JPS632729A - Torque distribution control device in four-wheel drive car - Google Patents
Torque distribution control device in four-wheel drive carInfo
- Publication number
- JPS632729A JPS632729A JP14447586A JP14447586A JPS632729A JP S632729 A JPS632729 A JP S632729A JP 14447586 A JP14447586 A JP 14447586A JP 14447586 A JP14447586 A JP 14447586A JP S632729 A JPS632729 A JP S632729A
- Authority
- JP
- Japan
- Prior art keywords
- driving force
- force distribution
- torque
- road surface
- map
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 claims description 10
- 230000007423 decrease Effects 0.000 abstract description 2
- 230000005540 biological transmission Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 101710162453 Replication factor A Proteins 0.000 description 1
- 102100035729 Replication protein A 70 kDa DNA-binding subunit Human genes 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
Landscapes
- Arrangement And Driving Of Transmission Devices (AREA)
Abstract
Description
本梵明は、フルタイム式4輪駆動車において、前・後輪
の駆e [−ルク配分を任意に制御して、操縦性または
安定性重視の走行を可能にする4輪駆動i11のi〜ル
ク配分制taa装置にtll]する。This Bonmei applies to full-time four-wheel drive vehicles. tll] to the torque distribution control TAA device.
従来、フルタイム式4輪駆動車の前・後輪駆動トルク配
分に関しては、例えば特開昭56−43031号公報に
示すように、前・後輪の駆動系の途中に油圧クラッチを
設け、そのクラッチトルクを制御するようにしたものが
あった。これは車速センサからの情報に基づいて、高速
時はより安定性を重視して前輪駆動(FF)に近い駆動
力配分とし、−方、低速時には操縦性(回頭性)を重視
して後輪駆動(FR)に近い駆動力配分としたものであ
る。Conventionally, regarding the front/rear wheel drive torque distribution of full-time four-wheel drive vehicles, a hydraulic clutch is provided in the middle of the front/rear wheel drive system, as shown in Japanese Patent Application Laid-Open No. 56-43031, There was one that controlled clutch torque. This is based on information from the vehicle speed sensor. At high speeds, stability is prioritized and the drive force is distributed closer to that of front-wheel drive (FF); at low speeds, maneuverability (turning ability) is prioritized and the drive power is distributed to the rear wheels. The driving force distribution is close to that of the drive (FR).
【発明が解決しようとする問題点l
ところで、上記先行技術のような構成のものにあっては
、車速センイノからの情報に基づく走行状態によって駆
動トルク配分を制御していたが、走行する路面状態は必
ずしも均一でなく、またj¥!i1人員や積載fitに
よっては4輪のそれぞれのホイールスピンしにくさは均
等でない。すなわち、路面f!?! 際係数μの低い所
にある車輪−1)垂直荷俳が少ない車輪はホイールスピ
ンしやすく、車速センサによって(qられる情報のみで
は必ずしも適切に対応することができなかった。
本発明は、全体的なトルクロスを生じることなく、高速
時の安定性および低速時の回頭性を確保しながら、さま
ざまな積載状態、乗車人口、不均一な路面摩涼係数とい
った条件下でも、タイヤのホイールスピンを最少限に抑
えることができるようにすることを目的とする。
[問題点を解決するための手段1
上記目的を達成するため、本発明の4輪駆171車のト
ルク配分制t3D装冒は車速レンサおよび路面摩擦係数
検出装置、さらに車速と路面PR1!J係数に対応する
駆動力配分を予めマツプとして格納している記憶装@を
設け、該車速センサからの(3号と、上記路面摩擦係数
検出装置からの信号または手動入力信号とに基づいて、
あらかじめ定められた駆動力配分を上記記憶装置よりマ
ツプ検索して読み出し、この駆動力配分に従って前輪と
後輪への駆動力配分を制御するようにしたものである。
【作 用)
上記構成に阜づき、車速センサからの信号と、路面摩擦
係数検出装置からの信号または運転名が判断して手動で
入力する信号とによって、あらかじめ定められた駆動力
配分を記t[置よりマツプ検索によって読み出し、この
読み出された駆動力配分に応じて前・後輪への駆動力配
分を最適に制御する。
【実 施 例1
以下、本発明の実施例を図面に基づいて説明する。第1
図はセンターデフ付4輪駆動lpの伝動系の構成を示す
スケルトン図であり、図において、1はエンジン、2は
トランスミッション、3は前輪、4は後輪、5はフロン
トデフ、6はリヤデフ、7はセンターデフ、8はトラン
スミッション2の出力軸に固着された#A車、9はセン
タープノアのケースに設けた歯車で、歯車8と噛合う。
10はトルク分配装置、11はトルク分配側10のバイ
パス41Il110aに介設された油圧クラッチ、12
はセンターデフ7の前輪側駆動軸7aに固着された歯車
、13はバイパス軸10aの一端に固着されて、歯車1
2と噛合う同径の歯車、14は油圧クラッチ11のドラ
ム側に設けられた大径の歯車、15はセンターデフ7の
後輪側駆動軸7bに固着された小径の歯車で、歯車14
と噛合う。18は油圧クラッチ11へ所定の油圧を供給
する油圧ユニット、19はハンドル、20はマイクロコ
ンピュータからなるトルク配分ill tlll 装置
、21は出力トルクセンサ、22は例えば前輪3に設番
プられた車速センサ、23は路面摩擦係数検出装置であ
る。また、トルク配分制御Vt1fi20の構成を示す
第2図において、30は記4:!3装置で、II速Vと
路面1¥擦係数μとに対応した最適のトルク配分、すな
わち前輪駆動力配分hfiRpがマツプの形として予め
格納されている。31は駆動力配分決定手段で、車速セ
ンサ22および路面摩擦係数検出装置23からの信号に
雄づいて、記v1装冒30内に格納されている第3図に
示すようなマツプから、対応する最適の前輪駆動力配分
値RFを読み出す。32はクラッチ油圧演算手段で、読
み出された前輪駆動力配分If[RFと、出力トルクセ
ンサ21によって検出された駆動トルクTとによって、
油圧クラッチ11において所定のクラッチトルク1°C
を発生させるためのクラッチ油圧指令励を演算し、油圧
ユニット18に指令を与え、指令されたクラッチ油圧P
cを油圧クラッチ11に印加する。
次に、トルク分配置1ioの動作について説明する。ト
ランスミッション2から出力される駆動トルクTは、歯
車8.9を介してセンターデフ7へ伝達され、ここで駆
動力Tは18等分に配分されて前輪側駆動軸7aと後輪
側駆動軸7bとに伝達される。
ここで、油圧クラッチ11がオフとなっていると、前輪
3および後輪4はそれぞれ(T/2)の駆動トルクTF
、 TRで駆動される。この油圧クラッチ11は、ハ
ブ11aが同径の歯$12.13、バイパス@10aを
介して前輪側駆動軸7aと等速に回転し、ドラム11b
が小径の歯車15と大径の歯i!!14とのギA7比K
によって減速回転しているので、油圧ユニット18から
徐々に油圧Pcを加えると、油圧に応じたクラッチトル
クTCが発生し、低速回転側のドラム11bにそのクラ
ッチトルクTCが加えられ、後輪側駆動軸7bへの駆動
力T&は(T/2+K・Tc )となり、−方、前輪側
部a軸7aへの駆動力TFは(T/2−Tc )となり
、油圧クラッチ111\印加される油圧に応じて前輪3
の駆動力が低下し、後輪4の駆動力が増大する。
このトルク配分制御は、従来は車速センサ22からの情
報のみによって行っていたが、現実の路面は摩擦係数μ
がさまざまに変化するので、車速情報のみによる制御で
はまだ十分でなかった。例えば、雪路低速時に後輪駆動
(「R)に近い駆動力配分となると、回頭性が良すぎて
コン[・ロールが財しくなり、また低速からの加速時に
大分な駆動力が路面に十分に伝わらず、4輪駆動として
のメリットが十分に発揮されていなかった。そこで、第
3図に示すように、車速が大きくなるにつれて前輪駆動
力配分RFを高め、路面摩擦係数μが大きくなればRF
を小さくするような駆動力配分値RFを、マツプの形で
記憶装置30に格納しておく。
そして、トルク配分制御装置20は、入力される車速セ
ンサ22および路面r!J擦係数検出装置23からの信
号に基づき、駆動力配分決定手段31によって対応する
前輪駆動力配分lfl RFをマツプ30より読み出ザ
。次に、クラッチ油圧演口手段32において、読み出さ
れた前輪駆動力配分値RE1すなわちTF、/ (TF
+T、)== (T/2−TC)/Tと、出力トルク
センサ21によって検出されるトランスミッション2か
らの駆動カニとによってクラッチトルクTCを求め、こ
のTcに対応するクラッチ油圧を油圧ユニット18に指
示し、対応する油圧[)Cを油圧クラッチ11に印加し
てクラッチトルクTCを発生させ、前輪側駆動軸7aへ
の駆動トルクTFをR,に対応した(丁/2−Tc)と
し、後輪側駆動軸7bへの駆動トルク−LKをRFに対
応した(T/2+に−Tc )とする。こうして、滑り
やずい路面でも過敏な回頭性を抑えることができる。
なお、上記実施例においては、路面摩擦係数検出1iF
f23からの信号を用いて前輪駆動力配分値R5を求め
るようにしていたが、これは運転者が目視によって路面
μを判断して手動で入力するようにしてもよい。
なお本発明は実施例のようなトルク分配8′冒に限定さ
れるものでない。
【発明の効架】
以上述べたように、この発明によれば、センターデフ装
置にトルク分配装置をバイパスして設け、車速センサか
らの信号と路面摩擦係数検出装置からの信号とに基づい
て、最適なトルク配分値をマツプ検索するようにしたの
で、全体的なトルクロスを生じることなく、高速時の安
定性、低速時の回頭性を確保しながら、滑りやすい路面
では前輪側駆動力をやや増加させることができ、過敏な
回頭性を抑えて安定した走行を行え、また十分な加速性
が得られるという効果を1gられる。Problems to be Solved by the Invention 1 By the way, in the configuration of the prior art described above, the drive torque distribution is controlled based on the driving condition based on information from the vehicle speed sensor, but is not necessarily uniform, and j¥! i1 Depending on the number of people and the load fit, the difficulty of wheel spin on each of the four wheels is not equal. In other words, the road surface f! ? ! Wheels with a low vertical coefficient 1) Wheels with a low vertical load are prone to wheel spin, and it has not always been possible to respond appropriately using only the information obtained by the vehicle speed sensor. While ensuring stability at high speeds and turning performance at low speeds without causing significant torque loss, tire wheel spin is minimized under various loading conditions, passenger numbers, and uneven road coefficient of friction. [Means for solving the problem 1] In order to achieve the above object, the torque distribution system t3D equipment of the 4-wheel drive 171 vehicle of the present invention uses a vehicle speed sensor and A road surface friction coefficient detection device is provided, and a memory device is provided which stores in advance the driving force distribution corresponding to the vehicle speed and the road surface PR1!J coefficient as a map, and the road surface friction coefficient detection device Based on the signal from or manually input signal,
A predetermined driving force distribution is read out from the above-mentioned storage device through a map search, and the driving force distribution to the front wheels and rear wheels is controlled in accordance with this driving force distribution. [Function] Based on the above configuration, a predetermined driving force distribution is recorded based on the signal from the vehicle speed sensor, the signal from the road surface friction coefficient detection device, or the signal manually input based on the judgment of the driver. [The vehicle is read from the location by map search, and the drive force distribution to the front and rear wheels is optimally controlled according to the read drive force distribution. [Example 1] Hereinafter, an example of the present invention will be described based on the drawings. 1st
The figure is a skeleton diagram showing the configuration of the transmission system of a four-wheel drive lp with a center differential. In the figure, 1 is the engine, 2 is the transmission, 3 is the front wheel, 4 is the rear wheel, 5 is the front differential, 6 is the rear differential, 7 is a center differential, 8 is a #A wheel fixed to the output shaft of the transmission 2, and 9 is a gear provided in the case of the center pump, which meshes with the gear 8. 10 is a torque distribution device, 11 is a hydraulic clutch interposed in the bypass 41Il110a of the torque distribution side 10, 12
13 is a gear fixed to the front drive shaft 7a of the center differential 7, and gear 13 is fixed to one end of the bypass shaft 10a.
14 is a large-diameter gear provided on the drum side of the hydraulic clutch 11; 15 is a small-diameter gear fixed to the rear wheel side drive shaft 7b of the center differential 7;
meshes with 18 is a hydraulic unit that supplies a predetermined oil pressure to the hydraulic clutch 11, 19 is a handle, 20 is a torque distribution device consisting of a microcomputer, 21 is an output torque sensor, and 22 is a vehicle speed sensor whose number is attached to the front wheel 3, for example. , 23 is a road surface friction coefficient detection device. Further, in FIG. 2 showing the configuration of the torque distribution control Vt1fi20, 30 is indicated by 4:! In the three devices, the optimum torque distribution corresponding to the II speed V and the road surface 1\ friction coefficient μ, that is, the front wheel drive force distribution hfiRp is stored in advance in the form of a map. Reference numeral 31 denotes a driving force distribution determining means, which determines the corresponding map based on the signals from the vehicle speed sensor 22 and the road surface friction coefficient detection device 23 from a map as shown in FIG. Read the optimal front wheel drive force distribution value RF. Reference numeral 32 denotes a clutch hydraulic pressure calculating means, which calculates, based on the read front wheel drive force distribution If[RF and the drive torque T detected by the output torque sensor 21,
A predetermined clutch torque of 1°C in the hydraulic clutch 11
A clutch hydraulic pressure command excitation for generating P is calculated, a command is given to the hydraulic unit 18, and the commanded clutch hydraulic pressure P is
c is applied to the hydraulic clutch 11. Next, the operation of the torque portion arrangement 1io will be explained. The driving torque T output from the transmission 2 is transmitted to the center differential 7 via the gear 8.9, where the driving force T is divided into 18 equal parts and distributed between the front wheel drive shaft 7a and the rear wheel drive shaft 7b. It is transmitted to Here, when the hydraulic clutch 11 is off, the front wheels 3 and the rear wheels 4 each have a drive torque TF of (T/2).
, driven by TR. In this hydraulic clutch 11, a hub 11a rotates at the same speed as the front wheel drive shaft 7a via teeth $12.13 of the same diameter and a bypass @10a, and a drum 11b rotates at the same speed as the front drive shaft 7a.
is the small diameter gear 15 and the large diameter tooth i! ! Gear A7 ratio K with 14
When the hydraulic pressure Pc is gradually applied from the hydraulic unit 18, a clutch torque TC corresponding to the hydraulic pressure is generated, and the clutch torque TC is applied to the drum 11b on the low speed rotation side, and the rear wheel drive The driving force T& to the shaft 7b becomes (T/2+K・Tc), and the driving force TF to the − side, front wheel side a-shaft 7a becomes (T/2-Tc), and the hydraulic pressure applied to the hydraulic clutch 111\ Front wheel 3 depending
The driving force of the rear wheels 4 decreases, and the driving force of the rear wheels 4 increases. Conventionally, this torque distribution control was performed only based on information from the vehicle speed sensor 22, but on an actual road surface, the friction coefficient μ
Since the speed changes in various ways, control based only on vehicle speed information was not yet sufficient. For example, when driving at low speeds on snowy roads, the drive power distribution is similar to that of rear wheel drive (R), the turning performance is too good and the control becomes poor, and when accelerating from low speeds, most of the drive power is not enough to reach the road surface. Therefore, as shown in Figure 3, as the vehicle speed increases, the front wheel drive force distribution RF is increased, and as the road surface friction coefficient μ increases, RF
A driving force distribution value RF that reduces the value RF is stored in the storage device 30 in the form of a map. Then, the torque distribution control device 20 inputs the vehicle speed sensor 22 and the road surface r! Based on the signal from the J friction coefficient detection device 23, the driving force distribution determining means 31 reads out the corresponding front wheel driving force distribution lflRF from the map 30. Next, in the clutch hydraulic pressure control means 32, the read front wheel drive force distribution value RE1, that is, TF, / (TF
+T, )== (T/2-TC)/T and the driving force from the transmission 2 detected by the output torque sensor 21 to determine the clutch torque TC, and apply the clutch hydraulic pressure corresponding to this Tc to the hydraulic unit 18. and apply the corresponding hydraulic pressure [)C to the hydraulic clutch 11 to generate clutch torque TC, and set the drive torque TF to the front wheel drive shaft 7a to correspond to R, (T/2-Tc), and the rear It is assumed that the drive torque -LK to the wheel side drive shaft 7b corresponds to RF (-Tc to T/2+). In this way, it is possible to suppress excessive turning performance even on slippery or slippery roads. In the above embodiment, road surface friction coefficient detection 1iF
Although the front wheel drive force distribution value R5 is determined using the signal from f23, the driver may visually determine the road surface μ and input it manually. Note that the present invention is not limited to the torque distribution 8' as in the embodiment. [Effects of the Invention] As described above, according to the present invention, the torque distribution device is provided in the center differential device in a bypass manner, and the torque distribution device is provided in the center differential device, and the The optimal torque distribution value is searched on the map, so there is no overall torque loss, and while ensuring stability at high speeds and turning performance at low speeds, the front wheel drive force is slightly increased on slippery roads. The effect of suppressing hyper-sensitive turning, allowing stable running, and obtaining sufficient acceleration performance can be achieved by 1g.
第1図は本発明のゼンターデフ付4輪駆動車の構成を示
すスケルトン図、第2図は本発明のトルク配分制御装置
の構成を示すブロック図、およびトルク分配g装置のト
ルク配分図、第3図は駆動力配分値マツプである。
2・・・トランスミッション、3・・・前輪、4・・・
後輪、7・・・センターデフ、8.9は歯車、10・・
・トルク分&!装置、11・・・油圧クラッチ、12〜
15・・・歯車、20・・・トルク配分制御ill装置
、22・・・車速センサ、23・・・路面IIJ深係数
検出装置。
特許出願人 富士重工業株式会社代理人 弁理士
小 橋 イS 浮
量 弁理士 祠 井 進
“:、1 図
第2図FIG. 1 is a skeleton diagram showing the configuration of a four-wheel drive vehicle with a Zenter differential according to the present invention, FIG. 2 is a block diagram showing the configuration of the torque distribution control device of the present invention, and a torque distribution diagram of the torque distribution g device. The figure is a driving force distribution value map. 2...Transmission, 3...Front wheel, 4...
Rear wheel, 7...center differential, 8.9 is gear, 10...
・Torque &! Device, 11... Hydraulic clutch, 12-
15... Gear, 20... Torque distribution control ill device, 22... Vehicle speed sensor, 23... Road surface IIJ depth coefficient detection device. Patent applicant: Fuji Heavy Industries Co., Ltd. Agent: Patent attorney: IS Kobashi Ukagata: Patent attorney: Susumu Toi “:, 1 Figure 2
Claims (1)
て、車速センサおよび路面摩擦係数検出装置、さらに車
速と路面摩擦係数に対応する駆動力配分値をあらかじめ
マップの形で格納している記憶装置を設け、上記車速セ
ンサからの信号と、上記路面摩擦係数検出装置からの信
号または手動入力信号とに基づいて、あらかじめ定めら
れた上記マップの駆動力配分値を読み出し、これに従っ
て前・後輪の駆動力配分を制御するようにしたことを特
徴とする4輪駆動車のトルク配分制御装置。In a four-wheel drive vehicle with variable drive force distribution between the front and rear wheels, the vehicle speed sensor and road surface friction coefficient detection device, as well as the drive force distribution values corresponding to the vehicle speed and road surface friction coefficient, are stored in advance in the form of a map. A storage device is provided, and based on the signal from the vehicle speed sensor and the signal from the road surface friction coefficient detection device or the manual input signal, a predetermined driving force distribution value of the map is read out, and the front/rear is adjusted according to the predetermined driving force distribution value. A torque distribution control device for a four-wheel drive vehicle, characterized in that it controls the distribution of driving force between wheels.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14447586A JPH07110576B2 (en) | 1986-06-20 | 1986-06-20 | Torque distribution control device for four-wheel drive vehicle |
US07/063,173 US4896738A (en) | 1986-06-20 | 1987-06-15 | Power transmitting system for a four-wheel drive vehicle |
DE19873720459 DE3720459A1 (en) | 1986-06-20 | 1987-06-19 | POWER TRANSMISSION SYSTEM FOR A VEHICLE WITH ALL-WHEEL DRIVE |
US07/338,714 US5018596A (en) | 1986-06-20 | 1989-04-14 | Power transmitting system for a four-wheel drive vehicle |
US07/494,078 US5020626A (en) | 1986-06-20 | 1990-03-15 | Power transmitting system for a four-wheel drive vehicle |
US07/494,719 US5005662A (en) | 1986-06-20 | 1990-03-15 | Power transmission system for a four-wheel drive vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14447586A JPH07110576B2 (en) | 1986-06-20 | 1986-06-20 | Torque distribution control device for four-wheel drive vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS632729A true JPS632729A (en) | 1988-01-07 |
JPH07110576B2 JPH07110576B2 (en) | 1995-11-29 |
Family
ID=15363161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14447586A Expired - Lifetime JPH07110576B2 (en) | 1986-06-20 | 1986-06-20 | Torque distribution control device for four-wheel drive vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07110576B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4936406A (en) * | 1987-10-23 | 1990-06-26 | Fuji Jukogyo Kabushiki Kaisha | Power transmitting system for a four-wheel drive vehicle |
US5366041A (en) * | 1991-06-27 | 1994-11-22 | Mazda Motor Corporation | Vehicle control system |
-
1986
- 1986-06-20 JP JP14447586A patent/JPH07110576B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4936406A (en) * | 1987-10-23 | 1990-06-26 | Fuji Jukogyo Kabushiki Kaisha | Power transmitting system for a four-wheel drive vehicle |
US5366041A (en) * | 1991-06-27 | 1994-11-22 | Mazda Motor Corporation | Vehicle control system |
Also Published As
Publication number | Publication date |
---|---|
JPH07110576B2 (en) | 1995-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4896738A (en) | Power transmitting system for a four-wheel drive vehicle | |
KR970706156A (en) | SYSTEM FOR CONTROLLING THE RUNNING STABILITY OF A MOTOR VEHICLE | |
JPS588434A (en) | Change-over controller of four-wheel drive vehicle | |
JPS61220975A (en) | All-wheel steering gear for vehicles | |
JPH06107017A (en) | Driving force distribution controller for four-wheel drive vehicle | |
JP2934457B2 (en) | Unequal torque distribution control device for four-wheel drive vehicle | |
JP3004283B2 (en) | Unequal torque distribution control device for four-wheel drive vehicle | |
JP2843339B2 (en) | Electric vehicle | |
JPS62146727A (en) | Automatic fixing device for power distributor of automobile | |
US20100076660A1 (en) | Vehicle traction control system | |
JP2646820B2 (en) | Driving force distribution control device for four-wheel drive vehicle | |
US7690471B2 (en) | Hydraulic-drive work vehicle | |
JP2524708B2 (en) | Torque distribution control device for four-wheel drive vehicle | |
JPS632729A (en) | Torque distribution control device in four-wheel drive car | |
JP2660992B2 (en) | Driving force control device for motor vehicle | |
JP2672819B2 (en) | Vehicle braking force control device utilizing motor braking force | |
SE514011C2 (en) | Device for motor vehicles with differential lock | |
JPS6256808B2 (en) | ||
JP2527936B2 (en) | Torque distribution control device for four-wheel drive vehicle | |
JP2706259B2 (en) | Differential limit torque control device | |
EP1136302A2 (en) | Drive assembly for independently driving vehicle wheels | |
JP3319925B2 (en) | Power transmission device for four-wheel drive vehicles | |
US12005902B2 (en) | System and method for situationally optimized turning assistance | |
Markdahl | Automatic traction control for articulated off-road vehicles | |
JPS58178040A (en) | Diff lock apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |