JPS63273386A - Composite integrated element - Google Patents

Composite integrated element

Info

Publication number
JPS63273386A
JPS63273386A JP10825287A JP10825287A JPS63273386A JP S63273386 A JPS63273386 A JP S63273386A JP 10825287 A JP10825287 A JP 10825287A JP 10825287 A JP10825287 A JP 10825287A JP S63273386 A JPS63273386 A JP S63273386A
Authority
JP
Japan
Prior art keywords
layer
photodiode
electrodes
semiconductor laser
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10825287A
Other languages
Japanese (ja)
Inventor
Ikuo Mito
郁夫 水戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10825287A priority Critical patent/JPS63273386A/en
Publication of JPS63273386A publication Critical patent/JPS63273386A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • H01S5/0264Photo-diodes, e.g. transceiver devices, bidirectional devices for monitoring the laser-output

Abstract

PURPOSE:To obtain composite integrated elements which can be independently driven by forming a high resistance layer between a photodiode forming layer and a laser forming layer on the same semiconductor substrate, and insulating the electrodes of both the elements from each other. CONSTITUTION:A DFB type laser 100 in which an n-type InGaAsP guide layer 2, an InGaAsP active layer 3 and a p-type InP clad layer 5 are superposed on a diffraction grating 50 on an n-type InP substrate 1, and a photodiode 200 in which an n-type InP electrode layer 6, a no-added InGaAs layer 7 and a p-type InGaAs layer 8 are further superposed are formed, and both elements are isolated by a V-groove 300. A light oscillated in the laser 100 and propagated rightward is reflected on the groove, reflected on an electrode 70 in the bottom of the substrate, introduced to be incident to a photodiode to generate an optical current, and fed through electrodes 80, 90 on the layers 8, 6 to a load resistor 400. Electrodes 60, 70 are formed on the front and rear faces of the laser 100 separately from the electrodes 80, 90. Both the elements can be independently driven due to the isolated electrodes and the layer 5.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光フアイバー通信用光源として用いられる、半
導体レーザとフォトダイオードとの複合集積素子に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a composite integrated device of a semiconductor laser and a photodiode, which is used as a light source for optical fiber communication.

(従来の技術) 光フアイバー通信システムの高性能化が進み2Gb/s
、 4Gb/sという超高速の伝送実験が遂行されるよ
うになった。光源としての半導体レーザも単一軸モード
で動作する分布帰還型半導体レーザ(DFB  LD)
が開発されている。DFB  LDは素子内部に作り付
けられた回折格子が反射鏡となるので、従来のファプリ
ーベロー形半導体レーザのように端面に反射鏡を必要と
しない、従って、他の半導体光素子とのモノリシック集
積が容易であり、フォトダイオードや変調器などを!積
した例が報告されている。特に、半導体レーザの動作レ
ベルをモニタするフォトダ・イオードは、実際に半導体
レーザを通信用光源として送信器に組み込む場合には必
ず必要とされるものである。半導体レーザとフォトダイ
オードとを同一の半導体基板上に集積化することは、従
来、光学系を調整しながら半導体レーザにフォトダイオ
ードをパッケージに組み立てていた工程を不必要にし有
効である。また、並列伝送を行うような場合には、並列
の光ファ、イバーに光信号を送るため、同じく多数の半
導体レーザなアレイ状に近接して構成することが有効で
あるが、この場合に個々の素子の光出力をモニタするた
めに、外部に幾つものフォトダイオードを配置すること
が、空間的に制限を受は難しくなってくる。この場合も
半導体レーザとフォトダ、イオードの¥に積素子が有効
である。
(Conventional technology) The performance of optical fiber communication systems has improved to 2Gb/s.
, ultra-high-speed transmission experiments of 4Gb/s have begun. Distributed feedback semiconductor laser (DFB LD), which operates in a single-axis mode as a semiconductor laser as a light source
is being developed. Since the DFB LD uses a diffraction grating built into the device as a reflecting mirror, it does not require a reflecting mirror on the end face like the conventional Fabry Bellows type semiconductor laser. Therefore, monolithic integration with other semiconductor optical devices is possible. Easy to use, such as photodiodes and modulators! There have been reported cases of accumulation. In particular, a photodiode for monitoring the operating level of a semiconductor laser is always required when a semiconductor laser is actually incorporated into a transmitter as a communication light source. Integrating a semiconductor laser and a photodiode on the same semiconductor substrate is effective because it eliminates the conventional process of assembling the semiconductor laser and photodiode into a package while adjusting the optical system. In addition, when performing parallel transmission, it is effective to configure a large number of semiconductor lasers in close proximity to each other in an array to send optical signals to parallel optical fibers or fibers. In order to monitor the optical output of the device, it becomes difficult to arrange a number of photodiodes externally due to spatial limitations. In this case as well, a multilayer element is effective for the semiconductor laser, photoda, and diode.

(発明が解決しようとする問題点) 現在まで、このような集積素子の報告例がいくつかある
。しかしながら、それらの素子では、実際に送信器の回
路に組み込むことまで考慮した構造にはなっていなかっ
た。その最も重要な点は、半導体レーザ部とフォトダイ
オード部の電気的絶縁である。一般に、半導体レーザに
は、数100Mb/sから数Gb/sの高周波の電気信
号が印加され、一方フオドダイオードには受光効率をあ
げるために、10V程度の電圧が印加される0両者の駆
動条件が大きく異なることから、両者は電気的に完全に
絶縁されている必要がある。今までの報告例でも、この
点を考慮した8!!造く例えば、昭和59年春季応用物
理連合講演会予稿集の196ページ、IP−M−15に
廿日等が報告した素子)もあるが、両方の素子のis端
子の一部が共通であるなど十分な絶縁にはなっていなか
った。従って、本発明では従来半導体レーザとフォトダ
、イオードとの間の不十分な電気抵抗を改善した素子構
造を提供するものである。
(Problems to be Solved by the Invention) To date, there have been several reported examples of such integrated devices. However, these elements did not have a structure that considered actually incorporating them into a transmitter circuit. The most important point is electrical insulation between the semiconductor laser section and the photodiode section. Generally, a high-frequency electrical signal of several 100 Mb/s to several Gb/s is applied to a semiconductor laser, while a voltage of about 10 V is applied to a photodiode to increase light receiving efficiency. Since the conditions are very different, the two must be completely electrically isolated. Even in the reported examples so far, 8! takes this point into consideration! ! For example, there is a device reported by Hatsuka et al. in IP-M-15, page 196 of the Proceedings of the 1980 Spring Applied Physics Union Lectures, but both devices have a part of the IS terminal in common. The insulation was not sufficient. Therefore, the present invention provides an element structure that improves the conventional insufficient electrical resistance between a semiconductor laser, a photoda, and a diode.

(問題点を解決するための手段) 前述の問題点を解決するために本発明が提供する手段は
、半導体レーザとフォトダ、イオードが同一半導体基板
上にIA積された複合集積素子であって、前記フォトダ
イオードを構成する半導体層と前記半導体レーザ層を構
成する層との間に高抵抗層が形成されて、両素子に接続
される電極は互いに絶縁されていることを特徴とする。
(Means for Solving the Problems) The means provided by the present invention to solve the above-mentioned problems is a composite integrated device in which a semiconductor laser, a photoda, and an diode are stacked in IA on the same semiconductor substrate, A high resistance layer is formed between a semiconductor layer constituting the photodiode and a layer constituting the semiconductor laser layer, and electrodes connected to both elements are insulated from each other.

(作用) 従来報告された、半導体レーザとフォトダ、イオードの
複合集積素子では伝導性の半導体基板が主に使われてい
た。この場合一般に半導体基板側のT;、極は、半導体
レーザとフォトダイオードとで共通であった。この電極
部分から電流の相互の回り込みが生じることになる。従
って本発明では、半導体レーザ部とフォトダイオード部
とが電気的に完全に絶縁され、かつ両者の間に共通な電
極がないように、両者を構成する半導体層の間に高抵抗
の半導体層を形成する。
(Function) In the conventionally reported composite integrated devices of a semiconductor laser, photoda, and diode, a conductive semiconductor substrate was mainly used. In this case, the semiconductor laser and photodiode generally have the same T; pole on the semiconductor substrate side. Mutual circulation of current occurs from this electrode portion. Therefore, in the present invention, a high-resistance semiconductor layer is provided between the semiconductor layers constituting the semiconductor laser section and the photodiode section so that the semiconductor laser section and the photodiode section are completely electrically isolated and there is no common electrode between them. Form.

(実施例) 次に図面を参照して、本発明の実施例を詳細に説明する
。第1図は本発明の一実施例の基本構成を模式的に示す
断面図である0紙面に向かって左側に半導体レーザ10
0が、右側にフォトダ、イオード200が形成されてい
る。両者の間にはV字形の消300が形成されている。
(Example) Next, an example of the present invention will be described in detail with reference to the drawings. FIG. 1 is a sectional view schematically showing the basic configuration of an embodiment of the present invention.
0, a photoda and a diode 200 are formed on the right side. A V-shaped eraser 300 is formed between the two.

半導体レーザ100はn−InP基板1の上に形成され
た回折格子50の上にn−InGaAsPガイド!2.
InGaAsP活性瑠3 +活性−3n Pクラッド層
4が積層されたDPB  LDの!R造である。フォト
ダイオード200は同じ< n −1n P基板1の上
に形成されているが、基板1の上には高抵抗1nP層(
半絶縁性なので5i−InPとする)5が積層され、さ
らにn−InPtfffiffi6.ノンドープI n
GaAsff17. p−I nGaAs18が積層さ
れている。この2Rは光吸収層として動作する。半導体
レーザ100はDFB  LD楕遺なので4300側の
端面が斜めであっても、問題なく発振する。半導体レー
ザ100で発振し、紙面右側に進む光は図中の波線で示
されるように、溝300の側面で反射される。この光は
再度基板1の底面に形成された金属電[70で反射され
て)才トダ、イオード200の光吸収層に入射し、光電
流を発生ずる。フォトダ・イオード200にはp−1n
GaAs屑8の表面とrl−1nP電極屑6の一部に電
極80. eoが形成されている。光電流は電極80と
90を通じて外部に接続された負荷抵抗4(10を流れ
て信号となる。半導体レーザ100にはp−InPクラ
ッド層4の表面側と、n−InP基板1側に各々金属電
極60.70が形成されている。図からも明らかなよう
に、半導体レーザ100の金属電1i60.70とフォ
トダ、イオード200の電180.90はお互いに分離
して形成されて、かつ間には高抵抗層5が形成されてお
り、お互いに電気的に分離されている。従って半導体レ
ーザ100とフォトダ、イオード200は各々独立に駆
動することができ、かつ両者間の電気的な漏れ込みもな
い。
The semiconductor laser 100 has an n-InGaAsP guide on a diffraction grating 50 formed on an n-InP substrate 1! 2.
A DPB LD in which InGaAsP active 3 + active -3n P cladding layers 4 are stacked! It is R-built. The photodiode 200 is formed on the same < n −1n P substrate 1 , but a high resistance 1nP layer (
Since it is semi-insulating, 5i-InP) 5 is stacked, and further n-InPtffiffiffi6. Non-doped In
GaAsff17. p-I nGaAs18 is laminated. This 2R acts as a light absorption layer. Since the semiconductor laser 100 is a DFB LD ellipse, it oscillates without any problem even if the end face on the 4300 side is oblique. Light oscillated by the semiconductor laser 100 and traveling to the right side of the paper is reflected by the side surface of the groove 300, as shown by the wavy line in the figure. This light is again reflected by the metal electrode 70 formed on the bottom surface of the substrate 1 and enters the light absorption layer of the diode 200, generating a photocurrent. The photodiode 200 has p-1n
An electrode 80 is formed on the surface of the GaAs scrap 8 and a part of the rl-1nP electrode scrap 6. eo is formed. The photocurrent flows through the load resistor 4 (10) connected to the outside through electrodes 80 and 90 and becomes a signal. As is clear from the figure, the metal electrode 1i60.70 of the semiconductor laser 100 and the electrode 180.90 of the photoda and diode 200 are formed separately from each other, and there is a gap between them. A high-resistance layer 5 is formed and electrically isolated from each other.Therefore, the semiconductor laser 100, the photoda, and the diode 200 can each be driven independently, and there is no electrical leakage between them. do not have.

第2図は、本発明の別の実施例である複合集積素子の斜
視図である。この素子は発振横モード制御構造として二
重チャンネルブレーナ埋め込み形半導体レーザ構造を用
いた複合集積素子の一例である。半導体レーザ100の
発光部は幅1゜5μmのメサ部31に限定されており、
このメサ領域31に電流が集中し易いように、p−In
P電流電流ブラフ2層9−InPi流閉じ込めN10.
p−InP埋め込み屑11からなるpnpn電流閉じ込
め構造が形成されている。またp−1nP埋め込み層1
1の上には、金属電極60のオーミック抵抗が小さくな
るようにp−InGaAsPキャップN12が積層され
ている。半導体レーザ100の部分の長さは3001J
m、フォトダイオードの部分の長さは200四である9
両者を分離する漠300の幅は10−1深さは51J!
+であったつ 素子をダ・イアモンドヒートシンクに融着して組み立て
特性を測定したところ、半導体レーザ100とフォトダ
イオード200の間の電気抵抗は2MΩと非常に高い値
を示した。そして、半導体レーザの発振しきい値は20
nA、発振波長は1.55μm。
FIG. 2 is a perspective view of a composite integrated device according to another embodiment of the present invention. This device is an example of a composite integrated device using a double channel brainer embedded semiconductor laser structure as an oscillation transverse mode control structure. The light emitting part of the semiconductor laser 100 is limited to a mesa part 31 with a width of 1°5 μm,
In order to easily concentrate current in this mesa region 31, p-In
P current current bluff 2 layers 9-InPi flow confinement N10.
A pnpn current confinement structure made of p-InP buried debris 11 is formed. Also, p-1nP buried layer 1
A p-InGaAsP cap N12 is laminated on top of the metal electrode 60 so that the ohmic resistance of the metal electrode 60 is reduced. The length of the semiconductor laser 100 portion is 3001J
m, the length of the photodiode part is 20049
The width of the gap 300 that separates the two is 10-1 and the depth is 51J!
When the device was fused to a diamond heat sink and its assembly characteristics were measured, the electrical resistance between the semiconductor laser 100 and the photodiode 200 was as high as 2 MΩ. And the oscillation threshold of the semiconductor laser is 20
nA, oscillation wavelength is 1.55 μm.

0、:l(/Aの効率であった。フォトダイオード20
0は10Vの逆バ5イアスを印加して用いた。暗電流は
50n八であった。前方を出射する光出力に対し、0.
7八八で光電流が流れた。この値はモニタ電流として用
いるに十分でありな、半導体し・−ザを2 Gb/sの
速度でパルス変調した場合に、フォトダ、イオード20
0への漏れ込み電流を測定したが2〇−30nA以下と
小さく見積られた。また半導体レーザ100とフォトダ
イオード200は電気的に分離しているため、半導体レ
ーザ100と、これを駆動する回路を接続し、またフォ
トダ、イオード200と検知用の回路を接続する場合に
も、従来の独立な半導体レーザとフォトダ、イオードと
に接続する場合と全く同様にできた。
The efficiency was 0, :l(/A. Photodiode 20
0 was used by applying a reverse bias of 10V. The dark current was 50n8. 0.0 for the light output emitted from the front.
A photocurrent flowed at 788. This value is sufficient to be used as a monitor current.
The leakage current to 0 was measured and was estimated to be less than 20-30 nA. Furthermore, since the semiconductor laser 100 and the photodiode 200 are electrically separated, conventional This was done in exactly the same way as when connecting an independent semiconductor laser, photoda, and diode.

(発明の効果) 本発明では、高抵抗層5を半導体レーザ100とフォト
ダイオード200との間に配置することで両者の間の電
気抵抗を高めることができた。そして、各々の素子は独
立に駆動でき、従来の個別の素子を用いた場合と同様の
駆動回路を用いることができた。
(Effects of the Invention) In the present invention, by arranging the high resistance layer 5 between the semiconductor laser 100 and the photodiode 200, it was possible to increase the electrical resistance between the two. Each element can be driven independently, and a drive circuit similar to that used in the conventional case of using individual elements can be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の基本構成を示す模式的な断
面図、第2図は本発明の別の実施例を示す斜視図である
。 図中、1はn−InP基板、2はn−1nGaA s 
Pガロイド層、3はInGaAsP活性層、4はp−I
nPクラッド層、5は高抵抗InP層、6はn−1np
H,7はn−InGaAs屑、8はp−InGaAs7
%j、9はp−1nP電流ブロック層、10はn−In
P電流閉じ込め層、11はp−InP埋め込み層、12
はp−InGaAsPキャップ層、31はメサ部、50
は回折格子、60.70゜80、90は金属電極、 3
00は溝、 400は負苗抵抗、100は半導体レーザ
、200はフォトダイオードを示す。 第1図
FIG. 1 is a schematic sectional view showing the basic configuration of one embodiment of the invention, and FIG. 2 is a perspective view showing another embodiment of the invention. In the figure, 1 is an n-InP substrate, 2 is an n-1nGaAs
P galloid layer, 3 is InGaAsP active layer, 4 is p-I
nP cladding layer, 5 is high resistance InP layer, 6 is n-1np
H, 7 is n-InGaAs scrap, 8 is p-InGaAs7
%j, 9 is p-1nP current blocking layer, 10 is n-In
P current confinement layer, 11 is p-InP buried layer, 12
is a p-InGaAsP cap layer, 31 is a mesa portion, and 50 is a p-InGaAsP cap layer.
is a diffraction grating, 60.70°80, 90 are metal electrodes, 3
00 is a groove, 400 is a negative seedling resistor, 100 is a semiconductor laser, and 200 is a photodiode. Figure 1

Claims (1)

【特許請求の範囲】[Claims]  半導体レーザとフォトダイオードが同一半導体基板上
に集積された複合集積素子において、前記フォトダイオ
ードを構成する半導体層と前記半導体レーザ層を構成す
る層との間に高抵抗層が形成されて、両素子に接続され
る電極は互いに絶縁されていることを特徴とする複合集
積素子。
In a composite integrated device in which a semiconductor laser and a photodiode are integrated on the same semiconductor substrate, a high resistance layer is formed between a semiconductor layer constituting the photodiode and a layer constituting the semiconductor laser layer, so that both elements A composite integrated device characterized in that electrodes connected to the device are insulated from each other.
JP10825287A 1987-04-30 1987-04-30 Composite integrated element Pending JPS63273386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10825287A JPS63273386A (en) 1987-04-30 1987-04-30 Composite integrated element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10825287A JPS63273386A (en) 1987-04-30 1987-04-30 Composite integrated element

Publications (1)

Publication Number Publication Date
JPS63273386A true JPS63273386A (en) 1988-11-10

Family

ID=14479945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10825287A Pending JPS63273386A (en) 1987-04-30 1987-04-30 Composite integrated element

Country Status (1)

Country Link
JP (1) JPS63273386A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11211768B2 (en) 2017-10-03 2021-12-28 Mitsubishi Electric Corporation Semiconductor optical integrated device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59125658A (en) * 1983-01-06 1984-07-20 Nec Corp Monitor integrated type semiconductor light emitting element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59125658A (en) * 1983-01-06 1984-07-20 Nec Corp Monitor integrated type semiconductor light emitting element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11211768B2 (en) 2017-10-03 2021-12-28 Mitsubishi Electric Corporation Semiconductor optical integrated device

Similar Documents

Publication Publication Date Title
US4948960A (en) Dual mode light emitting diode/detector diode for optical fiber transmission lines
JP4090402B2 (en) Semiconductor optical amplifier and optical module using the same
US4773074A (en) Dual mode laser/detector diode for optical fiber transmission lines
US10348059B2 (en) Light emitting element array and optical transmission device
JP2017085007A (en) Semiconductor optical element, array semiconductor optical element, and optical module
JP6414365B1 (en) Semiconductor optical integrated device
JPH06105820B2 (en) Distributed feedback type semiconductor laser with monitor
JP6939411B2 (en) Semiconductor optical device
JPH0152914B2 (en)
JPS63116489A (en) Optical integrated circuit
JPS63273386A (en) Composite integrated element
JP2005223043A (en) Optical integrated device
JPH11186661A (en) Semiconductor laser with modulator
JPS63273385A (en) Composite integrated element
JPS6136987A (en) Distribution feedback type semiconductor laser provided with light detector
JPS5948975A (en) Semiconductor light emitting element
JPH04144182A (en) Optical semiconductor device array
JP2508332B2 (en) Integrated optical modulator
JPH067623B2 (en) Optical bistable integrated device
KR100289043B1 (en) Vertical fluorescent integrated circuit
JPS6320398B2 (en)
JP2788523B2 (en) Semiconductor light emitting device
JPH04290485A (en) Optical semiconductor
CN115149396A (en) Speed multiplying light-intensifying integrated chip
JPS60165777A (en) Light bistable integrated element