JPS6327437B2 - - Google Patents

Info

Publication number
JPS6327437B2
JPS6327437B2 JP12907781A JP12907781A JPS6327437B2 JP S6327437 B2 JPS6327437 B2 JP S6327437B2 JP 12907781 A JP12907781 A JP 12907781A JP 12907781 A JP12907781 A JP 12907781A JP S6327437 B2 JPS6327437 B2 JP S6327437B2
Authority
JP
Japan
Prior art keywords
layer
content
alloy coating
test
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12907781A
Other languages
Japanese (ja)
Other versions
JPS5831096A (en
Inventor
Takao Saito
Toshio Odajima
Kazuya Ezure
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12907781A priority Critical patent/JPS5831096A/en
Publication of JPS5831096A publication Critical patent/JPS5831096A/en
Publication of JPS6327437B2 publication Critical patent/JPS6327437B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は製缶用素材としての塗装耐食性、缶胴
接合性、特にシーム溶接性に優れた低コストの製
缶用表面処理鋼板に関するものである。 製缶用表面処理鋼板としては、一般に電気錫メ
ツキ(以下ブリキと称す)と電解クロム酸処理鋼
板(以下TFS―CTと称す)が知られている。こ
のうちブリキは製缶用表面処理鋼板として最も一
般的なものであり最も広く用いられている。その
用途としてはブリキを裸のまま又は塗装を施した
後錫の耐食性を生かして、魚肉、スープ、果実等
いわゆる食缶として使用するほか、コーラ等炭酸
飲料缶、果実ジユース缶等いわゆる飲料缶又は18
缶、ペール缶等にも広く使用されている。そし
て製缶方法としても、缶胴接合法として接着法を
除く、ハンダ付法、シーム溶接法を採用したいわ
ゆる3ピース缶のみでなく、特に飲料缶等に多い
2ピース缶の製造にも錫の固体潤滑性を生して使
用されている。これに対してTFS―CTは比較的
腐食性の少ない飲料缶に主として用いられ、その
他18缶、ペール缶等にも用いられているが製造
方法としては3ピース缶のみであり、2ピース缶
の製造には使用されていない。これはTFS―CT
の金属クロム、クロム水和酸化物を主体とする非
金属クロム層(以下オキサイドクロム層と称す)
が硬質でもろいため、2ピース缶加工がむずかし
く、又2ピース缶加工後の耐食性が大巾に低下す
るからである。そして3ピース缶においても、缶
胴接合方法としてはいわゆる接着法が主体であ
り、シーム溶接する場合は表面のクロム層を研削
除去する必要があり一般的ではない。 このように従来のブリキ、TFS―CTは互いに
その長所を生かし使用されてきたが、近年の錫価
格の上昇によつてブリキのコストアツプが著し
く、ブリキのTFS―CT化が進んでいる。ブリキ
のTFS化に当つての問題点は、その内容物によ
つては長期保存時の耐食性が不足すること、又ブ
リキのようにシーム溶接性が良好でなく、シーム
溶接する場合は前述のように表面のクロム層を研
削除去する必要があること、又2ピース缶製造が
成形加工面及び製造コスト面より事実上不可能で
あること等である。したがつて、錫ないし鋼板、
すなわちTFSの分野で従来ブリキとほぼ同等の
塗装耐食性、シーム溶接性、及び2ピース缶成形
性に優れた低コストの表面処理鋼板の開発が要請
されており、本発明者等はこれに応えて研究を進
め、これらの品質要求を十分に満足する新しい
TFSの開発に成功したものである。 即ち、表面清浄化した鋼板両面にNi―Zn2元合
金被覆層を設け、さらにこの合金被覆層の両面に
クロム処理層を設ける被覆構造からなる塗装後製
缶加工する。特に、塗装耐食性及びシーム溶接性
に優れた製缶用表面処理鋼板を提供することを目
的としたもので、その最大の特徴点は、Ni―Zn2
元合金被覆層中のZn含有率にあり、Zn含有率が
製缶後内、外面それぞれ限定範囲が相違している
点にある。即ち具体的には製缶後缶内面側となる
面の合金被覆層のZn含有率が20%以下であるの
に対し、缶外表面は80%以下としている。この合
金被覆層中のZn含有率は本限定範囲内であれば
自由に選択可能であり、もちろん鋼板の表裏で合
金組成を変えることも可能である。 次に、本発明の製缶用表面処理鋼板の被覆構造
を模式的に第1図に示す。 1は素材となる冷延鋼板、2はNi―Zn合金被
覆層でその被覆方法は電気メツキによつて直接
Ni―Zn2元合金メツキを行つてもよいし、又Ni
とZnをそれぞれ2層被覆した後加熱処理によつ
てNi,Znを固相拡散し、Ni―Zn2元合金層とす
る方法によつても良いが、前者の方が一般的で経
済的でもある。このNi―Zn2元合金被覆層の上層
にクロム処理層3があり、一般に行われている電
解クロム酸処理方法で行うが、特に、この方法に
限定するものではない。クロム処理層の構造はブ
リキのクロメート処理法によつて得られるクロム
水和酸化物を主体とするものでも良く、TFS―
CTと類似のメツキ浴で金属クロムと非金属クロ
ム層から成るもので良く、その用途に応じて適時
選択すれば良い。4はブリキやTFS―CT等に通
常形成される油膜層であり、製缶に使用される間
の防錆やスリ疵防止等の効果がある。 ここで、本発明の特徴であるNi―Zn2元合金被
覆層の形成法について若干述べる。 Zn―Ni2元合金被覆層は前記したように、缶内
外面それぞれ限定範囲を相違させ、缶内面側は20
%以下、缶外面側は80%以下としている。今、
Ni―Zn合金被覆層を電気メツキ法で形成させる
場合を記述する。鋼板の表面の合金組成を同一と
する場合は、同一のメツキ浴で一度又は数度メツ
キすることにより得られるが、鋼板表面の合金組
成を変えて、例えば製缶後缶内面となる側のZn
含有率を20%以下とし、缶外面になる側のZn含
有率を20〜80%と異なる合金組成にする場合、最
初Zn20%以下となるように調整した合金メツキ
浴で片側面のみメツキした後、Zn20〜80%とな
るように調整した合金メツキ浴で反対面をメツキ
するようにすればよい。 次に本発明における限定理由を説明する。 まず通常の方法で表面清浄化した鋼板両面に
Ni―Zn2元合金被覆を採用した理由は、Ni単相
被覆では、Niが電気化学的に非常に貴であり、
Ni被覆自体は非常に安定であるが、Ni被覆には
必ず欠陥部が存在し、この欠陥部には素地Feが
露出した状態となつている。従つて缶内部の腐食
環境においてNi層と素地Feとの間にガルバニツ
ク作用が生じ、NiはFeより非常に貴であるがた
めに、このガルバニツク作用によつて流れるガル
バニツク電流は素地Feを溶解するような方向に
流れる。しかもNi層欠陥部のFe露出部は全体的
に見れば、非常に面積が小さいため、非常に大き
な電流密度となつてNi層欠陥部Feが優先的に溶
出し、いわゆるPiting Corrosionを引き起こし、
場合によつては穿孔缶となり、缶の寿命を著しく
短くする危険がある。そこで電位的に非常に貴な
Niに電位的に卑なZnを合金化してやれば、Ni―
Zn2元合金層の電位は卑な方向に変化し、素地Fe
との間のガルバニツク作用が小さくなり、従つて
Ni―Zn2元合金被覆欠陥部におけるFe溶出は少
なくなり、合金層中のZn含有率が高くなれば、
ついにNi―Zn2元合金被覆層の電位はFeよりも
卑となつてFe溶出をNi―Zn2元合金被覆の犠牲
溶解作用によつて防止することが可能となる。 ここで製缶後缶内面となる側の合金被覆層中の
Zn含有率を20%以下としたのは、Zn含有率が20
%以上になると、塗膜下のNi―Zn合金被覆層の
溶解が大きくなつて、缶保管中の塗膜下腐食性が
劣化し、例えば製缶時塗膜にスクラツチ等が入つ
た場合、塗膜下腐食が進行し、ついには塗膜剥離
に到る危険があるからであり、20%以下と限定し
たものである。なお、Ni―Zn合金被覆層中のZn
含有率の下限は特に限定しないが、3%以上が好
ましい。3%以下だと、電位的にNi単層被覆と
事実上変わらず、Ni中にZnを合金化し被覆層欠
陥部及び塗膜欠陥部におけるNi―Zn2元合金被覆
層とFe素地とのガルバニツク作用を小さくする
という目的が達成されず、又Ni中にZnを合金化
させるその他の目的である含硫化物、例えば魚
肉、食肉等内容物の場合、殺キンのため行うレト
ルト処理時それら内容物中の硫化物が分解し、例
えばFe素地と反応し、FeSというような硫化物が
缶内面に発生し、缶内面が黒変することを、Ni
―Zn2元合金被覆層中のZnと反応させることによ
つて防止するという、いわゆる耐硫性能を向上さ
せることも出来なくなる。 一方製缶後缶外面となる側の合金被覆中のZn
含有率を80%以下としたのは、缶内面、すなわち
缶内容物と接する側の腐食環境と、缶外面、すな
わちユーザーにおいて缶保管中に置かれる腐食環
境とは異なり、缶外面側においては缶保管中の耐
錆性、特にイージーオープンエンド外面のスコア
加工部等のように塗膜、及びNi―Zn合金被覆層
に疵が入る場合は、Znの含有率が高く、場合に
よつてはNi―Zn合金被覆層の方が素地Feよりも
電位が低く、すなわち電気化学的に卑な方が良い
耐錆性を与える場合があるからであり、その使用
される用途によつて最適となるような合金組成と
すれば良いからである。イージーオープンエンド
外面用としては70%Zn程度のZn含有率が最適で
ある。なお、Ni―Zn合金被覆層中のZn含有率の
下限は特に限定しないが、3%以上が好ましい。
これは前述の缶内面側の場合と同様な理由であ
り、3%以下ではNi単層メツキの場合と事実上
同等の耐錆性しか示さない。 上限を80%としたのは、Zn含有率がこれ以上
となると、電位が逆に低下し過ぎて、純Znに近
ずき非常に活性となるため例えば缶保管中のNi
―Zn2元合金層の消耗が速くなり、耐錆性を長期
間持続できなくなることと、Zn特有の白錆が発
生し始め、商品外観上も好ましくないからであ
る。 又、缶内外面側共Ni―Zn2元合金被覆層の被覆
量としては、特に限定しないが、通常0.05g/m2
〜11g/m2程度付着していれば十分で、0.05g/
m2以下では耐食性不良となり、11g/m2以上多く
付着させても、これ以上耐食性の向上は望めず不
経済となるからである。 以上、本発明の特徴であるNi―Zn2元合金被覆
層のZn含有率の限定理由について説明して来た
が、次に本発明者等の実験データにより補足説明
を行なう。 第2図は縦軸に缶内面塗装耐食性を評価する
UCCテスト(アンダーカツトコロージヨンテス
ト)及び缶外面耐錆性を評価するQCテスト
(Wet―Dryのサイクルを繰り返し、缶保管中の
耐錆性を評価するテスト)の各々の評価値、横軸
にはNi―Zn2元合金被覆中のZn含有率を示す。
図から明らかなように、UCCテストではZn含有
率が20%以上になると急激に劣化し、又3%以下
では劣つている。又QCテストではZn含有率80%
をピークにそれ以上になると急激に低下し、3%
以下では耐錆性低下が見られるが、実用上問題と
ならない評価○印の範囲は前者のUCCテスト結
果より広い。したがつて、缶内面の塗装耐食性を
重視する部位に使用する場合は、適正Zn含有量
を狭く、缶外面側は広くとることにより、用途に
応じた、いわゆる適材適所の使用法が出来ること
を見出したのである。なお、UCCテスト及びQC
テストのテスト方法は、後述する実施例の説明の
内容と同じである。 次に、Ni―Zn2元合金被覆のもう一つの利点
は、前記した塗装耐食性の他にシーム溶接が他の
TFS―CTに比し優れていることである。シーム
溶接性が良い理由は、Ni単層被覆では融点が比
較的に高く(1450℃)シーム溶接性が必ずしも良
好とは言えないが、Ni―Zn2元合金被覆とするこ
とによつて被覆層の融点が下がることによるため
である。又、その他Niに価格の安いZnを合金化
することで、製造コストを低下することができる
等Ni―Zn2元合金被覆は効果大なるものがある。 次に前述したNi―Zn合金被覆層の上層両面に
更にクロム処理層を設けるが、この付着量は通
常、片面当りTotal Crで1〜50mg/m2とする。
クロム処理層が片面当り1mg/m2以下だと特に缶
内面の塗膜密着性が劣化し、50mg/m2以上だと缶
胴接合法としてシーム溶接を採用する時、金属ク
ロム又は非金属クロム層の融点が高く、さらに非
金属クロム層の電気伝導度が劣るためシーム溶接
性が劣化する。 次に本発明の具体的実施例について説明する。 実施例 1 通常の方法で表面清浄化した鋼板両面化(1)に示
す条件でNi―Zn2元合金層(Zn含有率15%)を
電気メツキ法で被覆した後、(2)及び(3)に示す条件
でクロム処理層を電解クロム酸処理によつて形成
させた。さらに(3)に示す条件で製缶用塗膜を形成
させた後各種評価テストに供した。但しシーム溶
接性評価の際は塗装を行わなかつた。 (1) NiSO4・7H2O 300g/ Total目付量0.6g/m2 (片面当り) ZnSO4・6H2O 15g/ Zn含有率15% H3BO3 35g/ 浴温50℃ 電流密度20A/dm2 (2) Na2Cr2O7 30g/ TotalCr量 12mg/m2 浴温60℃ 電流密度20A/dm2 (3) CrO3 50g/ H2SO4 0.4g/(SO2- 4換算) TotalCr量 20mg/m2 浴温50℃ 電流密度40A/dm2 (4) 製缶用エポキシ―フエノール塗料 45mg/dm2(片面当り乾燥重量) 205℃×10分焼付け 180℃×10分追焼 実施例 2 通常の方法で表面清浄化した鋼板の製缶後缶内
面となる鋼板面側に(1)に示す条件でNi―Zn2元合
金層(Zn含有率10%)を電気メツキ法で被覆し
た後、製缶後缶外面となる鋼板面に(2)に示す条件
でNi―Zn2元合金層(Zn含有率70%)を電気メ
ツキ法で被覆し、すなわち鋼板の表裏でZn含有
率の異なるNi―Zn2元合金被覆層を形成した。 次に、(3)及び(4)に示す条件でクロム処理層を電
解クロム酸処理法によつて形成させた。 そして(5)に示す条件で製缶用塗膜を形成させた
後、各種評価テストに供した。但しシーム溶接性
評価の際は塗装を行わなかつた。 (1) NiSO4・7H2O 300g/ Total目付量0.6g/m2 ZnSO4・6H2O 10g/ Zn含有率10% H3BO3 30g/ 浴温50℃ 電流密度20A/dm2 (2) NiSO4・7H2O 300g/ Total目付量1.0g/m2 ZnSO4・6H2O 50g/ Zn含有率 70% H3BO3 30g/ (3) 実施例1の(2)と同じ (4) 〃 (3) 〃 (5) 〃 (4) 〃 次に本発明素材で行つた各種テストの内容につ
いて記す。 (A) UCC(アンダーカツトフイルムコロージヨ
ン)テスト このテストは缶内面の塗装耐食性を評価する手
法の一つであり、実施例1及び2のサンプル塗装
面にナイフでスクラツチを入れた後、腐食液(ク
エン酸15g/―食塩15g/の混合液)中に浸
漬し、CO2ガスバブリングしながら50℃で3日間
保定した後、スクラツチ部をテープ剥離して、ス
クラツチ周辺部の腐食状態を判定した。 (B) 腐食液浸漬テスト このテストも、(A)UCCテストと同様に缶内面
の塗装耐食性を評価する手法の一つであり、実施
例1及び2のサンプルにErx試験器で4mmの張り
出し加工を行つたのち、端面(サンプルの切り
口)を完全にシールし、プラスチツク容器中の脱
気した各種腐食液、のUCC液100%オレン
ジジユース中に浸漬し、50℃で2週間保定した
後、さらに腐食液中へのFe溶出量を分析した。 (C) Q・Cテスト このテストは、缶外面の塗装耐食性を評価する
一手法であり、実施例1及び2のサンプルの塗膜
面にナイフでスクラツチを入れた後Erx試験器で
4mmの張り出し加工を行い、Q・Cテスターにか
けてテストした。Q・Cテスターとは試験サンプ
ルをWetとDryの繰り返しを行う環境下に置くも
ので、行つたテスト条件はWet(水温20℃、気温
25℃)30分―Dry(エア50℃)60分で1サイクル
とし、このサイクルを960回繰り返した後、塗膜
スクラツチ部の発錆状況を判定した。 (D) シーム溶接性 シーム溶接機を使用して実施例1は実施例1同
志、実施例2は実施例2同志のサンプル(未塗
装)を実際に製缶する場合と同様に互いに0.4mm
のラツプ巾で重ね合せて、加圧力50Kg/m2、2次
側の溶接電流4.5KAの条件でシーム溶接し、シー
ム溶接部の強度は衝撃テストで、シーム溶接部の
外観は目視で評価した。 以上実施例1及び2の(A)〜(D)各評価項目のテス
ト結果を第一表に示した。 なお、本発明例の比較として片面当り錫付着量
2.7g/m2、クロメート被膜量15mg/m2(金属ク
ロム換算)のブリキ(以下#25ETと称す)及び
片面当り金属クロム量100mg/m2、クロム酸化物
量12mg/m2(金属クロム換算)のTFS―CTを使
用した。
The present invention relates to a low-cost, surface-treated steel sheet for can manufacturing that is excellent in coating corrosion resistance, can body jointability, and particularly seam weldability as a raw material for can manufacturing. As surface-treated steel sheets for can manufacturing, electrolytic tin plated (hereinafter referred to as tinplate) and electrolytic chromic acid treated steel sheets (hereinafter referred to as TFS-CT) are generally known. Among these, tinplate is the most common and most widely used surface-treated steel sheet for can manufacturing. It is used as food cans for fish meat, soups, fruits, etc., as well as so-called beverage cans such as carbonated drink cans such as cola, fruit juice cans, etc., by taking advantage of the corrosion resistance of tin after tin is bare or painted. 18
It is also widely used for cans, pails, etc. As for can manufacturing methods, tin is used not only for so-called 3-piece cans, which employ soldering and seam welding methods other than adhesive methods, but also for manufacturing 2-piece cans, which are particularly common in beverage cans, etc. It is used because of its solid lubricity. On the other hand, TFS-CT is mainly used for beverage cans, which are relatively less corrosive, and is also used for 18 other cans, pail cans, etc., but the manufacturing method is only for 3-piece cans, and for 2-piece cans. Not used in manufacturing. This is TFS-CT
A non-metallic chromium layer mainly composed of metallic chromium and chromium hydrated oxide (hereinafter referred to as chromium oxide layer)
This is because it is hard and brittle, making it difficult to process two-piece cans, and the corrosion resistance after forming two-piece cans is greatly reduced. Even for three-piece cans, the so-called adhesive method is the main method for joining the can body, and seam welding requires polishing off the chromium layer on the surface, which is not common. In this way, conventional tinplate and TFS-CT have been used to take advantage of each other's strengths, but as the price of tin has increased in recent years, the cost of tinplate has increased significantly, and the use of TFS-CT in tinplate is progressing. The problem with converting tinplate into TFS is that depending on the contents, it may lack corrosion resistance during long-term storage, and unlike tinplate, it does not have good seam weldability, so if seam welding is used, as mentioned above, The chromium layer on the surface must be removed by polishing, and the production of two-piece cans is virtually impossible due to molding and manufacturing costs. Therefore, tin or steel plate,
In other words, in the field of TFS, there is a demand for the development of a low-cost surface-treated steel sheet that has almost the same paint corrosion resistance, seam weldability, and two-piece can formability as conventional tinplate, and the present inventors have responded to this request. We are continuing our research to create new products that fully meet these quality requirements.
This was the successful development of TFS. That is, after painting, the can is formed into a coating structure in which a Ni--Zn binary alloy coating layer is provided on both surfaces of a surface-cleaned steel sheet, and a chromium treatment layer is further provided on both surfaces of this alloy coating layer. In particular, the objective was to provide a surface-treated steel sheet for can manufacturing with excellent paint corrosion resistance and seam weldability.
The reason lies in the Zn content in the original alloy coating layer, and the limited ranges of the Zn content on the inner and outer surfaces after can manufacturing are different. Specifically, the Zn content of the alloy coating layer on the inner surface of the can after can manufacturing is 20% or less, while the Zn content on the outer surface of the can is 80% or less. The Zn content in this alloy coating layer can be freely selected within this limited range, and of course it is also possible to change the alloy composition on the front and back sides of the steel sheet. Next, the coating structure of the surface-treated steel sheet for can manufacturing of the present invention is schematically shown in FIG. 1 is a cold-rolled steel plate that is the raw material, 2 is a Ni-Zn alloy coating layer, and the coating method is direct electroplating.
Ni-Zn binary alloy plating may be performed, or Ni
It is also possible to coat two layers of Ni and Zn and then heat-treat to diffuse Ni and Zn in a solid phase to form a binary Ni-Zn alloy layer, but the former method is more common and economical. . There is a chromium treatment layer 3 on top of this Ni--Zn binary alloy coating layer, and the treatment is carried out by a commonly used electrolytic chromic acid treatment method, but the method is not particularly limited to this. The structure of the chromium treatment layer may be mainly composed of chromium hydrated oxide obtained by the tin plate chromate treatment method, and TFS-
A plating bath similar to CT, consisting of a metallic chromium layer and a non-metallic chromium layer, can be used, and can be selected appropriately depending on the application. 4 is an oil film layer that is normally formed on tinplate, TFS-CT, etc., and has the effect of preventing rust and scratches during use in can manufacturing. Here, the method for forming the Ni--Zn binary alloy coating layer, which is a feature of the present invention, will be briefly described. As mentioned above, the Zn-Ni binary alloy coating layer has different limited ranges for the inner and outer surfaces of the can, and the inner surface of the can has a
% or less, and the outer surface of the can is 80% or less. now,
A case will be described in which a Ni--Zn alloy coating layer is formed by electroplating. If the alloy composition on the surface of the steel sheet is the same, it can be obtained by plating once or several times in the same plating bath, but by changing the alloy composition on the surface of the steel sheet, for example, the Zn on the side that will become the inner surface of the can after can manufacturing can be changed.
If the Zn content is 20% or less and the Zn content on the side that becomes the outer surface of the can is different from 20 to 80%, first plate only one side with an alloy plating bath adjusted to have Zn of 20% or less. , the opposite side may be plated with an alloy plating bath adjusted to contain 20 to 80% Zn. Next, the reasons for limitations in the present invention will be explained. First, both sides of the steel plate were surface-cleaned using the usual method.
The reason why we adopted the Ni-Zn binary alloy coating is that in a single-phase Ni coating, Ni is electrochemically very noble.
Although the Ni coating itself is very stable, there are always defects in the Ni coating, and the Fe substrate is exposed in these defects. Therefore, in the corrosive environment inside the can, a galvanic action occurs between the Ni layer and the Fe substrate, and since Ni is much more noble than Fe, the galvanic current flowing due to this galvanic action dissolves the Fe substrate. flows in that direction. Moreover, since the area of exposed Fe in the Ni layer defect is very small overall, the current density becomes extremely large, and the Fe in the Ni layer defect is preferentially eluted, causing so-called Piting Corrosion.
In some cases, this may result in perforated cans, which may significantly shorten the life of the can. Therefore, the electrical potential is very noble.
If Ni is alloyed with potentially base Zn, Ni-
The potential of the Zn binary alloy layer changes in the less noble direction, and the
The galvanic effect between
Fe elution from the Ni-Zn binary alloy coating defects will decrease, and if the Zn content in the alloy layer increases,
Finally, the potential of the Ni--Zn binary alloy coating layer becomes more base than Fe, and Fe elution can be prevented by the sacrificial dissolution action of the Ni--Zn binary alloy coating. Here, after can manufacturing, the alloy coating layer on the side that becomes the inner surface of the can is
The reason why the Zn content is 20% or less is because the Zn content is 20% or less.
% or more, the dissolution of the Ni-Zn alloy coating layer under the paint film increases, and the corrosion under the paint film during can storage deteriorates. This is because there is a risk that sub-film corrosion will progress and eventually lead to peeling of the paint film, so it is limited to 20% or less. In addition, Zn in the Ni-Zn alloy coating layer
The lower limit of the content is not particularly limited, but is preferably 3% or more. If it is less than 3%, the potential is virtually the same as a single Ni layer coating, and Zn is alloyed in Ni, resulting in a galvanic effect between the Ni-Zn binary alloy coating layer and the Fe substrate in the defective areas of the coating layer and coating film. If the purpose of reducing the size of Zn is not achieved, and if the contents contain sulfides that are used for other purposes such as alloying Zn in Ni, such as fish meat or meat, the contents may be removed during retort processing for killing spores. The sulfide of Ni decomposes and reacts with the Fe base material, producing sulfide such as FeS on the inside of the can, causing the inside of the can to turn black.
- It becomes impossible to improve the so-called sulfur resistance, which is prevented by reacting with Zn in the Zn binary alloy coating layer. On the other hand, Zn in the alloy coating on the side that becomes the outer surface of the can after can manufacturing.
The reason for setting the content below 80% is that the corrosive environment on the inside of the can, that is, the side that comes into contact with the contents of the can, and the corrosive environment on the outside of the can, that is, the corrosive environment that users are exposed to while storing the can, are different from the corrosive environment on the outside of the can. Rust resistance during storage, especially if the coating film or Ni-Zn alloy coating layer is scratched, such as in the scored areas on the outer surface of the easy open end, the Zn content is high, and in some cases Ni - This is because the potential of the Zn alloy coating layer is lower than that of the base Fe, that is, the more base it is electrochemically, the better the rust resistance may be. This is because it is sufficient if the alloy composition is set as follows. A Zn content of about 70% Zn is optimal for the outer surface of the easy open end. Note that the lower limit of the Zn content in the Ni--Zn alloy coating layer is not particularly limited, but is preferably 3% or more.
This is for the same reason as in the case of the inner surface of the can described above, and when the content is less than 3%, the rust resistance is practically equivalent to that of single-layer Ni plating. The reason why we set the upper limit to 80% is that if the Zn content exceeds this level, the potential will drop too much, approaching pure Zn and becoming very active.
- This is because the Zn binary alloy layer wears out quickly, making it impossible to maintain rust resistance for a long period of time, and the white rust characteristic of Zn begins to appear, which is unfavorable for the appearance of the product. Furthermore, the coating amount of the Ni-Zn binary alloy coating layer on both the inner and outer surfaces of the can is not particularly limited, but is usually 0.05 g/m 2
~11g/ m2 Adhesion is sufficient, 0.05g/m2
This is because corrosion resistance will be poor if less than 11 g/m 2 is deposited, and no further improvement in corrosion resistance can be expected and it becomes uneconomical even if the amount is deposited in an amount of 11 g/m 2 or more. The reason for limiting the Zn content of the Ni--Zn binary alloy coating layer, which is a feature of the present invention, has been explained above, and now a supplementary explanation will be provided based on experimental data obtained by the present inventors. Figure 2 evaluates the corrosion resistance of can inner coating on the vertical axis.
The horizontal axis shows the evaluation values of the UCC test (undercut corrosion test) and the QC test (test that evaluates the rust resistance during can storage by repeating the Wet-Dry cycle). indicates the Zn content in the Ni-Zn binary alloy coating.
As is clear from the figure, in the UCC test, when the Zn content is 20% or more, it deteriorates rapidly, and when it is 3% or less, it is inferior. Also, in QC test, Zn content is 80%.
After peaking at
In the following, a decrease in rust resistance is seen, but the range of the evaluation mark ○, which does not pose a practical problem, is wider than the former UCC test result. Therefore, when using the coating on the inner surface of a can where corrosion resistance is important, by setting the appropriate Zn content narrowly and widening it on the outer surface of the can, it is possible to use the right material in the right place depending on the application. I found it. In addition, UCC test and QC
The test method is the same as the description of the embodiment described later. Next, another advantage of Ni-Zn binary alloy coating is that in addition to the above-mentioned paint corrosion resistance, seam welding is
This is superior to TFS-CT. The reason for the good seam weldability is that a single layer of Ni coating has a relatively high melting point (1450°C), so seam weldability cannot necessarily be said to be good, but by using a Ni-Zn binary alloy coating, the coating layer can be This is because the melting point decreases. In addition, the Ni--Zn binary alloy coating has other great effects, such as the ability to reduce manufacturing costs by alloying Ni with Zn, which is inexpensive. Next, a chromium treatment layer is further provided on both sides of the upper layer of the above-mentioned Ni--Zn alloy coating layer, and the amount of this coating is usually 1 to 50 mg/m 2 in total Cr per side.
If the chromium treatment layer is less than 1mg/ m2 per side, the adhesion of the coating on the inner surface of the can will deteriorate, and if it is more than 50mg/ m2 , metal or non-metallic chromium will be removed when seam welding is used to join the can body. Seam weldability deteriorates due to the high melting point of the layer and poor electrical conductivity of the nonmetallic chromium layer. Next, specific examples of the present invention will be described. Example 1 After coating a Ni-Zn binary alloy layer (Zn content 15%) by electroplating under the conditions shown in (1), the steel plate was surface-cleaned by a conventional method and then coated with (2) and (3). A chromium-treated layer was formed by electrolytic chromic acid treatment under the conditions shown below. Further, a coating film for can manufacturing was formed under the conditions shown in (3) and then subjected to various evaluation tests. However, no coating was applied during seam weldability evaluation. (1) NiSO 4・7H 2 O 300g / Total basis weight 0.6g/m 2 (per side) ZnSO 4・6H 2 O 15g / Zn content 15% H 3 BO 3 35g / Bath temperature 50℃ Current density 20A / dm 2 (2) Na 2 Cr 2 O 7 30g/ Total Cr amount 12mg/m 2 Bath temperature 60℃ Current density 20A/dm 2 (3) CrO 3 50g/ H 2 SO 4 0.4g/(SO 2-4 conversion ) Total Cr amount 20mg/m 2 Bath temperature 50℃ Current density 40A/dm 2 (4) Epoxy-phenol paint for can making 45mg/dm 2 (dry weight per side) Baking at 205℃ for 10 minutes and additional baking at 180℃ for 10 minutes Example 2 After making a steel plate whose surface was cleaned by the usual method, a Ni-Zn binary alloy layer (Zn content 10%) was coated on the steel plate surface side, which will become the inner surface of the can, by electroplating under the conditions shown in (1). After can manufacturing, a Ni-Zn binary alloy layer (70% Zn content) is electroplated on the steel plate surface, which will become the outer surface of the can, under the conditions shown in (2), that is, the Zn content is different on the front and back sides of the steel plate. A Ni-Zn binary alloy coating layer was formed. Next, a chromium-treated layer was formed by electrolytic chromic acid treatment under the conditions shown in (3) and (4). After forming a coating film for can manufacturing under the conditions shown in (5), it was subjected to various evaluation tests. However, no coating was applied during seam weldability evaluation. (1) NiSO 4・7H 2 O 300g/ Total basis weight 0.6g/m 2 ZnSO 4・6H 2 O 10g/ Zn content 10% H 3 BO 3 30g/ Bath temperature 50℃ Current density 20A/dm 2 (2 ) NiSO 4・7H 2 O 300g/ Total basis weight 1.0g/m 2 ZnSO 4・6H 2 O 50g/ Zn content 70% H 3 BO 3 30g/ (3) Same as (2) of Example 1 (4 ) 〃 (3) 〃 (5) 〃 (4) 〃 Next, the contents of various tests conducted with the material of the present invention will be described. (A) UCC (Undercut Film Corrosion) Test This test is one of the methods to evaluate the corrosion resistance of the paint on the inside of a can. After scratching the painted surface of the samples of Examples 1 and 2 with a knife, (mixed solution of 15 g of citric acid/15 g of salt) and kept at 50°C for 3 days while bubbling with CO 2 gas, then the scratched area was peeled off with tape and the corrosion state around the scratch was determined. . (B) Corrosive liquid immersion test This test, like the (A) UCC test, is also one of the methods for evaluating the corrosion resistance of the paint on the inside of a can. After that, the end surface (the cut end of the sample) was completely sealed and immersed in 100% orange juice UCC solution, which is a degassed corrosive solution in a plastic container, and kept at 50℃ for 2 weeks. The amount of Fe eluted into the corrosive solution was analyzed. (C) Q/C test This test is a method for evaluating the corrosion resistance of the paint on the outside surface of the can. After scratching the paint surface of the samples of Examples 1 and 2 with a knife, an overhang of 4 mm was made using an Erx tester. It was processed and tested using a Q/C tester. A Q/C tester is a test sample that is placed in an environment that repeats wet and dry conditions, and the test conditions were wet (water temperature 20℃, air temperature
One cycle consisted of 30 minutes at 25°C and 60 minutes at dry (air at 50°C), and after repeating this cycle 960 times, the state of rust on the scratched part of the paint film was determined. (D) Seam weldability Using a seam welding machine, samples (unpainted) of Example 1 and Example 2 and Example 2 and Example 2 were separated by 0.4 mm, as in the case of actually making cans.
The seam welding was performed under the conditions of a pressing force of 50 kg/m 2 and a welding current of 4.5 KA on the secondary side.The strength of the seam weld was evaluated by an impact test, and the appearance of the seam weld was evaluated visually. . The test results for each evaluation item (A) to (D) of Examples 1 and 2 are shown in Table 1. In addition, as a comparison with the present invention example, the amount of tin deposited per one side
Tinplate (hereinafter referred to as #25ET) with a chromate coating of 2.7g/m 2 and a chromate coating of 15mg/m 2 (metallic chromium equivalent), and a metal chromium content of 100mg/m 2 and chromium oxide amount of 12mg/m 2 (metallic chromium equivalent) per side. TFS-CT was used.

【表】【table】

【表】 良
←→ 悪
注) イ) 各試験の評価は4段階評価とした。 ◎
○ △ ×
ロ) Ni−Zn合金被覆量及びクロム処理層は
いずれも片面付着量を示す。
ハ) B○腐食液浸漬テストの左上欄はA○
のUCC液、右下欄は100%オレンジジユースにそれぞれ浸
漬させた。
第一表の実施例2でNi―Zn2元合金被覆層中の
Zn含有率が70%の面は、缶外面に使用するので、
UCCテスト腐食液浸漬テストは行つていな
いが、比較例2でその項目をテストした。 まず比較例1はNi―Zn2元合金被覆層中のZn
含有率0%すなわちNi単層被覆の例であり、缶
内面性能としてのUCCテスト腐食液浸漬テ
スト、又缶外面性能としてのQ・Cテストとも
劣つている。比較例2はNi―Zn2元合金被覆層中
のZn含有率が製缶時缶内面側となる鋼板面にお
ける上限値、すなわち20%以上となつている場合
であり、缶外面性能としてのQ・Cテストは優
れているが、缶内面性能としてのUCCテスト、
腐食液浸漬テストは著しく劣り、缶内面側とし
て使用できない。 次に比較例3はNi―Zn2元合金被覆層の被覆量
が、本発明適正範囲以下のものであり、缶内面性
能、外面性能とも著しく劣る。比較例4はクロム
処理層の被覆量が適正範囲以上のものであり、シ
ーム溶接性が著しく劣化する。 以上述べたように本発明においてはNi―Zn2元
合金被覆層のZn含有率を缶内面及び缶外面性能
を満足するように自由に選択でき、さらにクロム
処理層の被覆量を適正値に管理すれば従来のブリ
キと同等程度のシーム溶接性も確保できる低コス
トから高性能な新しい製缶用表面処理鋼板であ
る。 したがつて、本発明による新表面処理鋼板を使
用すれば、従来のTFS―CTの主用途であるビー
ル等の炭酸飲料缶の他、ブリキの分野であつた果
実ジユース缶等にも広く使用できる画期的なもの
である。
[Table] Good ←→ Bad Note) A) Each test was evaluated on a 4-level scale. ◎
○ △ ×
b) Both the Ni-Zn alloy coating amount and the chromium treatment layer show the coating amount on one side.
C) The upper left column of B○ corrosive liquid immersion test is A○.
The sample was immersed in UCC solution, and the lower right column was immersed in 100% orange juice.
In Example 2 of Table 1, the Ni-Zn binary alloy coating layer
The surface with 70% Zn content is used for the outer surface of the can, so
UCC Test Although no corrosive liquid immersion test was conducted, this item was tested in Comparative Example 2. First, Comparative Example 1 shows Zn in the Ni-Zn binary alloy coating layer.
This is an example of a Ni single layer coating with a content of 0%, and it is inferior in both the UCC test and corrosive liquid immersion test for can inner surface performance, and the Q/C test for can outer surface performance. Comparative Example 2 is a case in which the Zn content in the Ni-Zn binary alloy coating layer is at the upper limit value on the steel plate surface that becomes the inner surface of the can during can manufacturing, that is, 20% or more, and the Q. The C test is excellent, but the UCC test as a can internal performance,
The corrosive liquid immersion test was extremely poor and it cannot be used as the inside of a can. Next, in Comparative Example 3, the coating amount of the Ni--Zn binary alloy coating layer was below the appropriate range of the present invention, and the can inner and outer surface performances were significantly inferior. In Comparative Example 4, the coating amount of the chromium treatment layer was more than the appropriate range, and the seam weldability was significantly deteriorated. As described above, in the present invention, the Zn content of the Ni-Zn binary alloy coating layer can be freely selected to satisfy the can inner and outer surface performance, and the coating amount of the chromium treatment layer can be controlled to an appropriate value. This is a new low-cost, high-performance surface-treated steel sheet for can making that can maintain seam weldability equivalent to that of conventional tinplate. Therefore, if the new surface-treated steel sheet according to the present invention is used, it can be widely used in cans of carbonated drinks such as beer, which are the main uses of conventional TFS-CT, as well as fruit juice cans, which were used in the tinplate field. This is groundbreaking.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による製缶用表面処理鋼板の皮
膜構造を示す模式図で、第2図はZn―Ni2元合金
被覆中のZn含有率と缶内外面の耐食性評価の関
係を示すグラフである。 1…冷延鋼板、2…Ni―Zn2元合金被覆層、3
…クロム処理層、4…油膜層。
Figure 1 is a schematic diagram showing the coating structure of the surface-treated steel sheet for can manufacturing according to the present invention, and Figure 2 is a graph showing the relationship between the Zn content in the Zn-Ni binary alloy coating and the corrosion resistance evaluation of the inner and outer surfaces of the can. be. 1...Cold rolled steel plate, 2...Ni-Zn binary alloy coating layer, 3
...Chrome treatment layer, 4...oil film layer.

Claims (1)

【特許請求の範囲】[Claims] 1 表面清浄化した鋼板両面に、Ni―Zn2元合金
被膜層を設け、さらに該合金被膜層の上層両面に
クロム処理層を設けてなり、上記合金被膜層の
Zn含有率が製缶後缶内面側となる鋼板面を20%
以下とし、又缶外面側となる面を80%以下となし
た塗装後製缶加工を行なう製缶用表面処理鋼板。
1 A Ni-Zn binary alloy coating layer is provided on both surfaces of the surface-cleaned steel sheet, and a chromium treatment layer is further provided on both surfaces of the upper layer of the alloy coating layer.
The Zn content is 20% on the steel plate surface that becomes the inner surface of the can after can manufacturing.
A surface-treated steel sheet for can manufacturing which is subjected to can manufacturing processing after painting, with the surface that will become the outer surface of the can being 80% or less.
JP12907781A 1981-08-18 1981-08-18 Surface treated steel plate for can making Granted JPS5831096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12907781A JPS5831096A (en) 1981-08-18 1981-08-18 Surface treated steel plate for can making

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12907781A JPS5831096A (en) 1981-08-18 1981-08-18 Surface treated steel plate for can making

Publications (2)

Publication Number Publication Date
JPS5831096A JPS5831096A (en) 1983-02-23
JPS6327437B2 true JPS6327437B2 (en) 1988-06-02

Family

ID=15000500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12907781A Granted JPS5831096A (en) 1981-08-18 1981-08-18 Surface treated steel plate for can making

Country Status (1)

Country Link
JP (1) JPS5831096A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2750710B2 (en) * 1988-10-29 1998-05-13 臼井国際産業株式会社 Heat-resistant and corrosion-resistant steel with multi-layer plating

Also Published As

Publication number Publication date
JPS5831096A (en) 1983-02-23

Similar Documents

Publication Publication Date Title
US4388158A (en) Acidic tinplating process and process for producing an iron-tin alloy on the surface of a steel sheet
US4501802A (en) Hydrated chromium oxide-coated steel strip useful for welded cans and other containers
EP0184115A1 (en) Surface-treated steel strip having improved weldability and process for making
EP0063933B1 (en) Steel strip having differentiated multilayer coatings and being useful for manufacture of cans
JPH0154437B2 (en)
JPS6327437B2 (en)
JPS6250554B2 (en)
JPS62297491A (en) Production of chromium electroplated steel sheet for vessel
JPH0140118B2 (en)
JPS6343478B2 (en)
JPH0826477B2 (en) Manufacturing method of Sn-based multi-layered steel sheet with excellent paint adhesion
JPS5947040B2 (en) Steel plate for containers with excellent weldability and corrosion resistance after painting and its manufacturing method
JP2726008B2 (en) High performance Sn-based multi-layer plated steel sheet with excellent corrosion resistance, weldability and paint adhesion
JPS62297473A (en) Ni alloy multilayer plated steel sheet having superior corrosion resistance, weldability and paintability
JPS5843470B2 (en) Different types of multilayer plated steel sheets for can manufacturing
KR830002877B1 (en) Plating solution of surface-treated steel sheet for painting
JP3224457B2 (en) Material for welding cans with excellent high-speed seam weldability, corrosion resistance, heat resistance and paint adhesion
JP3670805B2 (en) Manufacturing method of surface-treated steel sheet with excellent seam weldability, paint adhesion, and appearance
JPS5912756B2 (en) Highly corrosion resistant dissimilar multi-layer plated steel sheet for can manufacturing
JPH0726207B2 (en) High-performance Sn-based multilayer plated steel sheet with excellent corrosion resistance, weldability and paint adhesion
NL8403562A (en) METHOD FOR MANUFACTURING STRAP STEEL WITH A PRE-TREATED SURFACE SUITABLE FOR ELECTRICAL RESISTANCE WELDING
JPS6217039B2 (en)
JPS5941491A (en) Can-making surface treated steel plate excellent in painting corrosion resistance and weldability
JPS5956593A (en) Surface treated steel sheet for vessel having excellent weldability and corrosion resistance
JPH01184297A (en) Method for plating partially tinned steel sheet with chromium