JPS63273810A - Endoscope - Google Patents

Endoscope

Info

Publication number
JPS63273810A
JPS63273810A JP62108571A JP10857187A JPS63273810A JP S63273810 A JPS63273810 A JP S63273810A JP 62108571 A JP62108571 A JP 62108571A JP 10857187 A JP10857187 A JP 10857187A JP S63273810 A JPS63273810 A JP S63273810A
Authority
JP
Japan
Prior art keywords
filter
optical system
applied voltage
endoscope
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62108571A
Other languages
Japanese (ja)
Inventor
Shigeru Nakajima
茂 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP62108571A priority Critical patent/JPS63273810A/en
Publication of JPS63273810A publication Critical patent/JPS63273810A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make an endoscope compact and to prevent picture quantity from deteriorating even in a light place by arranging an electrooptic element which varies in transmission wavelength range and transmissivity under applied voltage control at the diaphragm position of an object optical system or in a lighting optical system. CONSTITUTION:An electric filter element 17 consists of a color filter 20 composed of an R, a G, and a B filter and an electrochromic element (EC element) 21 which is fixed to the back of the color filter 20k consists of R, G and G sections corresponding to the R, G, and B filters, and enables the individual application of a voltage to the R, G, and B sections. Then the EC element 21 has transmissivity (reflectivity) characteristics corresponding to the applied voltage and characteristics of variation in transmission wavelength band width the level of the applied voltage. Consequently, the whole device and its tip hard part are made compact and deterioration in picture quality is eliminated even in a light place.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、内視鏡に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an endoscope.

〔従来の技術及び発明が解決しようとする問題点〕従来
の内視鏡において面順次式のカラー撮像を行う場合は、
第9図に示した如く照明光学系中に第10図の如きRG
B回転フィルター1を配置して色の異なる照明光を順次
照射するようにしていたが、そうすると機械的なフィル
ター駆動装置が必要となるため内視鏡装置全体が大型化
してしまうという問題があった。又、上記のような面順
次照射式の場合、明るい場所などで外光が観察対象物に
当たっていると固体撮像素子に入射する各色光に白色光
が混じって画質が劣化し、実際上明るい場所では使えな
いという問題があった。尚、第9図において、2は光源
、3は集光レンズ、4はライトガイド、5は照明レンズ
、6は対物レンズ、7は固体撮像素子、8は画像処理装
置、9はTVモニター、10は内視鏡本体である。
[Prior art and problems to be solved by the invention] When performing field sequential color imaging with a conventional endoscope,
RG as shown in Fig. 10 in the illumination optical system as shown in Fig. 9.
The B rotary filter 1 was arranged to sequentially irradiate different colors of illumination light, but this required a mechanical filter drive device, which caused the problem of increasing the size of the entire endoscope device. . In addition, in the case of the above-mentioned sequential illumination method, if outside light hits the object to be observed in a bright place, white light will be mixed with each color light incident on the solid-state image sensor, degrading the image quality. The problem was that I couldn't use it. In FIG. 9, 2 is a light source, 3 is a condensing lens, 4 is a light guide, 5 is an illumination lens, 6 is an objective lens, 7 is a solid-state image sensor, 8 is an image processing device, 9 is a TV monitor, 10 is the endoscope body.

又、観察しながら赤外レーザー光を用いて処置を行なう
方式の内視鏡の場合は、術者の目の保護又は固体撮像素
子におけるスミア(光量の過剰入力により固体撮像素子
が飽和して物体像が得られない象)の防止のために、対
物光学系中に赤外カントフィルターを配置していたが、
該赤外カットフィルターは一般に吸収タイプ即ち光軸方
向に厚いものであり、而も通常の絞りに加えてそれを設
けなければならなかったため、対物光学系の光路長が長
くなり、内視鏡先端硬性部が長くなってしまうという問
題があった。
In addition, in the case of an endoscope that performs treatment using infrared laser light while observing, it is necessary to protect the operator's eyes or to smear the solid-state image sensor (the solid-state image sensor becomes saturated due to excessive input of light and the object An infrared cant filter was placed in the objective optical system to prevent the problem of not being able to obtain an image.
The infrared cut filter is generally an absorption type, that is, it is thick in the optical axis direction, and since it has to be provided in addition to a normal diaphragm, the optical path length of the objective optical system becomes long, and the tip of the endoscope There was a problem that the hard part became long.

本発明は、上記問題点に鑑み、内視鏡の装置全体及び先
端硬性部をコンパクトに構成できると共に、明るい場所
でも画質の劣化がない内視鏡を提供することを目的とす
る。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, it is an object of the present invention to provide an endoscope in which the entire device and the rigid distal end portion of the endoscope can be configured compactly, and the image quality does not deteriorate even in a bright place.

〔問題点を解決するための手段及び作用〕本発明による
内視鏡は、対物光学系の絞り位置又は照明光学系中に、
印加電圧の制御により透過波長域及び透過率が変調する
電気光学素子を配置したことにより、機械的なフィルタ
ー駆動装置や明るさ絞りが不要となり、而もRGBフィ
ルターを対物光学系中に配置し得るようにしたものであ
る。
[Means and effects for solving the problems] The endoscope according to the present invention has a diaphragm position of the objective optical system or an illumination optical system.
By arranging an electro-optical element whose transmission wavelength range and transmittance are modulated by controlling the applied voltage, there is no need for a mechanical filter drive device or an aperture diaphragm, and an RGB filter can be placed in the objective optical system. This is how it was done.

〔実施例〕〔Example〕

以下、図示した実施例に基づき本発明の詳細な説明する
Hereinafter, the present invention will be described in detail based on the illustrated embodiments.

第1図は第1実施例全体の断面図、−第2図はその対物
レンズの断面図であって、11は内視鏡本体、12は先
端硬性部、13は制御部である。14は先端硬性部12
内に設けられた対物レンズ、15は先端硬性部12内に
て対物レンズ14の結像位置に設けられていて信号線1
6を介して制御部13内の画像処理装置(図示されてい
ない)と接続された固体撮像素子、17は対物レンズ1
4の絞り位置に配置されていて素子用ケーブル18を介
して素子制御回路19と接続された電気フィルター素子
である。
FIG. 1 is a cross-sectional view of the entire first embodiment, and FIG. 2 is a cross-sectional view of the objective lens thereof, in which 11 is an endoscope main body, 12 is a rigid distal end portion, and 13 is a control portion. 14 is the tip rigid part 12
An objective lens 15 provided within the rigid tip portion 12 is provided at the imaging position of the objective lens 14 and is connected to the signal line 1.
6 is a solid-state image sensor connected to an image processing device (not shown) in the control unit 13; 17 is an objective lens 1;
This is an electric filter element arranged at the aperture position No. 4 and connected to an element control circuit 19 via an element cable 18.

電気フィルター素子17は、第2図及び第3図に示した
如く、円周方向に順に配置されたR、G。
As shown in FIGS. 2 and 3, the electric filter elements 17 have R and G elements arranged in order in the circumferential direction.

Bフィルターから成るカラーフィルター20と、カラー
フィルター20の背面に固定されていてR2O,Bフィ
ルターの夫々に対応するR、G、B区画から成り且つ該
R,G、B区画に個別に電圧を印加できるエレクトロク
ロミック素子(以後EC素子と称する)21とから構成
されている。そして、EC素子21が第4図に示した印
加電圧に応じた透過率(反射率)特性即ち印加電圧が高
いとほぼ透明となり印加電圧が低いとほぼ不透明になっ
てしまう特性を有しているので、電気フィルター素子1
7は素子制御回路19によってR,G。
A color filter 20 consisting of a B filter, and R, G, and B sections fixed to the back side of the color filter 20 and corresponding to the R2O and B filters, respectively, and voltages are applied to the R, G, and B sections individually. It is composed of an electrochromic element (hereinafter referred to as an EC element) 21. The EC element 21 has a transmittance (reflectance) characteristic according to the applied voltage as shown in FIG. 4, that is, a characteristic in which it becomes almost transparent when the applied voltage is high and becomes almost opaque when the applied voltage is low. Therefore, electric filter element 1
7 is R and G by the element control circuit 19.

B区画に順に高い電圧を印加することによりRlG、B
区画が順にほぼ透明化され、その結果従来のR,G、B
回転フィルターと同様に透過波長域が例えばR,G、B
と順に変化する。又、印加電圧の高さを制御することに
より、各区画の透過率即ち各フィルターを通る光量が制
御される。又、EC素子21は、第4図に示した如く印
加電圧の高さに応じて透過波長域幅が変化する特性も有
している。尚、R,G、Bフィルターの面積比は固体撮
像素子15の色感度特性に合せて予め設定されているも
のとする。
By sequentially applying higher voltages to the B section, RlG, B
The sections are made almost transparent one after another, and as a result, the conventional R, G, B
Similar to a rotating filter, the transmission wavelength range is, for example, R, G, B.
and changes in order. Further, by controlling the height of the applied voltage, the transmittance of each section, that is, the amount of light passing through each filter is controlled. Further, the EC element 21 also has a characteristic that the transmission wavelength band width changes depending on the height of the applied voltage, as shown in FIG. It is assumed that the area ratio of the R, G, and B filters is set in advance according to the color sensitivity characteristics of the solid-state image sensor 15.

再び第1図において、22は光源、23はライトガイド
、24は照明レンズである。又、25は体腔内の患部等
の被観察部である。
Referring again to FIG. 1, 22 is a light source, 23 is a light guide, and 24 is an illumination lens. Further, 25 is a part to be observed such as an affected part in the body cavity.

本実施例は上述の如く構成されているから、照明レンズ
24からの白色光で照明された被観察部25を観察する
際、素子制御回路19によってRlG、B区画に順に高
い電圧を印加することにより電気フィルター素子17の
透過波長域をB、G。
Since the present embodiment is configured as described above, when observing the observed portion 25 illuminated with white light from the illumination lens 24, the element control circuit 19 applies a higher voltage to the RlG and B sections in order. The transmission wavelength range of the electric filter element 17 is indicated by B and G.

R,B、・・・・と変化させ、これと同期して固体撮像
素子15から信号を読み出すようにすれば、カラーによ
る撮像を行うことができる。この時、B。
By changing R, B, . . . and reading signals from the solid-state image sensor 15 in synchronization with this, color imaging can be performed. At this time, B.

G、Rと順に透明部を変化させる際に撮像素子からの読
み出し時間が必要となるので、実際には各色の透過状態
の間には光を全く遮蔽する時間が設けられることになる
。以上の場合、外光が被観察部25に当たっても、電気
フィルター素子17が固体撮像素子15の前にあるので
固体撮像素子15に入射する各色光に白色光が混じるこ
とは無く従って画質の劣化は生じない。又、素子制御回
路19によって印加電圧を変化させることにより各フィ
ルターを通る光量を制御できるので、電気フィルター素
子17に明るさ絞りとしての作用も発揮させることがで
きる。又、印加電圧を低くすれば第4図に示した如く透
過波長域が可視光域に限定されるようになるので、電気
フィルター素子17に赤外カットフィルターとしての作
用も発揮させることができる。従って、明るさ絞りを別
個に設ける必要がないと共に電気フィルター素子17自
体が従来の赤外カットフィルターに比べて薄いので、対
物光学系の光路長を短くでき、その結果先端硬性部12
をコンパクトに構成することができる。又、各フィルタ
ーを通る光量を制御することにより、色バランスの調整
を行うことも可能である。又、本実施例は、機械的なフ
ィルター駆動装置が不要となるので、装置全体をコンパ
クトに構成できる。
Since reading time from the image sensor is required when changing the transparent portion in order of G and R, in reality, there is a time period in which no light is completely blocked between the transparent states of each color. In the above case, even if external light hits the observed part 25, since the electric filter element 17 is in front of the solid-state image sensor 15, white light will not be mixed with each color light incident on the solid-state image sensor 15, and therefore the image quality will not deteriorate. Does not occur. Further, since the amount of light passing through each filter can be controlled by changing the applied voltage by the element control circuit 19, the electric filter element 17 can also function as an aperture diaphragm. Further, if the applied voltage is lowered, the transmitted wavelength range is limited to the visible light range as shown in FIG. 4, so that the electric filter element 17 can also function as an infrared cut filter. Therefore, there is no need to separately provide an aperture diaphragm, and the electric filter element 17 itself is thinner than a conventional infrared cut filter, so the optical path length of the objective optical system can be shortened, and as a result, the rigid tip portion 12
can be configured compactly. It is also possible to adjust the color balance by controlling the amount of light passing through each filter. Furthermore, since this embodiment eliminates the need for a mechanical filter drive device, the entire device can be configured compactly.

又、EC素子21は、0.4〜1.5μの間で透過。Further, the EC element 21 transmits light between 0.4 and 1.5μ.

不透過状態が作れるので、R,G、Bフィルターの代り
にIR(近赤外)フィルターを配置するか、又は更に加
えて4色以上と成し、必要に応じて例えばB、G、IR
又はG、R,IRと選べば擬似カラー化が簡単に行える
Since an opaque state can be created, an IR (near infrared) filter can be placed in place of the R, G, and B filters, or four or more colors can be added.
Alternatively, if you select G, R, or IR, you can easily create pseudocolors.

尚、本実施例の電気フィルター素子17は照明光学系中
に配置しても良く、その場合は装置全体をコンパクトに
構成できるという利点がある。そして、具体的な配置位
置としては、例えば第5図(A)に示した如く光a22
と集光レンズ26との間又は第5図(B)に示した如く
ライトガイド23の出射端と照明レンズ24に光を伝達
する単ファイバー27との間が適当である。又、その場
合R,G、Bフィルターの面積比は光源22の色分布特
性に合せて設定される。
Note that the electric filter element 17 of this embodiment may be placed in the illumination optical system, and in that case there is an advantage that the entire apparatus can be configured compactly. As for the specific arrangement position, for example, as shown in FIG. 5(A), the light a22
and the condenser lens 26, or between the output end of the light guide 23 and the single fiber 27 that transmits light to the illumination lens 24 as shown in FIG. 5(B). Further, in that case, the area ratio of the R, G, and B filters is set according to the color distribution characteristics of the light source 22.

第6図は第2実施例に用いられる電気絞り素子28を示
しており、これは複数個のリング状の区画28a、28
b、28c、28d、28eを有し且つ該区画に個別に
電圧を印加できるEC素子から成るものであり、上記電
気フィルター素子17と同様に対物光学系の絞り位置に
配置される(第1図参照)。
FIG. 6 shows an electric diaphragm element 28 used in the second embodiment, which includes a plurality of ring-shaped sections 28a, 28.
b, 28c, 28d, and 28e, and is composed of an EC element that can apply a voltage individually to the sections, and is placed at the aperture position of the objective optical system in the same manner as the electric filter element 17 described above (see Fig. 1). reference).

本実施例は上述の如く構成されているから、中央部の区
画28 a、  28 b、  28 cに電圧を印加
し且つ外周部の区画28d、28eに電圧を印加しなけ
れば、第7図(A)に示した如く透過部へと不透過部B
とが形成される。そして、電圧印加区画を選択し変更す
ることにより透過部への面積が変更され、絞り機能が発
揮せしめられる。又、赤外レーザー使用時に同期して印
加電圧を低くすると、第4図に示した特性により透過波
長域が可視光域のみになるので、赤外カットフィルター
としての機能が発揮せしめられる。この様子が第8図の
タイミングチャートに示されている。
Since the present embodiment is constructed as described above, if a voltage is not applied to the central sections 28a, 28b, 28c and no voltage is applied to the outer peripheral sections 28d, 28e, as shown in FIG. As shown in A), the transparent part and the non-transparent part B
is formed. Then, by selecting and changing the voltage application section, the area to the transmission part is changed, and the aperture function is exerted. Furthermore, if the applied voltage is lowered in synchronization with the use of an infrared laser, the transmission wavelength range is limited to the visible light range due to the characteristics shown in FIG. 4, so that the function as an infrared cut filter is exhibited. This situation is shown in the timing chart of FIG.

かくして、本実施例においては、電気絞り素子28が赤
外カットフィルターとしての機能も有しているので、赤
外カットフィルターが不要となり、その結果対物光学系
をコンパクトに構成できるという利点がある。
Thus, in this embodiment, since the electric diaphragm element 28 also has a function as an infrared cut filter, there is no need for an infrared cut filter, and as a result, there is an advantage that the objective optical system can be configured compactly.

尚、第1実施例の電気フィルター素子17と第2実施例
の電気絞り素子28は何れもファイバースコープに外付
のテレビカメラの撮像光学系の絞り位置に配置しても良
い。又、電気フィルター素子17の各区画を電気絞り素
子28のように細分化して該各区側を電気絞り素子とし
て機能させることもできる。その場合、各区画を開閉す
る機能だけを望むならば、EC素子の代りに液晶シャッ
タを用いることもできる。又、上述の如き素子を対物光
学系と照明光学系の両方に設けることも可能である。
Incidentally, both the electric filter element 17 of the first embodiment and the electric aperture element 28 of the second embodiment may be arranged at the aperture position of the imaging optical system of a television camera externally attached to the fiberscope. Furthermore, each section of the electric filter element 17 can be subdivided into electric diaphragm elements 28, and each section can be made to function as an electric diaphragm element. In that case, if only the function of opening and closing each compartment is desired, a liquid crystal shutter can be used instead of the EC element. It is also possible to provide the above-mentioned elements in both the objective optical system and the illumination optical system.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明による内視鏡は、装置全体及び先端
硬性部をコンパクトに構成できると共に、明るい場所で
も画質の劣化がないという実用上重要な利点を有してい
る。
As described above, the endoscope according to the present invention has the practically important advantage that the entire device and the rigid distal end portion can be configured compactly, and there is no deterioration in image quality even in a bright place.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による内視鏡の第1実施例の断面図、第
2図は第1実施例の対物レンズの断面図、第3図は第1
実施例の電気フィルター素子の正面図、第4図はEC素
子の印加電圧に応じた透過率(反射率)特性を示す図、
第5図は上記電気フィルター素子を照明光学系中に配置
した例を示す断面図、第6図は第2実施例の電気絞り素
子の正面図、第7図及び第8図は夫々上記電気絞り素子
の作動状態を示す正面図及びタイミングチャート、第9
図は従来例の断面図、第10図は従来例の回転フィルタ
ーの正面図である。 11・・・・内視鏡本体、12・・・・先端硬性部、1
3・・・・制御部、14・・・・対物レンズ、15・・
・・固体撮像素子、16・・・・信号線、17・・・・
電気フィルター素子、18・・・・素子用ケーブル、1
9・・・・素子制御回路、20・・、・カラーフィルタ
ー、21・・・・エレクトロクロミック素子、22・・
・・光源、24・・・・照明レンズ、25・・・・被観
察部、26・・・、集光レンズ、27・・・・単ファイ
バー、28・・・・電気絞り素子。 第5図 16図 オフ図
FIG. 1 is a sectional view of a first embodiment of an endoscope according to the present invention, FIG. 2 is a sectional view of an objective lens of the first embodiment, and FIG. 3 is a sectional view of an objective lens of the first embodiment.
A front view of the electric filter element of the example, FIG. 4 is a diagram showing the transmittance (reflectance) characteristics according to the applied voltage of the EC element,
FIG. 5 is a sectional view showing an example in which the electric filter element is arranged in an illumination optical system, FIG. 6 is a front view of the electric diaphragm element of the second embodiment, and FIGS. 7 and 8 are the electric diaphragm elements of the second embodiment. Front view and timing chart showing the operating state of the element, No. 9
The figure is a sectional view of a conventional example, and FIG. 10 is a front view of a conventional rotary filter. 11... Endoscope main body, 12... Tip rigid part, 1
3...control unit, 14...objective lens, 15...
...Solid-state image sensor, 16...Signal line, 17...
Electric filter element, 18...element cable, 1
9... Element control circuit, 20... Color filter, 21... Electrochromic element, 22...
. . . Light source, 24 . . . Illumination lens, 25 . . . Observed section, 26 . . . Condenser lens, 27 . Figure 5 Figure 16 Off view

Claims (1)

【特許請求の範囲】[Claims] 対物光学系の絞り位置及び/又は照明光学系中に、印加
電圧の制御により透過波長域及び透過率が変調する電気
光学素子を配置して成る内視鏡。
An endoscope in which an electro-optical element whose transmission wavelength range and transmittance are modulated by controlling applied voltage is arranged in the aperture position of an objective optical system and/or in an illumination optical system.
JP62108571A 1987-05-01 1987-05-01 Endoscope Pending JPS63273810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62108571A JPS63273810A (en) 1987-05-01 1987-05-01 Endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62108571A JPS63273810A (en) 1987-05-01 1987-05-01 Endoscope

Publications (1)

Publication Number Publication Date
JPS63273810A true JPS63273810A (en) 1988-11-10

Family

ID=14488191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62108571A Pending JPS63273810A (en) 1987-05-01 1987-05-01 Endoscope

Country Status (1)

Country Link
JP (1) JPS63273810A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001517518A (en) * 1997-09-29 2001-10-09 ボストン サイエンティフィック コーポレイション Internal fluorescence imaging module for endoscope
GB2525163A (en) * 2014-03-05 2015-10-21 Qioptiq Ltd An optical assembly
JP2015195974A (en) * 2014-04-01 2015-11-09 Hoya株式会社 Light source device for electronic endoscope

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001517518A (en) * 1997-09-29 2001-10-09 ボストン サイエンティフィック コーポレイション Internal fluorescence imaging module for endoscope
JP4781528B2 (en) * 1997-09-29 2011-09-28 ボストン サイエンティフィック リミテッド Internal fluorescence imaging module for endoscope
GB2525163A (en) * 2014-03-05 2015-10-21 Qioptiq Ltd An optical assembly
GB2525163B (en) * 2014-03-05 2018-06-06 Qioptiq Ltd An optical assembly
JP2015195974A (en) * 2014-04-01 2015-11-09 Hoya株式会社 Light source device for electronic endoscope

Similar Documents

Publication Publication Date Title
US4821116A (en) Endoscope equipment
US5105269A (en) Imaging apparatus and endoscope apparatus with selectable wavelength ranges
US4914512A (en) Electronic endoscope apparatus capable of displaying hemoglobin concentration on color image
JPS62217216A (en) Electronic image pickup device for endoscope
JPS62220918A (en) Endoscope optical system
JPS60262001A (en) Endoscope used in measurement
US4951133A (en) Endoscope light source apparatus
JPS6118915A (en) Lighting optical system for endoscope
JPS63273810A (en) Endoscope
JPH0374367B2 (en)
JPS6054589A (en) Illuminating and image pickup device for color video
JPS6141429A (en) Iris of light source apparatus for endoscope
JP2771785B2 (en) Spectral image analyzer
US5157426A (en) False color viewing device
CN202362528U (en) Lasing protective eyeglass
JPH0474687B2 (en)
JP3041732B2 (en) Color imaging device
GB2302412A (en) Intelligent optical filter
JPH11206709A (en) Objective type eye refractive power measurement device
JPS61176911A (en) Diaphragm device of light source device for endoscope
JPH0349084B2 (en)
JPS6080428A (en) Endoscope imaging system
JPS6053921A (en) Automatic dimming device for endoscope using liquid crystal filter
JPS61113384A (en) Endoscope equipment
JPH0344765B2 (en)