

Similar Documents

Publication Publication Date Title
JPH0275902A (en) Diamond probe and its forming method
Buckley Surface effects in adhesion, friction, wear, and lubrication
Larson et al. Focused ion-beam milling for field-ion specimen preparation:: preliminary investigations
Vasile et al. Scanning probe tip geometry optimized for metrology by focused ion beam ion milling
Stevie et al. Applications of focused ion beams in microelectronics production, design and development
EP3497453B1 (en) Scanning probe and electron microscope probes and their manufacture
Yamada et al. Electron-bombarded< 110>-oriented tungsten tips for stable tunneling electron emission
Knápek et al. Programmable set-up for electrochemical preparation of STM tips and ultra-sharp field emission cathodes
Kelly Atom-probe tomography
Amelinckx et al. Conical, helically wound, graphite whiskers: a limiting member of the “fullerenes”?
JPS63274801A (en) Diamond probe
US3803958A (en) Ultra thin sectioning with ultra sharp diamond edge at ultra low temperature
US20210159038A1 (en) Cathode structure for cold field electron emission and method of fabricating the same
Schmidt et al. Band positions used for on-line crystallographic orientation determination from electron back scattering patterns
US3447366A (en) Process of determining dimensions and properties of cutting edges of molecular dimensions
JP3266995B2 (en) Method and apparatus for observing and measuring conductive members
US3751780A (en) Ultra sharp diamond edges for ultra thin sectioning and as point cathode
JPS63182501A (en) Diamond probing needle
Alexander et al. Precision ion milling of field-ion specimens
Tkadletz et al. Efficient preparation of microtip arrays for atom probe tomography using fs-laser processing
Andrews et al. The local adsorption site for sulphur on Ni {111} in the low coverage lattice gas
JPH0416701A (en) Probe for scanning tunneling microscope
RU2397138C1 (en) Method for controlled synthesis, modification and destruction of single metal oxide nanostructures in combination with control of their composition and properties (versions)
JP2694776B2 (en) Diamond needle polishing method
Acheche et al. Characterization of small metallic clusters by electron energy loss spectroscopy

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071003

Year of fee payment: 11