JPS6327339B2 - - Google Patents

Info

Publication number
JPS6327339B2
JPS6327339B2 JP54039838A JP3983879A JPS6327339B2 JP S6327339 B2 JPS6327339 B2 JP S6327339B2 JP 54039838 A JP54039838 A JP 54039838A JP 3983879 A JP3983879 A JP 3983879A JP S6327339 B2 JPS6327339 B2 JP S6327339B2
Authority
JP
Japan
Prior art keywords
reaction
dimethylamine
tetramethyl guanidine
solvent
yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54039838A
Other languages
Japanese (ja)
Other versions
JPS55133352A (en
Inventor
Masanori Sasaki
Kazuyoshi Myata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbide Industries Co Inc
Original Assignee
Nippon Carbide Industries Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbide Industries Co Inc filed Critical Nippon Carbide Industries Co Inc
Priority to JP3983879A priority Critical patent/JPS55133352A/en
Publication of JPS55133352A publication Critical patent/JPS55133352A/en
Publication of JPS6327339B2 publication Critical patent/JPS6327339B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、1,1,3,3−テトラメチル・グ
アニジン塩の製法に係り、詳しくは、ハロゲン化
シアンとジメチルアミンを溶媒の存在下反応させ
て1,1,3,3−テトラメチル・グアニジン塩
を製造する方法において、溶媒に水系溶媒を使用
する新規な製法に係るものである。 1,1,3,3−テトラメチル・グアニジン
は、エポキシ樹脂用硬化剤、エツチング剤、ポリ
ウレタン樹脂用原料、医薬用中間原料等として多
くの用途が近年期待されている。従来、1,1,
3,3−テトラメチル・グアニジン及びその塩の
製法としては、ジメチル・シアナミドとジメチル
アミン塩酸塩を140〜150℃で溶融する方法
(Rec.trav.chim.、Bd.66、S.343〔1947〕)、ジメチ
ル・シアナミドとジメチルアミン塩酸塩をニトロ
ベンゼン等の特定の有機溶媒中で、185〜200℃で
反応させる方法〔米国特許第3551490号公報(以
下、USP3551490と略称することがある)〕更に
は、クロルシアンとジメチルアミンをトルエン等
の特定の有機溶媒中で140〜150℃で反応させる方
法〔西独公開特許第1958095号公報(以下、
DOS1958095と略称することがある)〕等が提案
されている。 然し乍ら、これらの従来提案されている技術は
何れも工業的に満足が得られるものでは無かつ
た。即ち、前記溶融法では、1,1,3,3−テ
トラメチル・グアニジンの収率は理論収量当り約
20%と低く、又USP3551490及びDOS1958095の
方法は何れも溶液反応ではあるが、ニトロベンゼ
ンやトルエン等の有機溶媒が必須であるため、作
業環境の管理の問題や、反応後の有機溶媒の回収
の問題、更には反応完結に比較的高温を必要とす
るため加圧下に反応が行なわれるので、反応装置
上の制約が大きい等多くの問題を有し、このため
工業的に広く採用されるに至らなかつた。 本発明者らは、1,1,3,3−テトラメチ
ル・グアニジンが近年前記の用途等に有望な需要
を有することが判明したので、その工業的製法に
ついて鋭意研究を重ねた結果、ハロゲン化シアン
とジメチル・アミンを水系溶媒を用い反応させる
と、比較的緩和な条件でも高純度の1,1,3,
3−テトラメチル・グアニジンが高収率で取得で
きると言う意外な発明に到達し、本発明に至つた
ものである。従来提案されていたUSP3551490及
び西独公開公報1958095では、何れもニトロベン
ゼン及びトルエンの様な水と相溶しない特定の有
機溶媒を使用し、比較的高温即ち130〜195℃で反
応を行つた場合のみ1,1,3,3−テトラメチ
ル・グアニジンが比較的収率よく取得されるが、
水又は水と混和する溶媒を採用するときは収率は
0%であり(前記U.S.P.3551490、第1欄57行)、
使用される溶媒は、水と混和しない溶媒(“mit
Wasser nicht mischbaren Lo¨sungsmittel”;
DOS1958095第5頁3〜4行)が必須の要件とさ
れている。これら先行技術において積極的に排除
された水系溶媒が1,1,3,3−テトラメチ
ル・グアニジンの合成に意外にも極めて有用であ
る理由については明らかでない。以下に本発明の
詳細について更に説明する。 本発明で言う水系溶媒とは、水及び水を主成分
とし、水と混和する1乃至2種以上の他の溶媒を
含む混合系溶媒を言うもので、この様な水と混和
する溶媒としては、例えばメタノール、エタノー
ル、イソプロパノール等がある。 又本発明で用いられるハロゲン化シアンとして
は、クロルシアン、ブロムシアン、ヨードシアン
等があるが、好ましくはクロルシアン及びブロム
シアンが用いられる。 本発明におけるハロゲン化シアンとジメチルア
ミンの反応方法は特に制限されるものではなく、
水系溶媒中に予めハロゲン化シアン又はジメチル
アミンの一方を懸濁乃至溶解させて置き、この中
に他の反応原料即ちジメチルアミン又はハロゲン
化シアンを逐次添加して行く方法がある。どの方
法によるかは、実際の作業上容易に行なえる方法
を選べば良いが、好ましくはブロムシアンを用い
る場合には、BrCNを反応溶媒に溶解あるいは懸
濁させ、ジメチルアミンを逐次添加する方法、ク
ロルシアンの場合には、それとは逆の方法が採用
される。 尚、反応に与えるジメチルアミンとハロゲン化
シアンのモル比は、一般にハロゲン化シアン1モ
ル当りジメチルアミンが2モルを超えて過剰の方
が、1,1,3,3−テトラメチル・グアニジン
塩の収率が高くて好ましい。 反応温度は、ハロゲン化シアン又はジメチルア
ミンの逐次添加時は比較的低温に保つことが好ま
しく、例えば、反応系は冷却によつて30℃以下に
保たれる。1,1,3,3−テトラメチル・グア
ニジン塩の所期の高収率を得るには、逐次添加終
了後反応系をそのまま反応完結迄保つてもよい
が、比較的短時間で高収率を得るには、逐次添加
終了後反応系を加温して、非加圧下、好ましくは
60℃〜還流温度、更に好ましくは80℃〜還流温
度、特に好ましくは90℃〜還流温度に保たれる。
ここで還流温度以下が好ましいというのは、還流
温度以上に反応系を加熱することを特に避けねば
ならないという意味で用いるものではなく、還流
温度以下でも工業的に必要な速さで高収率に1,
1,3,3−テトラメチル・グアニジン塩が得ら
れる意味で用いられる。 この様にして本発明によれば、ハロゲン化シア
ン及びジメチルアミンより工業的に極めて容易に
1,1,3,3−テトラメチル・グアニジンのハ
ロゲン化水素酸塩が得られる。尚、遊離の1,
1,3,3−テトラメチル・グアニジンは、ハロ
ゲン化水素酸塩の水溶液より常法に従つて容易に
得られるが、例えばハロゲン化水素酸塩水溶液に
NaOH水溶液を加え、遊離した1,1,3,3
−テトラメチル・グアニジンを分溜して精製する
方法等が採用される。 以下に実施例により本発明の実施態様の具体例
を述べる。 実施例 1 撹拌機、温度計、滴下ロート及び冷却管をつけ
た反応容器に、ブロムシアン(BrCN)40.0g
(0.378モル)、水20mlを加え懸濁下50%ジメチル
アミン水溶液120ml(1.097モル)を30分かけて滴
下する。反応の前半特に滴下するジメチルアミン
水溶液のほぼ2/3量を加えるまでは明らかな発熱
があるので、氷水浴で全体を冷し、15〜30℃に保
つ。滴下終了後ただちに昇温し48〜52℃に20時間
保ち反応を完結させる。無色透明な液を得る。減
圧下濃縮し、60℃に保つた真空乾燥器中で恒温に
達するまで乾燥する。収量73.6g、収率99.5%、
融点166.5〜176.5℃であつた。このものを熱エタ
ノールから再結晶すると、融点は185.0〜186.0℃
を示し、元素分析結果もテトラメチル・グアニジ
ン・臭化水素酸塩としての計量値とよく一致し
た。
The present invention relates to a method for producing 1,1,3,3-tetramethyl guanidine salt, and specifically, by reacting cyanogen halide and dimethylamine in the presence of a solvent to produce 1,1,3,3-tetramethyl guanidine salt. The present invention relates to a new method for producing guanidine salts in which an aqueous solvent is used as the solvent. In recent years, 1,1,3,3-tetramethyl guanidine has been expected to find many uses, including as a curing agent for epoxy resins, an etching agent, a raw material for polyurethane resins, and an intermediate raw material for pharmaceuticals. Conventionally, 1, 1,
A method for producing 3,3-tetramethyl guanidine and its salt is a method in which dimethyl cyanamide and dimethylamine hydrochloride are melted at 140 to 150°C (Rec.trav.chim., Bd.66, S.343 [1947 ]), a method of reacting dimethyl cyanamide and dimethylamine hydrochloride in a specific organic solvent such as nitrobenzene at 185 to 200°C [US Pat. No. 3,551,490 (hereinafter sometimes abbreviated as USP 3,551,490)], and is a method in which chlorocyan and dimethylamine are reacted at 140 to 150°C in a specific organic solvent such as toluene [West German Published Patent Application No. 1958095 (hereinafter referred to as
(sometimes abbreviated as DOS1958095)] etc. have been proposed. However, none of these conventionally proposed techniques have been industrially satisfactory. That is, in the above melting method, the yield of 1,1,3,3-tetramethyl guanidine is approximately
Although the methods of USP3551490 and DOS1958095 are both solution reactions, organic solvents such as nitrobenzene and toluene are essential, so there are problems in managing the working environment and recovering the organic solvent after the reaction. Furthermore, since the reaction is carried out under pressure because it requires a relatively high temperature to complete the reaction, it has many problems such as large restrictions on the reactor, and for this reason it has not been widely adopted industrially. Ta. The present inventors discovered that 1,1,3,3-tetramethyl guanidine has recently been found to be in promising demand for the above-mentioned uses, etc., and as a result of extensive research into its industrial production method, the halogenated When cyanide and dimethyl amine are reacted using an aqueous solvent, highly pure 1,1,3,
This was an unexpected discovery in which 3-tetramethyl guanidine can be obtained in high yield, leading to the present invention. Previously proposed USP3551490 and West German Publication No. 1958095 both use specific organic solvents that are incompatible with water, such as nitrobenzene and toluene, and only when the reaction is carried out at a relatively high temperature, that is, 130 to 195°C. , 1,3,3-tetramethyl guanidine is obtained in relatively good yield, but
When water or a water-miscible solvent is employed, the yield is 0% (USP 3551490, column 1, line 57);
The solvent used must be a water-immiscible solvent (“mit
Wasser nicht mischbaren Lo¨sungsmittel”;
DOS1958095, page 5, lines 3-4) is considered an essential requirement. It is not clear why these aqueous solvents, which were actively excluded in the prior art, are surprisingly very useful in the synthesis of 1,1,3,3-tetramethyl guanidine. The details of the present invention will be further explained below. The aqueous solvent used in the present invention refers to water and a mixed solvent containing water as a main component and one or more other solvents that are miscible with water. Examples include methanol, ethanol, isopropanol, etc. Further, the cyanogen halides used in the present invention include chlorcyan, bromcyan, iodocyan, etc., and preferably chlorcyan and bromcyan are used. The reaction method of cyanogen halide and dimethylamine in the present invention is not particularly limited,
There is a method in which either cyanogen halide or dimethylamine is suspended or dissolved in advance in an aqueous solvent, and the other reaction raw material, that is, dimethylamine or cyanogen halide, is successively added thereto. As for which method to use, it is best to choose one that is easy to carry out in actual work, but preferably when using bromic cyanide, a method in which BrCN is dissolved or suspended in a reaction solvent and dimethylamine is sequentially added, In Lucian's case, the opposite method is used. Regarding the molar ratio of dimethylamine and cyanogen halide to be added to the reaction, in general, when dimethylamine is in excess of more than 2 moles per mole of cyanogen halide, the 1,1,3,3-tetramethyl guanidine salt is It is preferred because of its high yield. The reaction temperature is preferably kept at a relatively low temperature during the sequential addition of cyanogen halide or dimethylamine; for example, the reaction system is kept at 30° C. or lower by cooling. In order to obtain the desired high yield of 1,1,3,3-tetramethyl guanidine salt, the reaction system may be kept as it is after the completion of the sequential addition until the reaction is completed, but it is possible to obtain a high yield in a relatively short time. In order to obtain
The temperature is maintained at 60°C to reflux temperature, more preferably 80°C to reflux temperature, particularly preferably 90°C to reflux temperature.
Here, the preference for temperatures below reflux temperature does not mean that heating the reaction system above reflux temperature must be particularly avoided; even below reflux temperature, high yields can be achieved at an industrially necessary speed. 1,
It is used in the sense that 1,3,3-tetramethyl guanidine salt can be obtained. In this manner, according to the present invention, the hydrohalide salt of 1,1,3,3-tetramethyl guanidine can be obtained industrially and very easily from cyanogen halide and dimethylamine. Furthermore, free 1,
1,3,3-Tetramethyl guanidine can be easily obtained from an aqueous solution of a hydrohalide according to a conventional method.
Add NaOH aqueous solution and release 1,1,3,3
- A method of fractionating and purifying tetramethyl guanidine is adopted. Specific examples of embodiments of the present invention will be described below with reference to Examples. Example 1 40.0 g of bromic cyanide (BrCN) was placed in a reaction vessel equipped with a stirrer, a thermometer, a dropping funnel, and a cooling tube.
(0.378 mol) and 20 ml of water were added and suspended, and 120 ml (1.097 mol) of a 50% aqueous dimethylamine solution was added dropwise over 30 minutes. During the first half of the reaction, especially until approximately 2/3 of the dropwise dimethylamine aqueous solution is added, there is a clear exotherm, so the whole is cooled in an ice-water bath and kept at 15-30°C. Immediately after the dropwise addition is completed, the temperature is raised and kept at 48-52°C for 20 hours to complete the reaction. Obtain a colorless and transparent liquid. Concentrate under reduced pressure and dry in a vacuum dryer kept at 60°C until constant temperature is reached. Yield 73.6g, yield 99.5%,
The melting point was 166.5-176.5°C. When this substance is recrystallized from hot ethanol, the melting point is 185.0-186.0℃.
The elemental analysis results were in good agreement with the measured value as tetramethyl guanidine hydrobromide.

【表】 実施例 2 撹拌機、温度計、気体導入管及び冷却管をつけ
た反応容器に、ブロムシアン(BrCN)40.0g
(0.378モル)、水120mlを加え、懸濁下、乾燥ジメ
チルアミンガスを飽和するまで導入する。導入の
初期には発熱あるので、全体を氷水浴で冷却し、
反応温度を20℃以下に保つ。ほぼ1時間でジメチ
ルアミンの吸収は止み、飽和する。ジメチルアミ
ンの供給量は144gであつた。そのまま15〜20℃
に24時間保ち反応を完結させる。濃縮し乾固すれ
ば、目的物の臭化水素酸塩を得る。収量74.0g、
収率99.8%、融点167〜178℃であつた。 実施例 3 撹拌機、温度計、気体導入管及び冷却管をつけ
た反応容器に、50%ジメチルアミン水溶液900ml
(8.225モル)を加え、撹拌下、あらたに合成した
クロルシアン(Cl.CN)180g(2.928モル)をゆ
るやかに温め、気体導入管を通じ反応容器に導き
入れる。白煙を生じ、ゆるやかな発熱が認められ
る。冷水浴で全体を冷却し、30℃以下に保つ。2
時間でクロルシアンの導入を終了する。終了後た
だちに昇温し、60℃で12時間保ち反応を完結させ
る。減圧下、過剰のジメチルアミンを留去し、さ
らに濃縮し水200ml留出した所で濃縮を止め、冷
却下50%水酸化ナトリウム水溶液240gをベンゼ
ン1000mlを加えよく撹拌する。少量の析出した塩
化ナトリウムを別し、分液後水層は多量のベン
ゼンで抽出を繰り返す。ベンゼン層を合せ、無水
炭酸ナトリウムを加え乾燥してから減圧下蒸留
し、70〜78℃/22mmHgの留分を集める。収量
287.0g、収率85.1%、純度98.2%であつた。 実施例 4 実施例1と同条件の組成で反応を開始し、滴下
終了後ただちに昇温し、90〜95℃で4時間保ち、
反応を完結させた。反応終了後、過剰のジメチル
アミンを留去し、さらに減圧下、水50mlを留出さ
せる。冷却し、50%水酸化ナトリウム水溶液34
g、ベンゼン200mlを加え、析出した臭化ナトリ
ウムを別し、分液し、水層は多量のベンゼンで
抽出をくり返す。ベンゼン層を合せ、無水炭酸ナ
トリウムで乾燥後分別蒸留する。50〜52℃/11mm
Hgの留分を集める。収量37.0g、収率85.1%、純
度99.0%であつた。
[Table] Example 2 40.0 g of bromic cyanide (BrCN) was placed in a reaction vessel equipped with a stirrer, thermometer, gas introduction tube, and cooling tube.
(0.378 mol), 120 ml of water are added and, under suspension, dry dimethylamine gas is introduced until saturation. Since there is heat generation at the beginning of introduction, cool the whole thing in an ice water bath.
Keep the reaction temperature below 20°C. Absorption of dimethylamine ceases in approximately 1 hour and saturation occurs. The amount of dimethylamine fed was 144 g. 15~20℃ as is
Keep for 24 hours to complete the reaction. By concentrating and drying, the desired hydrobromide salt is obtained. Yield 74.0g,
The yield was 99.8%, and the melting point was 167-178°C. Example 3 900 ml of 50% dimethylamine aqueous solution was placed in a reaction vessel equipped with a stirrer, thermometer, gas introduction tube, and cooling tube.
(8.225 mol) was added, and while stirring, 180 g (2.928 mol) of newly synthesized chlorocyan (Cl.CN) was gently warmed and introduced into the reaction vessel through the gas introduction tube. White smoke is produced and a gradual fever is observed. Cool the whole thing in a cold water bath and keep it below 30℃. 2
Finish introducing Chlorcian in time. Immediately after completion of the reaction, raise the temperature and keep at 60℃ for 12 hours to complete the reaction. Excess dimethylamine was distilled off under reduced pressure, and the mixture was further concentrated. When 200 ml of water was distilled out, the concentration was stopped. Under cooling, 240 g of a 50% aqueous sodium hydroxide solution was added to 1000 ml of benzene, and the mixture was thoroughly stirred. After separating a small amount of precipitated sodium chloride, the aqueous layer is extracted repeatedly with a large amount of benzene. The benzene layers are combined, dried with anhydrous sodium carbonate, and then distilled under reduced pressure to collect a fraction at 70-78°C/22mmHg. yield
287.0g, yield 85.1%, purity 98.2%. Example 4 The reaction was started with the same composition as in Example 1, the temperature was raised immediately after the completion of the dropwise addition, and the temperature was kept at 90 to 95°C for 4 hours.
The reaction was completed. After the reaction is completed, excess dimethylamine is distilled off, and 50 ml of water is further distilled off under reduced pressure. Cooled 50% aqueous sodium hydroxide solution 34
g, add 200 ml of benzene, separate the precipitated sodium bromide, separate the layers, and repeat the extraction of the aqueous layer with a large amount of benzene. The benzene layers were combined, dried over anhydrous sodium carbonate, and then fractionally distilled. 50~52℃/11mm
Collect the Hg fraction. The yield was 37.0 g, yield 85.1%, and purity 99.0%.

Claims (1)

【特許請求の範囲】 1 ハロゲン化シアンとジメチルアミンを溶媒の
存在下で反応させて1,1,3,3−テトラメチ
ル・グアニジン塩を製造する方法において、反応
溶媒に水系溶媒を用いることを特徴とする1,
1,3,3−テトラメチル・グアニジン塩の製
法。 2 非加圧下で反応を行うことを特徴とする特許
請求の範囲第1項記載の1,1,3,3−テトラ
メチル・グアニジン塩の製法。
[Claims] 1. In a method for producing 1,1,3,3-tetramethyl guanidine salt by reacting cyanogen halide and dimethylamine in the presence of a solvent, it is possible to use an aqueous solvent as the reaction solvent. Features 1,
Method for producing 1,3,3-tetramethyl guanidine salt. 2. A method for producing 1,1,3,3-tetramethyl guanidine salt according to claim 1, characterized in that the reaction is carried out under non-pressurized conditions.
JP3983879A 1979-04-04 1979-04-04 Preparation of 1,1,3,3-tetramethyl guanidine salt Granted JPS55133352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3983879A JPS55133352A (en) 1979-04-04 1979-04-04 Preparation of 1,1,3,3-tetramethyl guanidine salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3983879A JPS55133352A (en) 1979-04-04 1979-04-04 Preparation of 1,1,3,3-tetramethyl guanidine salt

Publications (2)

Publication Number Publication Date
JPS55133352A JPS55133352A (en) 1980-10-17
JPS6327339B2 true JPS6327339B2 (en) 1988-06-02

Family

ID=12564095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3983879A Granted JPS55133352A (en) 1979-04-04 1979-04-04 Preparation of 1,1,3,3-tetramethyl guanidine salt

Country Status (1)

Country Link
JP (1) JPS55133352A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60005613T2 (en) 1999-07-29 2004-08-12 Mitsubishi Gas Chemical Co., Inc. Process for the preparation of dimethylcyanamide
JP4573006B2 (en) * 1999-07-29 2010-11-04 三菱瓦斯化学株式会社 Method for producing dimethylcyanamide and 1,1,3,3-tetramethylguanidine
CN1304368C (en) * 2004-10-12 2007-03-14 山东新华万博化工有限公司 Improved technique for producing tetramethyl guanidine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948932A (en) * 1972-09-13 1974-05-11

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948932A (en) * 1972-09-13 1974-05-11

Also Published As

Publication number Publication date
JPS55133352A (en) 1980-10-17

Similar Documents

Publication Publication Date Title
US6613908B2 (en) Method for carbamoylating alcohols
HU203326B (en) Process for producing 1,2-bis(3,5-dioxo-piperazin-1-yl)-propane
JPS6327339B2 (en)
JPS6023351A (en) Manufacture of 2-amino-3,5-dibrombenzylamines
Lee et al. The Novel Synthesis of Two Diastereomers of γ-Hydroxyproline
JPS6054311B2 (en) Method for producing 2-isopropylaminopyrimidine
JPH0558985A (en) Production of cyanoguanidine derivative
JPS6160673A (en) Preparation of guanidinothiazole derivative
JP3042123B2 (en) Method for producing N-cyanoacetamidine derivative
JPS5849547B2 (en) Pyrazoline pyrazoline
JPH0219348A (en) Production of cerelisin hydrochloride
SU1082318A3 (en) Process for isolating z-1,2-diphenyl-1/n-(2-dimethylamino-ethoxy/phenyl)butene-1 or its salts
US2994696A (en) Process for the preparation of vitamin-b1 halides
KR100277510B1 (en) Method for preparing tetrahydrocarbazolone derivative
JPS638104B2 (en)
JPS60337B2 (en) Method for producing α-amino acids
Bulgozdy et al. The Preparation of Anhydrous Hydrazine and Deutero-hydrazine from Hydrazine Dihydrochloride1
JPS596865B2 (en) 5-((2-halogeno-1-hydroxy)alkyl) carbostyril
JPS5936633B2 (en) Production method of benzocoumarin derivatives
JPH01313471A (en) Production of n-sulfamoylamidine compound
JPH06345735A (en) Production of n-substituted-3-piperidinol
JPS607988B2 (en) Improved synthesis method of 3-amino-5-tert-butyl isoxazole
JPS603062B2 (en) Method for producing 8-hydroxycarbostyryl derivative
JPS60115567A (en) Production of 3-aminoisoxazole
JPH0332559B2 (en)