JPS63274457A - Method of manufacturing granular porous chitosan derivative having cation exchange group - Google Patents

Method of manufacturing granular porous chitosan derivative having cation exchange group

Info

Publication number
JPS63274457A
JPS63274457A JP62111093A JP11109387A JPS63274457A JP S63274457 A JPS63274457 A JP S63274457A JP 62111093 A JP62111093 A JP 62111093A JP 11109387 A JP11109387 A JP 11109387A JP S63274457 A JPS63274457 A JP S63274457A
Authority
JP
Japan
Prior art keywords
chitosan
granular porous
porous chitosan
acid
pyridine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62111093A
Other languages
Japanese (ja)
Other versions
JPH0667481B2 (en
Inventor
Masaaki Shinonaga
正晃 篠永
Mitsunori Itoyama
光紀 糸山
Hiroaki Yabe
谷邊 博昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Spinning Co Ltd
Original Assignee
Fuji Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Spinning Co Ltd filed Critical Fuji Spinning Co Ltd
Priority to JP62111093A priority Critical patent/JPH0667481B2/en
Publication of JPS63274457A publication Critical patent/JPS63274457A/en
Publication of JPH0667481B2 publication Critical patent/JPH0667481B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

PURPOSE:To obtain an effective substrate by subjecting a granular porous chitosan to the sulfonation with chlorosulfuric acid in pyridine after bridge- bonding thereof using a cross-linking agent. CONSTITUTION:A chitosan with the molecular weight reduced to an average of 10,000-230,000 is dissolved in acetic acid, dichloroacetic acid, etc. The resultant aqueous acidic solution of chitosan is delivered under pressure onto an aqueous basic solution such as sodium hydroxide and potassium hydroxide by a nozzle having orifices of 0.1-0.25mm in diameter, solidified and regenerated to a granular porous chitosan. The granular porous chitosan is then bridge bonded by reaction with a cross-linking agent such as hexamethylene diisocyanate introduced thereinto and thereafter subjected to sulfonation reaction at a temperature of 60-100 deg.C using pyridine-chlorosulfuric acid complex as sulfonating agent, followed by washing with water for use as an ion-exchange product. This permits cation-exchange capacity to be freely adjusted.

Description

【発明の詳細な説明】 【産業上の利用分野】 本発明は、スルホン基を有するイオン交換樹脂或いはク
ロマトグラフィー用担体の製造方法に関するものである
。 K従来の技術】 近年、生化学関連分野の発展に伴い、分離、精製の目的
で使用されるイオン交換樹脂、クロマトグラフィー用担
体の役割は益々重要なものとなってきている。 キトサンをスルホン化する方法については、古くより文
献等に記載がある。例えば、エム・エル・’y t ル
ア 0ム(H,L、Wolfrom)等の方法(J、A
I。 Chon、Soc、、81,1764(1958) )
では、フレーク状のキトサンをピリジン中クロルスルホ
ン酸でスルホン化し、N、O−スルホン化物を与えてい
る。また、ナガサワ等は、澗ra酸を使用してキトサン
のN−スルホン化を行っている(CheIl、Phar
n、Bull、。 20、157.(1972))。更に、特開昭eo−2
o36o2@公報には、キトサンをi[及びクロルスル
ホン酸の混合物によりβ−D−(1,4)−グルコサミ
ンサブユニツ]・のC−6位の水Me基に選択的スルフ
ェート化を行う方法が記載されている。 しかしながら、このような従来の方法では、使用される
キトサンは、殆どがフレーク状或いは粉状のキトサンで
あるため、スルホン化したものは水溶性となり、効率の
良い担体を得ることはできなかった。 K発明が解決しようとする問題点】 上記文献に記載のように、フレーク状キトサン、或いは
粉状キトサンをスルホン化した場合、スルホン基の導入
の増加に伴い、水溶性が増加する傾向があり、不溶性の
担体を得るには低いイオン交換容量のものにとどめなけ
ればならず、従って、高いイオン交換容量の担体を得る
ことは不可能であった。また、キトサンは酢酸、ジクロ
ル酢酸。 蟻酸等の水溶液に溶解するので、その用途、使用pHよ
限られたものとなる。 以上の点を解決するため、本発明は耐酸、耐アルカリ性
で、しかもイオン交換容量も高い担体を青ることを目的
としてなされた。 K問題点を解決するための手段】 本発明は、架橋剤で架橋した粒状多孔質キトサン誘導体
をピリジン中クロルスルホン酸でスルホン化することに
より陽イオン交換基を有する担体を得る方法に係る。 本発明において用いる粒状多孔質キトサンは、特開昭6
1−40337号に記載の方法によって得られる。当該
多孔質粒状キトサンは、架橋反応を行って全pH領域で
安定な粒状多孔質キトサン誘導体とする。 即ち、粒状多孔質キトサンは、平均分子、Iio、。 00〜230.000の低分子化したキトサンを使用す
る。 この低分子量キトサンを酢酸、ジクロル酢酸、蟻酸等の
単独、或いは混合物に溶解して2〜10%の水溶液とな
るように調製する。該キトサン酸性水溶液を水酸化ナト
リウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウ
ム、アンモニア、水酸化エチレンジアミン等のアルカリ
性物質を含む塩基性水溶液中に、0.1乃至Q、25i
x孔径のノズルより圧力下で落下させると、凝固再生し
、粒状多孔質キトサンが得られる。また、塩基性水溶液
中には、メタノール、エタノール等のアルコール類を使
用することも可能である。 上記のようにして得た粒状多孔質キトサンに架橋剤とし
てヘキサメチレンジイソシアネート、ジフェニルメタン
−4,4′−ジイソシアネート。 ジカルボン酸ハロゲン化物等を用い、粒状多孔質キトサ
ンのアミン基と反応させ、スルホン化に供する。スルホ
ン化剤としては、ピリジン中にクロルスルホン酸を滴下
して得たピリジン−クロルスルホンU複合体を用いる。 その他にも、ジクロルエタン中クロルスルホン酸を用い
る方法、ピリジン、ジオキサン、N、N’ −ジメチル
アニリンと無水硫酸との複合体を使用する方法、無水亜
ft酸。 無水硫酸の混合物を使用する方法、二酸化イオウ−N、
N’ −ジメチルホルムアミド複合体を使用する方法、
硫酸とりOルスルホン酸の混合物を用いる方法等が考え
られるが、反応時間が比較的短時間である点、使用方法
、スルホン基導入量が調節し易い等の点からピリジン−
クロルスルホン酸複合体を使用する方法が好ましい。こ
の時、ピリジン中に滴下するクロルスルホン酸量を変化
させることにより、導入すべきスルホン基量を必要に応
じて適宜調節することができる。反応温度は60100
℃9反応時間は30〜120分の範囲で任意に選択でき
る。得られたスルホン基を有する粒状多孔質キトサン誘
導体は充分水洗後、陽イオン交換体として使用すること
ができる。 に実 浦 例】 以下本発明を実施例により詳細に説明するが、本発明は
実施例記載の範囲に限定されるものではない。 また、陽イオン交換基を有する粒状多孔質キトサンの陽
イオン交換容量、比表面積、キトサンの酢酸水溶液の粘
度は、下記のようにして求めた。 ◎陽イオン交換容量 試料的20rdを交換容量測定器に入れ、約1N硝酸約
1λを1時間かけて通液する。純水で中性を示すまで水
洗し、次に、約1N塩化ナトリウム水溶液を1時間かけ
て通液し、流出液を11のメスフラスコに正しく取る。 これを試験液とし、このうちの50dを採取し、フェノ
ールフタレイン溶液を指示薬としてN/10水酸化ナト
リウムで中和滴定し、次式より求めた。   1 10
00a:試験液50dを中和するに要したN/10水酸
化ナトリウム吊(成) f   :N/10水酸化ナトリウムの力価aOH W:試料(約20−)の乾燥重量(g)◎比表面積 比表面積測定装置を用いてBET法で測定した。 ◎粘 度 回転円筒形粘度計を用い20℃にて測定した。 実施例1 脱アセチル化度78%のキトサン70gを3.5%酢酸
水溶液930gに溶解した。この時の粘度は3,200
cpであった。該溶液を8%の水酸化ナトリウム。 30%のエタノール、62%の水よりなる混合溶液中に
、0.15n/n+φの孔径のノズルから落下させて、
凝固再生させた後、中性になるまで水洗をし、平均粒径
1n/Imの粒状多孔質キトサン0,9兎を得た。 こうして得られた粒状多孔質キトサン50威(湿潤状態
)に2.3gのアジピン酸クロライド、  2.59の
トリエチルアミンを加え、ジメチルホルムアミド中至温
で1時間反応させ架橋した。ジメチルホルムアミドで洗
浄後、無水ピリジンで充分洗浄して、氷冷した無水ピリ
ジン12Od中にクロルスルホンM 12tdを滴下し
たピリジン−クロルスルホン酸複合体を含む溶液を加え
、沸騰湯浴中1時間反応させN、O−スルホン化を行っ
た。反応終了後、1〜2N水酸化ナトリウム500戴を
加えてからエタノールで洗浄、次いで水洗を充分行いス
ルホン基を有する粒状多孔質キトサン誘導体48dを得
た。 このもののイオン交換容量は、3.30Ieq/g、比
表面積は87TIt/gであった。また、該粒状多孔質
キトサン誘導体を0.1N酢酸水溶液、  0.IN水
酸化ナトリウム水溶液に懸濁しても溶解する様なことは
なく全pl+領域で安定な担体であった。 実施例2 実施例1で得られた粒状多孔質キトサン50d(湿潤状
態)に、3.3gのセバシン酸クロライド。 2.5gのトリエチルアミンを加え、ジメチルホルムア
ミド中室温で11ff間反応させ架橋した。ジメチルホ
ルムアミドで洗浄後、無水ピリジンで充分洗浄して、氷
冷した無水ピリジン12Od中にクロルスルホン酸12
−を滴下したピリジン−クロルスルホン酸複合体を含む
溶液を加え、沸騰湯浴中1時間反応させN、O−スルホ
ン化を行った。反応終了後1〜2N*酸化ナトリウム5
00dを加えてからエタノールで洗浄、次いで水洗を充
分行い、スルホン基を有する粒状多孔質キトサン誘導体
48m1を得た。このもののイオン交換容量は3.28
Ieq/(1,比表面積は85.5わ9であった。また
、該誘導体を0.1N酢酸水溶液、  0.IN水酸化
ナトリウム水溶液に懸濁しても溶解する様なことはなく
、全pH領域で安定な担体であった。 実施例3 実施例1で得られた粒状多孔質キトサン50d(湿潤状
態)に2.19のへキサメチレンジイソシアネートを加
え、ジメチルホルムアミド中室温で1時間反応させ架橋
した。ジメチルホルムアミドで洗浄後、無水ピリジンで
充分洗浄して氷冷した無水ピリジン120d中にクロル
スルホン酸12蛇を滴下したピリジン−クロルスルホン
酸複合体を含む溶液を加え、沸騰湯浴中1時間反応させ
N、0−スルホン化を行った。反応終了後1〜2N水酸
化ナトリウム500dを加えてからエタノールで洗浄、
次いで水洗を充分行い、スルホン基を有する粒状多孔質
キトサン誘導体48dを得た。このもののイオン交換容
量は3.301eQ/(1,比表面積は86Td。 7gであった。また該誘導体を0,1N酢酸水溶液。 0.1N水酸化ナトリウム水溶液に懸濁しても溶解する
様なことはなく、全pH領域で安定な担体であった。ま
た、上記のようにして冑られた架橋反応後の粒状多孔質
キトサン誘導体にクロルスルホンMI3d、6−と変え
てスルホン化したところ、得られたスルホン化された粒
状多孔質キl−サン誘導体のイオン交換容量は、それぞ
れ1.22118Q/(] 。 2.94neq/(+となり、クロルスルホンMffi
を変化させることによりスルホン基の導入量が変化し、
イオン交換容量の調節が可能であった。 【発明の効果] 本発明によれば、実施例に記載のように3.3meq/
gもの高い陽イオン交換容量を有する粒状多孔質キトサ
ン誘導体が得られる他、陽イオン交換容量を自由に調節
することが可能で、しかも、本発明によって得られる陽
イオン交換基を有する粒状多孔質キトサン誘導体は、ア
ルカリ性、酸性の全pH領域で溶解、膨潤等がなく、安
定な担体であり、イオン交換樹脂、クロマトグラフィー
用担体として極めて優れたものである。しかも、本発明
によって得られる担体は、粒状の多孔質キトサン誘導体
であるために比表面積が大きく、通液抵抗が少ないもの
であり、架橋反応を行うことによって充分な強度を有す
るので、工業的利用に好適である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing an ion exchange resin or a chromatography carrier having a sulfone group. K. Prior Art In recent years, with the development of fields related to biochemistry, the role of ion exchange resins and chromatography carriers used for separation and purification purposes has become increasingly important. Methods for sulfonating chitosan have been described in literature for a long time. For example, the method (J, A
I. Chon, Soc, 81, 1764 (1958))
In this paper, flaky chitosan is sulfonated with chlorosulfonic acid in pyridine to give an N,O-sulfonated product. In addition, Nagasawa et al. performed N-sulfonation of chitosan using chelic acid (CheIl, Phar
n.Bull. 20, 157. (1972)). Furthermore, JP-A-Sho-eo-2
o36o2@ publication describes a method of selectively sulfating chitosan to the water Me group at the C-6 position of i [β-D-(1,4)-glucosamine subunit with a mixture of i[and chlorosulfonic acid]. Are listed. However, in such conventional methods, most of the chitosan used is flaky or powdered chitosan, and the sulfonated version becomes water-soluble, making it impossible to obtain an efficient carrier. K Problems to be Solved by the Invention] As described in the above-mentioned documents, when flaky chitosan or powdered chitosan is sulfonated, water solubility tends to increase as the number of sulfone groups introduced increases. In order to obtain an insoluble carrier, one must have a low ion exchange capacity, and it has therefore been impossible to obtain a carrier with a high ion exchange capacity. Also, chitosan is acetic acid and dichloroacetic acid. Since it dissolves in aqueous solutions such as formic acid, its uses and pH are limited. In order to solve the above-mentioned problems, the present invention was made for the purpose of producing a carrier that is acid- and alkali-resistant and also has a high ion exchange capacity. Means for Solving Problem K] The present invention relates to a method for obtaining a carrier having a cation exchange group by sulfonating a granular porous chitosan derivative crosslinked with a crosslinking agent with chlorosulfonic acid in pyridine. The granular porous chitosan used in the present invention is
It is obtained by the method described in No. 1-40337. The porous granular chitosan undergoes a crosslinking reaction to form a granular porous chitosan derivative that is stable in the entire pH range. That is, the granular porous chitosan has an average molecular weight, Iio. Chitosan with a low molecular weight of 00 to 230,000 is used. This low molecular weight chitosan is dissolved in acetic acid, dichloroacetic acid, formic acid, etc. alone or in a mixture to prepare a 2-10% aqueous solution. The chitosan acidic aqueous solution was added to a basic aqueous solution containing an alkaline substance such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, ammonia, ethylenediamine hydroxide, etc. at a concentration of 0.1 to Q, 25 i.
When dropped under pressure from a nozzle with a hole diameter of x, solidification and regeneration occur to obtain granular porous chitosan. It is also possible to use alcohols such as methanol and ethanol in the basic aqueous solution. Hexamethylene diisocyanate and diphenylmethane-4,4'-diisocyanate were added to the granular porous chitosan obtained as described above as a crosslinking agent. A dicarboxylic acid halide or the like is used to react with the amine group of the porous granular chitosan to provide sulfonation. As the sulfonating agent, a pyridine-chlorosulfone U complex obtained by dropping chlorosulfonic acid into pyridine is used. Other methods include a method using chlorosulfonic acid in dichloroethane, a method using a complex of pyridine, dioxane, N,N'-dimethylaniline and sulfuric anhydride, and ftous anhydride. Method using a mixture of sulfuric anhydride, sulfur dioxide-N,
A method using N'-dimethylformamide complex,
A method using a mixture of sulfuric acid and sulfonic acid is considered, but pyridine-
A method using a chlorsulfonic acid complex is preferred. At this time, by changing the amount of chlorosulfonic acid added dropwise into the pyridine, the amount of sulfone groups to be introduced can be adjusted as necessary. Reaction temperature is 60100
C.9 reaction time can be arbitrarily selected within the range of 30 to 120 minutes. The obtained particulate porous chitosan derivative having a sulfone group can be used as a cation exchanger after being thoroughly washed with water. Example] The present invention will be explained in detail below with reference to examples, but the present invention is not limited to the scope described in the examples. Further, the cation exchange capacity and specific surface area of the granular porous chitosan having a cation exchange group, and the viscosity of an acetic acid aqueous solution of chitosan were determined as follows. ◎Cation Exchange Capacity Sample 20rd is placed in an exchange capacity measuring device, and about 1 λ of about 1N nitric acid is passed through it for 1 hour. Wash with pure water until it becomes neutral, then pass about 1N aqueous sodium chloride solution over 1 hour, and take the effluent into a volumetric flask (No. 11). This was used as a test solution, 50 d of it was sampled, and neutralization titration was performed with N/10 sodium hydroxide using phenolphthalein solution as an indicator, and the test solution was determined from the following formula. 1 10
00a: N/10 sodium hydroxide suspension required to neutralize 50d of test solution f: Titer of N/10 sodium hydroxide aOH W: Dry weight (g) of sample (approximately 20-) ◎Ratio The surface area ratio was measured by the BET method using a surface area measuring device. ◎Viscosity Measured at 20°C using a rotating cylindrical viscometer. Example 1 70 g of chitosan with a degree of deacetylation of 78% was dissolved in 930 g of a 3.5% acetic acid aqueous solution. The viscosity at this time is 3,200
It was cp. Add 8% sodium hydroxide to the solution. It was dropped into a mixed solution of 30% ethanol and 62% water through a nozzle with a hole diameter of 0.15n/n+φ,
After coagulation and regeneration, the mixture was washed with water until it became neutral to obtain granular porous chitosan with an average particle size of 1 n/Im. 2.3 g of adipic acid chloride and 2.59 g of triethylamine were added to 50 g of the thus obtained granular porous chitosan (in a wet state), and the mixture was reacted in dimethylformamide at the lowest temperature for 1 hour to effect crosslinking. After washing with dimethylformamide and thoroughly washing with anhydrous pyridine, a solution containing a pyridine-chlorosulfonic acid complex in which chlorsulfone M 12td was added dropwise to ice-cooled anhydrous pyridine 12Od was added, and the mixture was allowed to react in a boiling water bath for 1 hour. N,O-sulfonation was performed. After the reaction was completed, 500 g of 1-2N sodium hydroxide was added, and the mixture was thoroughly washed with ethanol and then with water to obtain a granular porous chitosan derivative 48d having a sulfone group. The ion exchange capacity of this product was 3.30 Ieq/g, and the specific surface area was 87 TIt/g. Further, the granular porous chitosan derivative was mixed with a 0.1N acetic acid aqueous solution and 0.1N aqueous solution of acetic acid. Even when suspended in an aqueous IN sodium hydroxide solution, it did not appear to dissolve and was a stable carrier in the entire pl+ range. Example 2 3.3 g of sebacic acid chloride was added to the granular porous chitosan 50d obtained in Example 1 (wet state). 2.5 g of triethylamine was added, and the mixture was reacted in dimethylformamide at room temperature for 11 ff to effect crosslinking. After washing with dimethylformamide and thoroughly washing with anhydrous pyridine, chlorosulfonic acid 12 was added to ice-cooled anhydrous pyridine 12Od.
A solution containing a pyridine-chlorosulfonic acid complex to which - was added dropwise was added, and the mixture was reacted for 1 hour in a boiling water bath to perform N,O-sulfonation. After completion of reaction 1-2N*sodium oxide 5
After adding 00d, the mixture was thoroughly washed with ethanol and then with water to obtain 48 ml of a granular porous chitosan derivative having a sulfone group. The ion exchange capacity of this product is 3.28
Ieq/(1, the specific surface area was 85.5×9. Also, even when the derivative was suspended in a 0.1N acetic acid aqueous solution or a 0.IN aqueous sodium hydroxide solution, it did not appear to dissolve, and the total pH Example 3 2.19 hexamethylene diisocyanate was added to the granular porous chitosan 50d (wet state) obtained in Example 1, and the mixture was reacted in dimethylformamide at room temperature for 1 hour to cause crosslinking. After washing with dimethylformamide, a solution containing a pyridine-chlorosulfonic acid complex in which chlorsulfonic acid was added dropwise to 120d of anhydrous pyridine that had been thoroughly washed with anhydrous pyridine and cooled on ice was added, and the solution was placed in a boiling water bath for 1 hour. The reaction was carried out to perform N,0-sulfonation. After the reaction was completed, 500 d of 1-2N sodium hydroxide was added, and then washed with ethanol.
Next, the mixture was thoroughly washed with water to obtain a granular porous chitosan derivative 48d having a sulfone group. The ion exchange capacity of this product was 3.301eQ/(1), and the specific surface area was 86Td. In addition, when the granular porous chitosan derivative after the crosslinking reaction completed as described above was sulfonated by replacing it with chlorsulfone MI3d,6-, the carrier was obtained. The ion exchange capacity of the sulfonated granular porous xyl-san derivative is 1.22118Q/(]. 2.94neq/(+), and the chlorsulfone Mffi
By changing the amount of sulfone group introduced,
It was possible to adjust the ion exchange capacity. [Effect of the invention] According to the present invention, as described in the examples, 3.3 meq/
In addition to obtaining a granular porous chitosan derivative having a high cation exchange capacity of as much as 100 g, the cation exchange capacity can be freely adjusted, and the granular porous chitosan having a cation exchange group obtained by the present invention The derivative is a stable carrier that does not dissolve or swell in all pH ranges, both alkaline and acidic, and is extremely excellent as a carrier for ion exchange resins and chromatography. Moreover, since the carrier obtained by the present invention is a granular porous chitosan derivative, it has a large specific surface area and low resistance to liquid passage, and has sufficient strength by crosslinking reaction, so it is suitable for industrial use. suitable for

Claims (1)

【特許請求の範囲】[Claims] 粒状多孔質キトサンを架橋剤で架橋した後、ピリジン中
クロロスルホン酸でスルホン化することを特徴とする陽
イオン交換基を有する粒状多孔質キトサン誘導体の製造
方法。
A method for producing a granular porous chitosan derivative having a cation exchange group, which comprises crosslinking the granular porous chitosan with a crosslinking agent and then sulfonating the chitosan with chlorosulfonic acid in pyridine.
JP62111093A 1987-05-07 1987-05-07 Process for producing granular porous chitosan derivative having cation exchange group Expired - Fee Related JPH0667481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62111093A JPH0667481B2 (en) 1987-05-07 1987-05-07 Process for producing granular porous chitosan derivative having cation exchange group

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62111093A JPH0667481B2 (en) 1987-05-07 1987-05-07 Process for producing granular porous chitosan derivative having cation exchange group

Publications (2)

Publication Number Publication Date
JPS63274457A true JPS63274457A (en) 1988-11-11
JPH0667481B2 JPH0667481B2 (en) 1994-08-31

Family

ID=14552203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62111093A Expired - Fee Related JPH0667481B2 (en) 1987-05-07 1987-05-07 Process for producing granular porous chitosan derivative having cation exchange group

Country Status (1)

Country Link
JP (1) JPH0667481B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0920874A1 (en) * 1997-12-05 1999-06-09 SCA Mölnlycke Superabsorbent material and method for producing said material
US8263763B2 (en) 2004-06-18 2012-09-11 Taiwan Hopax Chemicals Manufacturing Company, Ltd. Chemically modified polyaminosaccharide by a hydrocarbyl sultone compound

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50155636A (en) * 1974-06-07 1975-12-16
JPS5635411A (en) * 1979-08-31 1981-04-08 Fujitsu Ltd Epitaxial wafer of gallium arsenide and its manufacture
JPS6069012A (en) * 1983-08-02 1985-04-19 ブレンダツクス−ベルケ ア−ル.シユナイダ− ゲゼルシヤフト ミツト ベシユレンクテル ハフツンク ウント コンパニ− Skin care composition
JPS6216409A (en) * 1985-07-13 1987-01-24 Kinkai Engiyou Kk Beautifying agent containing sodium chloride

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50155636A (en) * 1974-06-07 1975-12-16
JPS5635411A (en) * 1979-08-31 1981-04-08 Fujitsu Ltd Epitaxial wafer of gallium arsenide and its manufacture
JPS6069012A (en) * 1983-08-02 1985-04-19 ブレンダツクス−ベルケ ア−ル.シユナイダ− ゲゼルシヤフト ミツト ベシユレンクテル ハフツンク ウント コンパニ− Skin care composition
JPS6216409A (en) * 1985-07-13 1987-01-24 Kinkai Engiyou Kk Beautifying agent containing sodium chloride

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0920874A1 (en) * 1997-12-05 1999-06-09 SCA Mölnlycke Superabsorbent material and method for producing said material
WO1999029352A1 (en) * 1997-12-05 1999-06-17 Sca Hygiene Products Zeist B.V. Superabsorbent material and method for producing said material
US8263763B2 (en) 2004-06-18 2012-09-11 Taiwan Hopax Chemicals Manufacturing Company, Ltd. Chemically modified polyaminosaccharide by a hydrocarbyl sultone compound

Also Published As

Publication number Publication date
JPH0667481B2 (en) 1994-08-31

Similar Documents

Publication Publication Date Title
Amiya et al. Phase transitions in crosslinked gels of natural polymers
JPH0321333A (en) Membrane for ultrafiltration process
JP3051244B2 (en) Sulfonated aniline copolymers and their preparation
US4141746A (en) Cellulose sulfate esters
JPS5913522B2 (en) Method for producing ion exchanger by alkylation or hydroxyalkylation of hydrophilic polymeric anion exchanger
US4138535A (en) Nitrite esters of polyhydroxy polymers
JPS63274457A (en) Method of manufacturing granular porous chitosan derivative having cation exchange group
JPS5857401A (en) Production of particulate porous chitosan
US5527902A (en) Bead-shaped cellulose products for separating and carrier materials and their manufacture
JPS6176504A (en) Production of porous granular chitosan
US4035569A (en) Preparation of cellulose nitrite
US4647644A (en) Phenylenesulfonate group-containing organopolysiloxanes, method for their preparation and use thereof
JPH0194949A (en) Cross-linked glucomannan ion exchanger
US4448764A (en) Direct-acting iodinating reagent
JPS6238173A (en) Anti-thrombotic agent
US4177345A (en) Process for preparing a sulfate ester of a polyhydroxy polymer
JPH075741B2 (en) Process for producing granular porous chitosan derivative having sulfo group
US3959406A (en) Polyelectrolyte composite of polyvinyl alcohol derivatives
US4419316A (en) Process of making films, fibers or other shaped articles consisting of, or containing, polyhydroxy polymers
JPS622853B2 (en)
JPH0248044A (en) Production of chitosan shaped body having anion exchange ability
TW201840656A (en) Method of cleaning resins
US3257380A (en) Process of improving gums and product obtainable thereby
JPS5938203A (en) Production of amorphous cellulose
CA1071232A (en) Process for the preparation of polyhydroxy methylene ethers and ion exchangers composed of the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees