JPS63274665A - Polycrystalline ceramics having plastic deformability - Google Patents

Polycrystalline ceramics having plastic deformability

Info

Publication number
JPS63274665A
JPS63274665A JP62108468A JP10846887A JPS63274665A JP S63274665 A JPS63274665 A JP S63274665A JP 62108468 A JP62108468 A JP 62108468A JP 10846887 A JP10846887 A JP 10846887A JP S63274665 A JPS63274665 A JP S63274665A
Authority
JP
Japan
Prior art keywords
polycrystalline
halogenated
polycrystalline ceramics
hydride
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62108468A
Other languages
Japanese (ja)
Other versions
JPH0772104B2 (en
Inventor
Toshio Hirai
平井 敏雄
Takashi Goto
孝 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62108468A priority Critical patent/JPH0772104B2/en
Publication of JPS63274665A publication Critical patent/JPS63274665A/en
Publication of JPH0772104B2 publication Critical patent/JPH0772104B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To provide polycrystalline ceramics which has excellent heat resistance, oxidation resistance and corrosion resistance and is useful for mechanical parts, sealing materials, etc., by consisting the same of Ti3SiC2 single phase and providing plastic deformability at an ordinary temp. CONSTITUTION:Reactive gases consisting of >=1 kinds among chloride of Ti such as TiCl4, halide of Si such as SiCl4, halogenated hydride such as SiHCl3, and halogenated hydrocarbon such as Si(CH3)4 and >=1 kinds among halide of carbon such as CCl4, hydride such as CH4 and halogenated hydride such as CH3F are introduced into a reaction furnace of a CVD synthesis method. The reaction furnace is then heated to 1,200-1,400 deg.C and the total pressure of the reactive gases is regulated to 1-760Torr. The plastically deformable polycrystalline ceramics which consists of the Ti3SiC2 single phase and is coated with the metals, inorg. compds. or the composite thereof having 100g-800kg/ mm<2> measured load of Vickers hardness at an ordinary temp. and >=1,000 deg.C m.p. on the surface of the carbon base body is thus produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 セラミックスは一般に、金属材料より高硬度で、耐食性
、耐摩耗性に優れているが、常温ではり性交形を示さす
脆性である。このため、金属材料と比較すると機械部品
や構造材料としての用途では制約が大きく、工具材やI
C基板等の極めて限られたものを用いられているに過ぎ
ない。
[Detailed Description of the Invention] [Industrial Application Field] Ceramics generally have higher hardness than metal materials, and are superior in corrosion resistance and wear resistance, but are brittle and exhibit a cracked shape at room temperature. For this reason, compared to metal materials, there are greater restrictions on their use as mechanical parts and structural materials, and they are used as tool materials and I/O materials.
Only a very limited number of substrates such as C substrates are used.

本発明は従来のセラミックス材料の欠点であった、ごく
わずかの変形によって破壊してしまうという脆性を著し
く改良し、常温においても塑性変形性を有する新たな多
結晶質セラミックス材料に関するものである。
The present invention relates to a new polycrystalline ceramic material that significantly improves the brittleness of conventional ceramic materials in that they break at the slightest deformation, and has plastic deformability even at room temperature.

本発明によるセラミックスは、単体として耐熱性、耐食
性、耐酸化性が要求される各種の機械部品や容器、金型
、シール材料として用いられているのみならず、他の材
料の表面にコーティングして同様な用途に用いることも
できる。特に相手材料と密接させて用いる必要がある機
械部品、シール材料等では機械的な変形に対して破壊し
難い特徴を有するため好適である。
The ceramics of the present invention are not only used as a single material for various mechanical parts, containers, molds, and sealing materials that require heat resistance, corrosion resistance, and oxidation resistance, but also as coatings on the surfaces of other materials. It can also be used for similar purposes. In particular, it is suitable for mechanical parts, sealing materials, etc. that need to be used in close contact with a mating material because it has a characteristic that it is difficult to break due to mechanical deformation.

〔従来の技術〕[Conventional technology]

従来のセラミックス材料の中で、耐食性や耐酸化性等の
特性を有しながら、かつ低硬度の材料として代表的なも
のは六方晶BNである。六方晶BNは黒鉛と同様の層状
構造を有し、固体潤滑材としても用いられている。しか
し、六方晶BNは機械部品として用いるにはあまりに低
硬度(Hv100以下、)である。その他の低硬度のセ
ラミックスとしては、硫化物、Se化合物等があるが、
これ等は耐食性、耐酸化性の点で劣っている。
Among conventional ceramic materials, hexagonal BN is a typical material that has characteristics such as corrosion resistance and oxidation resistance and has low hardness. Hexagonal BN has a layered structure similar to graphite, and is also used as a solid lubricant. However, hexagonal BN has too low hardness (Hv100 or less) to be used as mechanical parts. Other low hardness ceramics include sulfides, Se compounds, etc.
These are inferior in terms of corrosion resistance and oxidation resistance.

本発明のTi−5iC=からなる多結晶質セラミックス
は、鋼に匹敵する硬度を有し、かつ耐食性や耐酸化性に
優れたセラミックスの特徴を有する。
The polycrystalline ceramic made of Ti-5iC= of the present invention has a hardness comparable to that of steel, and has the characteristics of a ceramic having excellent corrosion resistance and oxidation resistance.

このTiaSICzについては、既にJeitschk
oとNowotny(11,Jeitschko an
d H,Nowotny 、 Mh、Chem 、 9
8 。
Regarding this TiaSICz, Jeitschk has already
o and Nowotny (11, Jeitschko an
d H, Nowotny, Mh, Chem, 9
8.

329 (1967)やN1ckl1等(J、J  N
1ckj!、 K、に、 Schweitgerand
 P、Luxenburg J、Less −Comm
on 14etals、  26゜335 (1972
)によって数10μmの小さな単結晶が合成されている
329 (1967) and N1ckl1 etc. (J, J N
1ckj! , K., Schweitgerand
P, Luxenburg J, Less-Comm.
on 14 etals, 26°335 (1972
) has been used to synthesize small single crystals of several tens of micrometers.

しかし、現在まで実質的にTl5S+C2相のみからな
る多結晶質セラミックス合成された事が無く、特性も充
分測定されていなかった。
However, until now, polycrystalline ceramics consisting essentially only of Tl5S+C2 phases have not been synthesized, and their properties have not been sufficiently measured.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は従来のセラミックス材料の脆性を著しく改善し
、セラミックスの特徴である耐食性、耐酸化性等の特徴
を有する材料を提供せんとするものである。
The present invention aims to significantly improve the brittleness of conventional ceramic materials and to provide a material that has the characteristics of ceramics, such as corrosion resistance and oxidation resistance.

また機械部品として用いるためには微細な単結晶ではな
く、一定の大きさを持つ多結晶質の材料を製造する事が
可能とならねばならない。
In addition, in order to use it as a mechanical part, it must be possible to produce a polycrystalline material with a certain size, rather than a fine single crystal.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、CVD法によって5iC−TiC複合セ
ラミックスを合成する研究を行なって来た。
The present inventors have been conducting research on synthesizing 5iC-TiC composite ceramics by the CVD method.

CVD法では反応炉内圧力を1〜760Torrに保持
して、Tiの塩化物 (Tici、等) 、Siのハロ
ゲン化物(S+Cj!<、5AP4等)水素化物(Si
n、等)、ハロゲン化水素化物(SiHCls、 5i
HBrs等)、およびハロゲン化水素化物(Si(C1
ls)−1CHsSiCj!−等)のうちの1種以上と
炭素のハロゲン化物(CCj!n)、水素化物(CH,
、C2L、 CI 、等)およびハロゲン化水素化物(
CH,cl、 C1,P等)のうち1種以上と、水素か
らなる反応ガス、あるいはT1塩化物と、Siのハロゲ
ン化炭水化物と、水素からなる反応ガスを導入し、10
00〜1700℃に加熱された基体上に5i−Ti−C
系の各種の化合物もしくはそれ等の混合物を合成する事
ができる。それ等の化合物はTiC,5iCTisiz
、Ti5SiCz等である。
In the CVD method, the pressure inside the reactor is maintained at 1 to 760 Torr, and Ti chloride (Tici, etc.), Si halide (S+Cj!<, 5AP4, etc.), hydride (Si
n, etc.), hydrogen halides (SiHCls, 5i
HBrs etc.), and hydrogen halides (Si(C1
ls)-1CHsSiCj! -, etc.) and carbon halides (CCj!n), hydrides (CH,
, C2L, CI, etc.) and hydrogen halides (
CH, Cl, C1, P, etc.) and a reaction gas consisting of hydrogen, or a reaction gas consisting of T1 chloride, a halogenated carbohydrate of Si, and hydrogen, and 10
5i-Ti-C on the substrate heated to 00~1700℃
Various compounds of the system or mixtures thereof can be synthesized. Such compounds are TiC, 5iCTisiz
, Ti5SiCz, etc.

合成条件に応じて種々の共析出物からなる複合体セラミ
ックス、例えはTiC+ Ti3SiC* 、 SiC
+ Ti5SiCa。
Composite ceramics consisting of various co-precipitates depending on the synthesis conditions, for example TiC+ Ti3SiC*, SiC
+ Ti5SiCa.

SiC+ Ti5izが得られる。SiC+Ti5iz is obtained.

発明者等は合成条件を種々変えて検討した結果、本発明
のTi=SiCz単相からなる多結晶質のセラミックス
が得られる事を見出した。またこのセラミックスの硬度
はTiCやSiCもしくはこれ等の混合物または更にT
i5isやT+sS+C2とTiC、SiCを含む混合
相からなるものが高い硬度を有するのに比較して、著し
く低硬度で常温下でも塑性変形性を有する事を確認した
The inventors investigated various synthesis conditions and found that the polycrystalline ceramic of the present invention consisting of a Ti=SiCz single phase could be obtained. In addition, the hardness of this ceramic is determined by TiC, SiC, a mixture thereof, or even T
It was confirmed that it has significantly lower hardness and plastic deformability even at room temperature, compared to i5is and those made of a mixed phase containing T+sS+C2, TiC, and SiC, which have high hardness.

実質的に単相のTi−5iC−からなる多結晶体を得る
には、CVD合或条件を適切な範囲に選択する事が必須
である。以下実施例により説明する。
In order to obtain a polycrystalline material consisting of substantially single-phase Ti-5iC-, it is essential to select the CVD reaction conditions within an appropriate range. This will be explained below using examples.

実施例1 原料ガスとして、5i(Jn、TiC1<、 CC1a
、及びH。
Example 1 5i (Jn, TiC1<, CC1a
, and H.

ガスを用いた。基体としては黒鉛を用い、反応温度を1
200〜1600℃に変化させ、H,ガス及び[C14
の流量を各々1800及び17.5cj / winに
保ち、S+CC/ (S+ cji! 4 + TiC
1−)比を0〜1の範囲で変えて実験した。炉内ガス全
圧力は300Torr一定とした。
Using gas. Graphite was used as the substrate, and the reaction temperature was set to 1.
The temperature was changed to 200-1600℃, H, gas and [C14
The flow rates of S+CC/(S+ cji! 4+TiC) were kept at 1800 and 17.5cj/win, respectively.
1-) Experiments were conducted by changing the ratio in the range of 0 to 1. The total pressure of the gas in the furnace was kept constant at 300 Torr.

合成時間は2時間である。The synthesis time is 2 hours.

黒鉛基体上に合成されたSi −Ti −C系の化合物
をX線回析により同定した結果を図1に示した。
FIG. 1 shows the results of identifying a Si-Ti-C compound synthesized on a graphite substrate by X-ray diffraction.

本実験条件下では、図の斜線部の基体温度及びSiC1
a /  (S+CI!a + T+C1a>比の範囲
でのみTi−5iC−単相からなる多結晶体が得られた
。基体温度1300℃5IC1s /  (SiCj!
 a + TiC1a) = 0.42で得られた多結
晶体のサイズは60alX 40m5X 0141であ
った。
Under this experimental condition, the substrate temperature and the SiC1
A polycrystalline body consisting of a Ti-5iC- single phase was obtained only in the ratio range of a/(S+CI!a+T+C1a>.Substrate temperature 1300℃5IC1s/(SiCj!
The size of the polycrystal obtained with a + TiC1a) = 0.42 was 60alX40m5X0141.

またX線回析による格子定数は a=3.064 人、    C=17.650人の六
方晶化合物であった。アルキメデス法による密度は4.
53g/ catである。なお、X線回折強度比からこ
の多結晶体はC軸が基体に平行に生成しており、(11
0面)に強い配向性を示すことが明らかにtlっだ。上
記した多結晶体の硬度をビッカース硬度計で荷重500
gで測定した結果HV = 600kg/ll1m2と
大変柔らかい多結晶体である。
Furthermore, the lattice constants determined by X-ray diffraction were a hexagonal compound with a=3.064 and C=17.650. The density according to Archimedes method is 4.
It is 53g/cat. Furthermore, from the X-ray diffraction intensity ratio, the C-axis of this polycrystalline body is parallel to the substrate, and (11
It is clear that tl exhibits a strong orientation in the 0-plane). The hardness of the above polycrystalline body was measured using a Vickers hardness tester at a load of 500.
It is a very soft polycrystalline material with HV = 600 kg/1 m2 when measured in g.

また、ビッカース圧痕の周辺には多数のすべり線が観察
され、この多結晶体が優れた塑性変形性を有する事が判
明した。
Furthermore, many slip lines were observed around the Vickers indentation, indicating that this polycrystalline body has excellent plastic deformability.

実施例2 ホットプレスにより製造した5IJ4 a!Iの先端半
径511IIlのビンを基体として用い、実施例1と同
様の原料ガスを用い、全ガス圧100Torr 、基体
、@度1250℃ Si C1a / (Si C1a
  + T+c1a) = 0.3 で30分間処理し
た。尚、Ccl</Hzの流量比は0.01とした。
Example 2 5IJ4 a! produced by hot pressing. A bottle with a tip radius of 511IIl was used as the substrate, the same raw material gas as in Example 1 was used, the total gas pressure was 100 Torr, the substrate @ 1250°C Si C1a / (Si C1a
+T+c1a) = 0.3 for 30 minutes. Note that the flow rate ratio of Ccl</Hz was set to 0.01.

Si、N、ビン上に膜厚20μmのTi、5icj’−
単相からなるコーティング層が得られた。
Si, N, Ti with a film thickness of 20 μm on the bottle, 5icj'-
A coating layer consisting of a single phase was obtained.

比較の為にCclla/Hxの流量比を0.05とし、
他は同一の条件でコーティング層を形成させた。この場
合の膜はX線回折の結果SiCとTiCの混合物からな
る事が判った。
For comparison, the Ccla/Hx flow rate ratio is set to 0.05,
The coating layer was otherwise formed under the same conditions. The film in this case was found to be composed of a mixture of SiC and TiC as a result of X-ray diffraction.

両者ニラいてビッカース硬度を測定したところ、本発明
のTi3SiCzからなる膜テハ7ookg/llll
112テ、比較材は3.000kg/ ll1ts2と
極めて高い値を示した。
When the Vickers hardness of both was measured, it was found that the film thickness of the Ti3SiCz film of the present invention was 7ookg/llll.
112te, and the comparative material showed an extremely high value of 3.000kg/ll1ts2.

MIJs’Aの円板を周速50o/ sin ’?’ 
回err、 サf、荷重100gでコーティングしたビ
ンを円板に押しつけて5分間保持した。本発明のT+s
S+c1zをコーティングしたSi3N、ビンでは膜及
びM 、0.円板の変化は見られなかった。
Circumferential speed of MIJs'A disk 50o/sin'? '
The coated bottle was pressed against the disk with a load of 100 g and held for 5 minutes. T+s of the present invention
Si3N coated with S+c1z, film and M, 0. No changes in the disc were observed.

一方比較材は、接触点の膜が剥離しており、またA1.
0.円板に条痕が見られた。このことから、特にセラミ
ックス同士が接触して摺動する様な機械部品や、相手材
が焼入れ鋼等の金属である場合のI!動部材として本発
明の多結晶質セラミックスを用いると相手材を傷つける
事が無く、また塑性変形性に富むため、不均一な接触圧
が加わった場合に変形によって応力の集中が緩和され、
自体が脆性破壊しないといった優れた特性を有する事が
判る。
On the other hand, the comparative material had peeling of the film at the contact point, and A1.
0. A striation was seen on the disc. From this, especially in mechanical parts where ceramics come in contact with each other and slide, or when the mating material is a metal such as hardened steel, I! When the polycrystalline ceramic of the present invention is used as a moving member, it will not damage the mating material, and since it has high plastic deformability, stress concentration will be alleviated by deformation when uneven contact pressure is applied.
It can be seen that the material itself has excellent properties such as not being brittle.

〔発明の効果〕〔Effect of the invention〕

従来のセラミックスの最大の欠点は、その脆性にある。 The biggest drawback of conventional ceramics is their brittleness.

機械部品や構造材料としてセラミックスを用いる場合、
必要以上の硬度があるため、加工性が悪く、また摺動材
等として用いると相手材を傷つける事もその用途を制約
するものであった。
When using ceramics as mechanical parts or structural materials,
Because it has more hardness than necessary, it has poor workability, and when used as a sliding material, it damages the mating material, which limits its use.

本発明のセラミックスは、従来のセラミックスのこの様
な欠点を一挙に解決したもので、優れた塑性変形性を有
し、かつ、硬度が焼入れ鋼と同等であるため相手材を傷
つける事も大巾に軽減されている。更に、高温下でも表
面にT+0. SiOtといった安定な酸化膜が形成さ
れる事により、耐熱性や耐酸化性、耐食性、といった金
属材料と比較した場合のセラミックスの特徴を合せ持っ
ている。
The ceramics of the present invention solve all of these drawbacks of conventional ceramics, and have excellent plastic deformability and hardness equivalent to that of hardened steel, so they are less likely to damage the mating material. has been reduced to Furthermore, even at high temperatures, the surface has T+0. By forming a stable oxide film such as SiOt, it has the characteristics of ceramics compared to metal materials, such as heat resistance, oxidation resistance, and corrosion resistance.

上述のように、本発明による多結晶質セラミックスは、
従来のセラミックスでは用いる事が出来なかった機械部
品、耐食性容器、構造材料として広範囲な用途に適した
ものである。
As mentioned above, the polycrystalline ceramic according to the present invention is
It is suitable for a wide range of applications, such as mechanical parts, corrosion-resistant containers, and structural materials, which could not be used with conventional ceramics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、X線回析による生成相と合成条件の関係、い
わゆるCVD相図を示す。 尚、5icjl!4/ (SiC14+TiCj!<)
は原料ガス流量比を示す。 図1 S・        Si     +  ’C手続補
正書 昭和62年06月2ぶ日 昭和62年 特許願 第108468号2、発明の名称 塑性変形性を有する多結晶質セラミックス3、補正をす
る者 事件との関係   特 許 出 願 人任  所   
大阪市東区北浜5丁目15番地名 称(213)住友電
気工業株式会社社  長    川 上 哲 部 4、代 理 人 住  所   大阪市此花区島屋1丁目1番3号住友電
気工業株式会社内 (電話06−461−1031) 氏  名(7881)弁理士  上 代 哲 司゛ご:
5、補正命令の日付 6、補正の対象 霊曾すすで明細書中、発明の名称の欄及び明細書中、発
明の詳細な説明の欄及び委任状。 7、補正の内容 「多結晶質セラミックス」と訂正する。 (4=)明ms中、第5頁第4〜第5行目、r本発明者
等は、−m−を行って来た。」を削除する。 (’L)委任状、3通を別紙の通り提出する。
FIG. 1 shows the relationship between generated phases and synthesis conditions determined by X-ray diffraction, a so-called CVD phase diagram. In addition, 5icjl! 4/ (SiC14+TiCj!<)
indicates the raw material gas flow rate ratio. Figure 1 S. Si + 'C procedural amendment June 2, 1988 Patent Application No. 108468 2, name of invention Polycrystalline ceramics having plastic deformability 3, case with the person making the amendment Related Patent Application Personnel Office
5-15 Kitahama, Higashi-ku, Osaka Name (213) Sumitomo Electric Industries, Ltd. President Satoshi Kawakami Department 4, Representative Address Inside Sumitomo Electric Industries, Ltd., 1-1-3 Shimaya, Konohana-ku, Osaka (Telephone number) 06-461-1031) Name (7881) Patent Attorney Senior Tetsu Manager:
5. Date of the amendment order 6. The subject of the amendment in the specification, the column for the title of the invention, the column for the description, the column for the detailed description of the invention, and the power of attorney. 7. The content of the correction has been corrected to “polycrystalline ceramics.” (4=) In ms, page 5, lines 4-5, r The present inventors have conducted -m-. ” to be deleted. ('L) Submit three copies of the power of attorney as shown in the attached sheet.

Claims (6)

【特許請求の範囲】[Claims] (1)実質的にTi_3SiC_2単相から成り、常温
下で塑性変形性を有することを特徴とする多結晶質セラ
ミックス。
(1) A polycrystalline ceramic consisting essentially of a single phase of Ti_3SiC_2 and having plastic deformability at room temperature.
(2)常温下でのビッカース硬度が測定荷重100g以
上で800kg/mm^2以下である事を特徴とする特
許請求の範囲第(1)項記載の多結晶質セラミックス。
(2) The polycrystalline ceramic according to claim (1), characterized in that the Vickers hardness at room temperature is 800 kg/mm^2 or less at a measurement load of 100 g or more.
(3)融点が1000℃以上の金属、無機化合物もしく
はこれ等の複合体が、炭素からなる基体の表面に被覆さ
れてなる事を特徴とする特許請求の範囲第(1)、(2
)項記載の多結晶質セラミックス。
(3) Claims (1) and (2) characterized in that a metal, an inorganic compound, or a composite thereof having a melting point of 1000°C or higher is coated on the surface of a carbon substrate.
) The polycrystalline ceramics described in section 2.
(4)Tiの塩化物とSiのハロゲン化物、ハロゲン化
水素化物、およびハロゲン化炭水素化物のうち1種以上
と、炭素のハロゲン化物、水素化物、およびハロゲン化
水素化物のうちの1種以上と、からなる反応ガス、ある
いは、Tiの塩化物とSiのハロゲン化炭水素化物と、
水素、からなる反応ガスを用いて、CVD法によって合
成される事を特徴とする特許請求の範囲第(1)、(2
)、(3)項記載の多結晶質セラミックス。
(4) One or more of Ti chloride, Si halide, hydride, and halogenated hydrohydride, and one or more of carbon halides, hydrides, and halogenated hydrohydride or a chloride of Ti and a halogenated hydrohydride of Si,
Claims (1) and (2) characterized in that the compound is synthesized by a CVD method using a reaction gas consisting of hydrogen.
), the polycrystalline ceramics described in (3).
(5)歪み方向と直角に結晶のC軸方向が選択配向して
いる事を特徴とする特許請求の範囲第(1)、(2)、
(3)、(4)項記載の多結晶質セラミックス。
(5) Claims (1) and (2), characterized in that the C-axis direction of the crystal is selectively oriented perpendicular to the strain direction;
The polycrystalline ceramics described in (3) and (4).
(6)原料ガスとしてSiCl_4、TiCl_4、C
Cl_4及びH_2ガスを用い、合成温度が1200〜
1400℃、反応ガス全圧が1〜760Torrで合成
される事を特徴とする特許請求の範囲第(1)、(2)
、(3)、(4)、(5)項記載の多結晶質セラミック
ス。
(6) SiCl_4, TiCl_4, C as raw material gas
Using Cl_4 and H_2 gas, the synthesis temperature is 1200~
Claims (1) and (2) characterized in that the synthesis is performed at 1400°C and a total reaction gas pressure of 1 to 760 Torr.
, (3), (4), and the polycrystalline ceramics described in (5).
JP62108468A 1987-04-30 1987-04-30 Polycrystalline ceramics Expired - Fee Related JPH0772104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62108468A JPH0772104B2 (en) 1987-04-30 1987-04-30 Polycrystalline ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62108468A JPH0772104B2 (en) 1987-04-30 1987-04-30 Polycrystalline ceramics

Publications (2)

Publication Number Publication Date
JPS63274665A true JPS63274665A (en) 1988-11-11
JPH0772104B2 JPH0772104B2 (en) 1995-08-02

Family

ID=14485520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62108468A Expired - Fee Related JPH0772104B2 (en) 1987-04-30 1987-04-30 Polycrystalline ceramics

Country Status (1)

Country Link
JP (1) JPH0772104B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6461989B1 (en) * 1999-12-22 2002-10-08 Drexel University Process for forming 312 phase materials and process for sintering the same
US6544674B2 (en) * 2000-08-28 2003-04-08 Boston Microsystems, Inc. Stable electrical contact for silicon carbide devices
CN1120817C (en) * 1998-10-07 2003-09-10 中国科学院金属研究所 In-situ hot pressing solid-liquid phase reaction process to prepare silicon titanium-carbide material
CN1120816C (en) * 1998-08-19 2003-09-10 中国科学院金属研究所 Process for preparing titaniferous silicon carbide powder
EP1496031A1 (en) * 2003-06-30 2005-01-12 HILTI Aktiengesellschaft Hot press tool
US6903313B2 (en) * 2000-12-21 2005-06-07 Sandvik Ab Resistance heating element for extreme temperatures
CN107778009A (en) * 2016-08-26 2018-03-09 辽宁省轻工科学研究院 A kind of pressure-bearing prepares Ti3SiC2The reverse thermal expansion synthetic method of ceramics

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6081277B2 (en) * 2013-04-12 2017-02-15 イビデン株式会社 Ceramic bonded body, heat-resistant component, and method for manufacturing ceramic bonded body

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1120816C (en) * 1998-08-19 2003-09-10 中国科学院金属研究所 Process for preparing titaniferous silicon carbide powder
CN1120817C (en) * 1998-10-07 2003-09-10 中国科学院金属研究所 In-situ hot pressing solid-liquid phase reaction process to prepare silicon titanium-carbide material
US6461989B1 (en) * 1999-12-22 2002-10-08 Drexel University Process for forming 312 phase materials and process for sintering the same
JP2003517991A (en) * 1999-12-22 2003-06-03 ドレクセル ユニバーシティー Method for producing 312 phase material and sintering method thereof
US6544674B2 (en) * 2000-08-28 2003-04-08 Boston Microsystems, Inc. Stable electrical contact for silicon carbide devices
US6903313B2 (en) * 2000-12-21 2005-06-07 Sandvik Ab Resistance heating element for extreme temperatures
EP1496031A1 (en) * 2003-06-30 2005-01-12 HILTI Aktiengesellschaft Hot press tool
CN107778009A (en) * 2016-08-26 2018-03-09 辽宁省轻工科学研究院 A kind of pressure-bearing prepares Ti3SiC2The reverse thermal expansion synthetic method of ceramics

Also Published As

Publication number Publication date
JPH0772104B2 (en) 1995-08-02

Similar Documents

Publication Publication Date Title
Sun Progress in research and development on MAX phases: a family of layered ternary compounds
Goto et al. Chemically vapor deposited Ti3SiC2
Baldus et al. Novel high‐performance ceramics—amorphous inorganic networks from molecular precursors
Long et al. Phase composition, microstructure and mechanical properties of ZrC coatings produced by chemical vapor deposition
US20100009839A1 (en) Ultrahard Composite Materials
EP0084567B1 (en) High hardness material
US3464843A (en) Pyrolytic graphite alloys and method of making the same
AU3799393A (en) Molybdenum enhanced low-temperature deposition of crystalline silicon nitride
JPS63274665A (en) Polycrystalline ceramics having plastic deformability
JP2003268529A (en) MoSi2-Si3N4 COMPOSITE COATING LAYER AND MANUFACTURING METHOD
Fitzer et al. Carbon, carbide and silicide coatings
JP2012522887A (en) Object coated with SiC layer and method of manufacturing the same
Perez-Mariano et al. TiSiN nanocomposite coatings by chemical vapor deposition in a fluidized bed reactor at atmospheric pressure (AP/FBR-CVD)
JPH01306550A (en) Hard substance protective layer for base material receiving strong load and production thereof
JPH07232978A (en) Diamond-like carbon film-coated material and its formation
JP2939470B2 (en) Manufacturing method of nuclear fuel
CA1052639A (en) Deposition method and products
US5023215A (en) Cordierite-silicon nitride body
JPH05117085A (en) Composite material, process for manufacturing same and use of same
Golda et al. Chemical Vapor Deposition of Multiphase Boron-Carbon-Silicon Ceramics
CN115124348B (en) Single phase (Hf) x Zr 1-x ) N solid solution superhigh temperature ablation-resistant ceramic coating and preparation method thereof
JPH11335170A (en) High-strength silicon carbide composite material and its production
Podchernyaeva et al. Investigation of a wear-and corrosion-resistant coating of the TiCN− Ni-alloy system, obtained by high-speed gas-flame spraying
JPH025712B2 (en)
McColm et al. Ceramic Systems: Bonding, Microstructures, Hardness Values, and Hardness-Derived Properties

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees