JPS63274609A - Synthesis of silicon carbide particle - Google Patents

Synthesis of silicon carbide particle

Info

Publication number
JPS63274609A
JPS63274609A JP62107822A JP10782287A JPS63274609A JP S63274609 A JPS63274609 A JP S63274609A JP 62107822 A JP62107822 A JP 62107822A JP 10782287 A JP10782287 A JP 10782287A JP S63274609 A JPS63274609 A JP S63274609A
Authority
JP
Japan
Prior art keywords
reaction
silicon carbide
silane
acetylene
aliphatic hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62107822A
Other languages
Japanese (ja)
Other versions
JPH0587443B2 (en
Inventor
Takeshi Sagai
佐賀井 武
Masaki Sadakata
正毅 定方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP62107822A priority Critical patent/JPS63274609A/en
Publication of JPS63274609A publication Critical patent/JPS63274609A/en
Publication of JPH0587443B2 publication Critical patent/JPH0587443B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To produce solid and dense fine particles of silicon carbide at low reaction temp. without causing corrosion on reaction apparatuses by allowing silane to react with an acetylenic aliphatic hydrocarbon in gaseous phase. CONSTITUTION:Silane is allowed to react with an acetylenic aliphatic hydrocarbon (e.g. acetylene, propyne, 1-butyne, etc.) in gaseous phase. For example, when the hydrocarbon is acetylene, the reaction proceeds in accordance with the equation. A lower reaction temp. is necessary in this process as compared to a conventional process for synthesizing silicon carbide particles by the reaction of silane with a satd. aliphatic hydrocarbon such as methane, etc., moreover, approximately spherical, solid, and dense fine silicon carbide particles are produced providing higher suitability for sintering. Additionally, the operation is easier because there is no fear for generating corrosive gas such as HCl, etc. which is aggressive for reaction apparatuses, during the reaction.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、構造材や電子材料セラミックスとして使用さ
れる炭化珪素粒子の合成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for synthesizing silicon carbide particles used as structural materials and electronic material ceramics.

[従来技術及び発明が解決しようとする問題点]今日、
セラミックス原料において、融点が高く、硬度も硬い等
の優れた特性を有するものとして炭化珪素(sic)が
着目されている。しかるに従来。
[Prior art and problems to be solved by the invention] Today,
BACKGROUND ART Among ceramic raw materials, silicon carbide (SIC) is attracting attention as it has excellent properties such as a high melting point and hardness. However, conventionally.

この炭化珪素は、焼結することを考慮した場合に。When this silicon carbide is considered to be sintered.

微細でしかも粒径が揃い、かつ可及的に球形であること
が好ましい、このため塊体を粉砕して形成する機械的手
法によるものではなく、化学的合成による手法が採用さ
れることになる。そしてこの場合、焼結に適するため炭
化珪素を合成するには、例えば四塩化珪素(St CQ
 4 )とメタン、プロパン等の脂肪族飽和炭化水素と
を気相で反応させて合成することが知られているが、こ
の場合には生成物として塩化水素(HCQ)が生じ、こ
れの捕集や反応器機に対する腐食等の悪影響等の欠点が
ある。
It is preferable that the particles be fine, uniform in particle size, and as spherical as possible.For this reason, a chemical synthesis method is used instead of a mechanical method of crushing a lump to form it. . And in this case, to synthesize silicon carbide because it is suitable for sintering, silicon tetrachloride (St CQ
4) and aliphatic saturated hydrocarbons such as methane and propane in the gas phase, but in this case hydrogen chloride (HCQ) is produced as a product, which must be collected. There are disadvantages such as adverse effects such as corrosion on reactor equipment.

そこでシラン(SiH−)とプロパン等の脂肪族飽和炭
化水素を反応させて合成することが試みられているが、
この場合には1反応器度が約1400〜1500度と高
温にする必要がある詐りでなく、生成される炭化珪素は
中空状態となってしまうという問題がある。
Therefore, attempts have been made to synthesize silane (SiH-) by reacting it with aliphatic saturated hydrocarbons such as propane.
In this case, there is a problem that one reactor temperature needs to be high, about 1400 to 1500 degrees, and the silicon carbide produced ends up being in a hollow state.

c問題を解決するための手段] 本発明は、上記の如き実情に鑑みこれらの欠点を一掃す
ることができる炭化珪素粒子の合成方法を提供すること
を目的として創案されたものであって、シランとアセチ
レン系脂肪族炭化水素とを気相にて反応させて成ること
を特徴とするものである。
Means for Solving Problem c] In view of the above-mentioned circumstances, the present invention was devised for the purpose of providing a method for synthesizing silicon carbide particles that can eliminate these drawbacks. It is characterized by being formed by reacting the acetylene-based aliphatic hydrocarbon with an acetylene-based aliphatic hydrocarbon in the gas phase.

そして本発明は、この方法によって、塩化水素の発生の
ない反応系でありながら、反応温度を低くでき、かつ中
空ではない稠密な微細粒子の炭化珪素を生成することが
できるようにしたものである。
According to the present invention, this method allows the reaction temperature to be lowered while using a reaction system in which no hydrogen chloride is generated, and it is possible to produce silicon carbide in the form of dense, fine particles that are not hollow. .

そして本発明に用いるアセチレン系脂肪族炭化水素とし
ては、アセチレン(CH=CH)、プロピン(CH,C
ECH)、1−ブチン(C2HsC:CH)、2−ブチ
ン(CH,CECCH,)、1゜3−ブタジイン(C)
(ミCCミCH)等の低級のものを単独または混合して
使用することができるが、この場合の反応式は、例えば
炭化水素がアセチレンである場合、 C,H,+28iH,−+28iC+5H。
The acetylene aliphatic hydrocarbons used in the present invention include acetylene (CH=CH), propyne (CH,C
ECH), 1-butyne (C2HsC:CH), 2-butyne (CH,CECCH,), 1゜3-butadiyne (C)
Lower compounds such as (miCCmiCH) can be used alone or in combination. In this case, for example, when the hydrocarbon is acetylene, the reaction formula is: C, H, +28iH, -+28iC+5H.

で示されることになる。そしてその反応はラジカル反応
であると推論でき、その過程は。
This will be shown as It can be inferred that the reaction is a radical reaction, and the process is.

[シラン→シランラジカル→SiCクラスター→&C超
微粒子↑ アセチレンラジカル         」によるものと
推定される6そしてこの場合、後述するような反応温度
の低下は、メタンのような脂肪族飽和炭化水素の如くラ
ジカルへの分解温度が。
[silane → silane radical → SiC cluster → &C ultrafine particles ↑ acetylene radical] 6 And in this case, the decrease in reaction temperature as described below is due to the formation of radicals such as aliphatic saturated hydrocarbons such as methane. The decomposition temperature of

メタンよりもアセチレンのほうが低温で成されることに
よるものであると推論できる。
It can be inferred that this is because acetylene is formed at a lower temperature than methane.

次に、本発明が如何に有効であるかを実験例によって具
体的に説明する。
Next, how effective the present invention is will be specifically explained using experimental examples.

[実験1] 本実験で用いた反応装置は第1図に示す如きものであっ
て1反応器1を水冷式円筒型ノズルフィーダー2(可動
式)と周囲のハニカム3.ハイアルミナ製反応管4によ
って構成し、シランガスはノズル側から水素ガス雰囲気
下で供給し、アセチレンガスはハニカム側から同じく水
素ガス雰囲気下で供給するという拡散混合方式により反
応させた。その場合の反応条件として、シラン供給量は
52IIQZ■、フィーダハニカムでの出口流速は70
aIl/Sと一定にした。そして生成粒子は吸引口5か
ら吸引し、フィルタ捕集をした。捕集された粒子はCu
−にα線を使用した粉末X線回折を行い、捕集粒子中の
炭化珪素、珪素、炭素の含有率を各々の強度比から求め
、その結果を表1の実験1において1反応温度を変化さ
せたもの、およびモル比を変化させたものとしてし4の
項に示す。
[Experiment 1] The reaction apparatus used in this experiment was as shown in FIG. The reactor was composed of a reaction tube 4 made of high alumina, and the reaction was carried out by a diffusion mixing method in which silane gas was supplied from the nozzle side under a hydrogen gas atmosphere, and acetylene gas was supplied from the honeycomb side under a hydrogen gas atmosphere. In that case, the reaction conditions are that the silane supply amount is 52IIQZ■, and the outlet flow rate at the feeder honeycomb is 70
It was kept constant at aIl/S. The generated particles were then suctioned through the suction port 5 and collected by a filter. The collected particles are Cu
- Perform powder X-ray diffraction using alpha rays to determine the content of silicon carbide, silicon, and carbon in the collected particles from their respective intensity ratios, and use the results in Experiment 1 in Table 1 by changing the reaction temperature. Items with different molar ratios and those with different molar ratios are shown in Section 4.

[実験2] 実験1で用いた反応装置および反応条件をそのまま用い
1反応方式については、シランガスとアセチレンガスと
を水素ガス雰囲気下で予め混合させてからノズルより供
給する予混合方式によって反応させた。そしてその結果
を表1の実験2の1〜mの項に示す、これについても反
応温度による検討1モル比による検討をした。
[Experiment 2] Using the same reaction apparatus and reaction conditions as used in Experiment 1, reaction method 1 involved a premixing method in which silane gas and acetylene gas were mixed in advance in a hydrogen gas atmosphere and then supplied from a nozzle. . The results are shown in sections 1 to m of Experiment 2 in Table 1. This was also investigated by reaction temperature and 1 molar ratio.

[実験3] 実験1で用いた反応装置および反応条件をそのまま用い
、かつ実験例2の予混合方式により気相反応をさせたが
、その場合に、反応ガスの吹き込み位置を、実験2の人
位置の場合よりも炉内滞留時間が145製程短くなるB
位置に移動させて反応させた。そしてその結果を表1の
実験3のI −IIIの項に示す。
[Experiment 3] Using the same reaction apparatus and reaction conditions as used in Experiment 1, a gas phase reaction was carried out using the premixing method of Experiment Example 2. Residence time in the furnace is 145 times shorter than in the case of position B
Moved to position and reacted. The results are shown in sections I-III of Experiment 3 in Table 1.

[比較例] 実験1で用いた反応装置および反応条件をそのまま用い
、前述した予混合方式によりシランガスとメタンガス(
CH4)とを反応させ、その結果を表1の比較例のI〜
■の項に示す。
[Comparative Example] Using the same reaction apparatus and reaction conditions as used in Experiment 1, silane gas and methane gas (
CH4) and the results are shown in Comparative Examples I~ in Table 1.
Shown in section ■.

表  1 但し:混合方式で、■は拡散方式、■は予混合方式を意
味し。
Table 1 However: In the mixing method, ■ means the diffusion method and ■ means the premixing method.

ノズル位!IA、Bは図面のA位置、B位置を示す。Nozzle position! IA and B indicate positions A and B in the drawing.

これらの結果から判断して、シランガスにメタンガスを
反応させた従来の場合では1反応器度が1300度でも
炭化珪素の生成率が20%と低く、少なくとも1400
度の温度が必要であったが、本発明では反応温度が12
00度でも条件によっては100%という高い生成率を
示しており、これによって本発明が如何に有効であるか
が判断される。
Judging from these results, in the conventional case where methane gas is reacted with silane gas, the production rate of silicon carbide is as low as 20% even when the temperature of one reactor is 1300 degrees, and at least 1400 degrees
However, in the present invention, the reaction temperature is 12°C.
Even at 00 degrees Celsius, the production rate is as high as 100% depending on the conditions, and it can be judged from this how effective the present invention is.

しかも生成した炭化珪素の粒径も、可成り揃っており、
かつその形状も、X線による写真で示す如く略球形であ
って、かつメタンガスを用いた比較例の如く中空状では
なく、完全に11密状であることがl1lI81!され
る。
Moreover, the particle size of the silicon carbide produced is quite uniform,
Moreover, its shape is approximately spherical as shown in the X-ray photograph, and it is not hollow like in the comparative example using methane gas, but is completely 11 dense. be done.

しかも反応条件として、ノズル位置をAではなくBと炉
内滞留時間が長い場合が低温(1200度の場合)での
生成率の点からも好ましいが、さらに生成した炭化珪素
の粒径の点においてもこの場合の方が大きな径となって
いることが観測される。
Furthermore, as a reaction condition, it is preferable to set the nozzle position to B instead of A and to have a long residence time in the furnace, in terms of the production rate at low temperature (1200 degrees), but it is also preferable in terms of the particle size of the silicon carbide produced. It is also observed that the diameter is larger in this case.

これは炉内滞留時間が長くなったことによって、粒子の
成長があることを意味しており、従って炉内滞留時間の
調整により粒径の調整を可成りの範囲で行うことができ
るものであると推論される。
This means that particles grow due to longer residence time in the furnace, and therefore particle size can be adjusted within a considerable range by adjusting residence time in the furnace. It is inferred that

[効果] 以上要するに1本発明は叙述の如く構成されたものであ
るから、炭化珪素を合成するに、シランとアセチレン系
脂肪族炭化水素とを気相にて反応させたことにより、反
応温度を、従来のメタン等の脂肪族飽和炭化水素と反応
させて合成するものに比して低くすることができる許り
でなく、生成される炭化珪素も1球形に近く、かつ稠密
なものにできることとなり、もって焼結するための良質
な炭化珪素を容易に提供できるものである。
[Effects] In summary, 1. The present invention is constructed as described above, so that when synthesizing silicon carbide, silane and acetylene aliphatic hydrocarbon are reacted in the gas phase, thereby reducing the reaction temperature. Not only can the silicon carbide be lower than that of conventional products synthesized by reacting with aliphatic saturated hydrocarbons such as methane, but the silicon carbide produced can also be close to spherical and dense. , it is possible to easily provide high quality silicon carbide for sintering.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は1本発明に係る炭化珪素粒子の合成方法の実施例
を示したものであって、第1図は反応装置の概略断面図
、第2図A、Bは実験2の■、比較例■の電子顕微鏡に
より写した代用写真図である。 図中、1は反応器、2はノズルフィーダー、3はハニカ
ム、4は反応管である。
The drawings show an example of the method for synthesizing silicon carbide particles according to the present invention, in which FIG. 1 is a schematic cross-sectional view of a reaction apparatus, and FIGS. 2A and B are Experiment 2 (■) and Comparative Example (■). This is a substitute photograph taken using an electron microscope. In the figure, 1 is a reactor, 2 is a nozzle feeder, 3 is a honeycomb, and 4 is a reaction tube.

Claims (1)

【特許請求の範囲】[Claims] シランとアセチレン系脂肪族炭化水素とを気相にて反応
させて成ることを特徴とする炭化珪素粒子の合成方法。
A method for synthesizing silicon carbide particles characterized by reacting silane and an acetylene aliphatic hydrocarbon in a gas phase.
JP62107822A 1987-04-30 1987-04-30 Synthesis of silicon carbide particle Granted JPS63274609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62107822A JPS63274609A (en) 1987-04-30 1987-04-30 Synthesis of silicon carbide particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62107822A JPS63274609A (en) 1987-04-30 1987-04-30 Synthesis of silicon carbide particle

Publications (2)

Publication Number Publication Date
JPS63274609A true JPS63274609A (en) 1988-11-11
JPH0587443B2 JPH0587443B2 (en) 1993-12-16

Family

ID=14468918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62107822A Granted JPS63274609A (en) 1987-04-30 1987-04-30 Synthesis of silicon carbide particle

Country Status (1)

Country Link
JP (1) JPS63274609A (en)

Also Published As

Publication number Publication date
JPH0587443B2 (en) 1993-12-16

Similar Documents

Publication Publication Date Title
Gogotsi et al. Carbon coatings on silicon carbide by reaction with chlorine-containing gases
US5110565A (en) Apparatus for producing uniform, fine ceramic powder
EP0063272B1 (en) Synthesis of silicon nitride
KR101360775B1 (en) Method and apparatus capable of synthesizing high density wires in pores and on surface of porous material
JPS6126487B2 (en)
Guo et al. Effects of process parameters on ultrafine SiC synthesis using induction plasmas
JPS63274609A (en) Synthesis of silicon carbide particle
CA2008645C (en) Process for producing sinterable crystalline aluminum nitride powder
JPH0352402B2 (en)
Lin et al. Kinetics of silicon monoxide ammonolysis for nanophase silicon nitride synthesis
Venugopalan et al. Morphological study of SiC coating developed on 2D carbon composites using MTS precursor in a hot-wall vertical reactor
GB2227240A (en) Silicon carbide or nitride
JPS5930645B2 (en) Manufacturing method of high purity α-type silicon nitride
JPH04265207A (en) Method for production of spherical noncrystalline silicon nitride
JP2004115334A (en) Method of manufacturing high alpha-type silicon nitride fine powder
JPS58172206A (en) Manufacture of metallic nitride
JPS5945637B2 (en) Method for manufacturing silicon carbide whiskers
JPS5945916A (en) Continuous preparation of high-purity silicon
JPH0121090B2 (en)
JPS6117764B2 (en)
JPS60235707A (en) Production of fine complex powder
JPH01103990A (en) Vapor synthesizing device for powder diamond
JP3276940B2 (en) Carbide-nitride composite fine powder
JPS6148409A (en) Fine powder comprising silicon, carbon, and nitrogen, and process for preparing such powder
JPS6250466A (en) Production of article having silicon nitride film