JPS6327272A - Thermal printer - Google Patents

Thermal printer

Info

Publication number
JPS6327272A
JPS6327272A JP16993786A JP16993786A JPS6327272A JP S6327272 A JPS6327272 A JP S6327272A JP 16993786 A JP16993786 A JP 16993786A JP 16993786 A JP16993786 A JP 16993786A JP S6327272 A JPS6327272 A JP S6327272A
Authority
JP
Japan
Prior art keywords
current
battery
voltage
printing
compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16993786A
Other languages
Japanese (ja)
Other versions
JPH0458796B2 (en
Inventor
Takahiro Soma
孝博 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP16993786A priority Critical patent/JPS6327272A/en
Publication of JPS6327272A publication Critical patent/JPS6327272A/en
Publication of JPH0458796B2 publication Critical patent/JPH0458796B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/35Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads providing current or voltage to the thermal head
    • B41J2/355Control circuits for heating-element selection
    • B41J2/36Print density control
    • B41J2/37Print density control by compensation for variation in current

Landscapes

  • Dot-Matrix Printers And Others (AREA)
  • Electronic Switches (AREA)

Abstract

PURPOSE:To prevent the irregularity of printing density due to the exhausion of a battery, by changing a printing compensation current according to the voltage drop of a battery power source and compensating a printing pulse width according to said printing compensation current. CONSTITUTION: In order to compensate the lowering in the voltage V1 of a battery exhausted, a current supply circuit is equipped with a current supply source 13 operated on the basis of the difference between battery voltage V1 and the output V2 of a voltage regulator. The current supply source 13 comprises a series circuit of a non- linear element (e.g., constant voltage diode ZD) and a resistor R3 and, when the voltage V1 of the battery is low and the constant voltage diode ZD is held to an ON-state, the current determined by the resistor R3 flows in the base of a transistor Q and a current charging a condenser C is made large. Therefore, a printing pulse width becomes short and a thermal head 4 is driven so as to consume constant power. Since the inverse characteristic of the constant voltage diode ZD is used at a relatively smooth part, control can be performed so as not to generate sudden compensation. However, since a compensation current changes non-linearily, said current has a compensation width sufficient to compensate the voltage of the battery lowered by exhausion.

Description

【発明の詳細な説明】 [技術分野] 本発明はサーマル印字装置に関し、特に携帯用電子血圧
計などにおいてバッテリ電圧の変化によるサーマル印字
濃度の変動を改善したサーマル印字装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a thermal printing device, and more particularly to a thermal printing device that improves fluctuations in thermal printing density due to changes in battery voltage in a portable electronic blood pressure monitor or the like.

[先行技術及びその問題点] サーマル印字装置は小形で印字品質が良いことから携帯
用電子機器に普及している。しかし、印字濃度はサーマ
ルヘッドの消費電力によって変化するので、例えば電源
電池が消耗すると印字濃度にバラツキを生じ、印字が不
鮮明になる。印字濃度のバラツキの原因の一つは消耗し
た電池電圧か振られることにある。特にサーマルヘッド
のセグメント駆動時に大きな負荷変動が生じ、−時的に
電池電圧が低下する。また、他の原因の一つはサーマル
ヘッドの常態的な温度上昇によって濃度か変化すること
にある。
[Prior Art and Problems Therewith] Thermal printing devices are popular in portable electronic devices because they are small and have good printing quality. However, since the print density changes depending on the power consumption of the thermal head, for example, if the power supply battery is exhausted, the print density will vary and the print will become unclear. One of the causes of variations in print density is fluctuations in the voltage of the exhausted battery. Particularly when driving segments of the thermal head, large load fluctuations occur, causing the battery voltage to drop over time. Another cause is that the concentration changes due to the normal temperature rise of the thermal head.

従来は第3図のような構成でこの問題の解決を図ってい
た。図において、1は電池電圧■1を発生ずる電源電池
、2は電池電圧v1から定電圧■りを形成する昇圧回路
を含む定電圧レキュレータ(VR)、3はサーマルヘッ
ドの駆動制御回路、4はサーマルヘッド、5はサーマル
ヘッドキ°ヤリツジ(図示せず)の移動を検出するタコ
ゼネレータ、6はタコ信号の増幅器(AMP)、7はサ
ーマル印字装置の主制御を挙るマイクロプロセッサ(C
PtJ)、8はサーマル印字データを保持するラッチ、
9はサーマルヘッドを熱駆動する駆動回路、11,12
はNORゲー]〜てあってサーマル印字パルスを発生す
るワンショット回路10を構成する。尚、ラッチ8はそ
のス1〜ローブ端子Sに加えるサーマル印字パルスが論
理“1°゛の間その出力端子0にラッチデータを出力す
る。
Conventionally, this problem has been solved using a configuration as shown in FIG. In the figure, 1 is a power supply battery that generates battery voltage v1, 2 is a constant voltage regulator (VR) including a booster circuit that forms a constant voltage v1 from battery voltage v1, 3 is a thermal head drive control circuit, and 4 is a thermal head drive control circuit. 5 is a tacho generator for detecting the movement of a thermal head carriage (not shown); 6 is an amplifier (AMP) for tacho signals; and 7 is a microprocessor (C) for main control of the thermal printing device.
PtJ), 8 is a latch that holds thermal print data,
9 is a drive circuit that thermally drives the thermal head; 11, 12;
constitutes a one-shot circuit 10 that generates a thermal printing pulse. It should be noted that the latch 8 outputs latch data to its output terminal 0 while the thermal printing pulse applied to its probe terminals S1 to S is logic "1".

トランジスタQからなる電流供給回路はワンショット回
路10のサーマル印字パルス幅を決定する。また同時に
電池電圧■1の振れによるサーマル電力の補償を図って
いる。即ち、電池電圧■1はバイアス抵抗R1、可変抵
抗VRを介して電流供給トランジスタQのベースをドラ
イブするから、電池電圧V1がへラドキャリッジの駆動
等による負荷変動によって一時的に低くなるとコンデン
サCへの充電電流が小さくなり、これによってワンショ
ット回路10のサーマル印字パルス幅か長くなり、サー
マル電力が一定となるように補償される。また電池電圧
V1が高くなるとコンデンサCへの充電電流が大きくな
り、これに伴ってワンショット回路10のサーマル印字
パルス幅が短くなり、サーマル電力が一定となるように
補償される。
A current supply circuit consisting of a transistor Q determines the thermal printing pulse width of the one-shot circuit 10. At the same time, it is intended to compensate for thermal power caused by fluctuations in battery voltage (1). That is, the battery voltage (1) drives the base of the current supply transistor Q via the bias resistor R1 and the variable resistor VR, so if the battery voltage V1 temporarily decreases due to load fluctuations caused by driving the Herad carriage, etc., the voltage is applied to the capacitor C. The charging current becomes smaller, thereby increasing the thermal printing pulse width of the one-shot circuit 10 and compensating the thermal power to remain constant. Further, as the battery voltage V1 increases, the charging current to the capacitor C increases, and accordingly, the thermal printing pulse width of the one-shot circuit 10 becomes shorter, and the thermal power is compensated to be constant.

また、外気温の印字濃度への影響を小さくする為、又サ
ーマルヘッドの熱的劣化を防ぐため、印字τ囲気温度は
配置した電流供給トランジスタQによって検知される。
Furthermore, in order to reduce the influence of the outside temperature on the print density and to prevent thermal deterioration of the thermal head, the print τ ambient temperature is detected by the current supply transistor Q provided.

即ち、トランジスタQの温度が高くなると電流増幅率H
feが大きくなるので、コンデンサCへの充電電流が犬
籾くなり、印字パルス幅が短くなる。またトランジスタ
Qの温度が低くなると電流増幅率Hfeが小さくなるの
で、コンデンサCへの充電電流が小さくなり、サーマル
印字パルス幅が長くなる。かようにして温度によるサー
マル印字濃度の変化を補償している。
That is, as the temperature of transistor Q increases, the current amplification factor H
Since fe becomes larger, the charging current to capacitor C becomes weaker, and the printing pulse width becomes shorter. Furthermore, as the temperature of the transistor Q decreases, the current amplification factor Hfe decreases, so the charging current to the capacitor C decreases, and the thermal printing pulse width increases. In this way, changes in thermal print density due to temperature are compensated for.

このように、従来はサーマルヘッドのドツト駆動時等の
電圧変動及び温度によるサーマル印字濃度の変化に対処
していた。しかし、電池電圧の変動が大ぎい低い電池電
圧まで使用することを意図した場合、この補償幅を犬ぎ
くとると、電池が新しい場合と消耗した場合とで電池が
新しい場合に淡く、電池が消耗して電圧が下がった場合
に濃い状態が発生ずる。故に従来は、電池消耗状態によ
り、印字濃度に変化を生ずる欠点があった。
In this way, in the past, changes in thermal print density due to voltage fluctuations and temperature during dot driving of a thermal head have been dealt with. However, if the battery voltage fluctuates greatly and you intend to use it down to a low battery voltage, if you take this compensation range too far, the difference between a new battery and a depleted battery will be slightly different, and the battery will become depleted. A dark state occurs when the voltage drops. Therefore, in the past, there was a drawback that the print density changed depending on the state of battery consumption.

[発明の目的コ 本発明は上述した従来技術の問題点を解決するものであ
って、その目的とすると゛ころは、バッテリ消耗による
印字濃度のバラツキをなくしたサーマル印字装置、さら
に詳しくは、プリンタを備えた携帯用電子血圧計を提供
することにある。
[Purpose of the Invention] The present invention solves the problems of the prior art described above, and its purpose is to provide a thermal printing device that eliminates variations in print density due to battery consumption, and more specifically, to provide a thermal printing device that eliminates variations in printing density due to battery consumption. An object of the present invention is to provide a portable electronic blood pressure monitor with the following features.

[発明の概要] この目的は本発明によれば次のようなサーマル印字装置
によって達成される。即ち、このサーマル印字装置は、
印字パルス幅を変えて印字濃度をi整するサーマル印字
装置であって、バッテリ電源に負荷されるサーマルヘッ
ドと、前記バッテリ電源の電圧降下に従って印字補償電
流を変える電流補償回路と、前記印字補償電流に従って
印字パルス幅を補償するパルス発生回路とを備える。
[Summary of the invention] This object is achieved according to the invention by a thermal printing device as follows. That is, this thermal printing device
A thermal printing device that adjusts printing density by changing a printing pulse width, the thermal printing device comprising: a thermal head loaded on a battery power source; a current compensation circuit that changes a printing compensation current according to a voltage drop of the battery power source; and the printing compensation current. and a pulse generation circuit for compensating the printing pulse width according to the printing pulse width.

本発明の1態様によれば、電流補償回路はバッテリ電源
に接続された抵抗器と非線形素子の直列回路を含むもの
である。
According to one aspect of the invention, the current compensation circuit includes a series circuit of a resistor and a nonlinear element connected to a battery power source.

[発明の詳細な説明及び作用コ 以下、本発明の実施例を詳細に説明する。[Detailed description of the invention and operation instructions] Examples of the present invention will be described in detail below.

第1図及び第2図(a)、(b)は本発明の詳細な説明
に係り、第1図は実施例のサーマル印字装置のブロック
構成図、第2図(a)は第1図の各分波形を示すタイミ
ングチャート、第2図(b)は定電圧ダイオードZDの
一電圧電流特性を示す図である。尚、第1図において第
3図と同等の構成には同一番号を付してその説明を省略
する。
1, 2(a) and 2(b) relate to detailed explanation of the present invention, FIG. 1 is a block diagram of a thermal printing device according to an embodiment, and FIG. 2(a) is a block diagram of a thermal printing device according to an embodiment. A timing chart showing each waveform, and FIG. 2(b) is a diagram showing the one voltage current characteristic of the constant voltage diode ZD. In FIG. 1, the same components as those in FIG. 3 are given the same numbers and their explanations will be omitted.

第1図及び第2図(a)において、タコゼネレータ5は
サーマルキャリッジの一画素毎の移動を検出して検出信
号を出力する。AMP6はこの信号を増幅し、かつ2値
化してキャリッジ信号■を出力する。キャリッジ信号■
はNORゲート11でレベル反転してキャリッジ信号■
になる。
In FIGS. 1 and 2(a), the tacho generator 5 detects the movement of the thermal carriage pixel by pixel and outputs a detection signal. The AMP 6 amplifies this signal, binarizes it, and outputs a carriage signal ■. Carriage signal ■
The level is inverted by the NOR gate 11 and the carriage signal ■
become.

更にキャリッジ信号■はコンデンサCて微分されて負の
スパイク信号■になる。スパイク信号■の立上りのカー
ブはトランジスタQからなる電流供給回路の電流によっ
て変化する。即ち、供給電流か多いときは急峻に立ち上
り、少ないときは緩やかに立ち上る。NORケート12
ばスパイク信号■のレベルを自己のゲートスレッシュホ
ルドで2値化してサーマル印字パルス信号■を形成する
Furthermore, the carriage signal (2) is differentiated by the capacitor C and becomes a negative spike signal (2). The rise curve of the spike signal (2) changes depending on the current of the current supply circuit consisting of the transistor Q. That is, when the supplied current is large, it rises steeply, and when it is small, it rises slowly. NOR Kate 12
In this case, the level of the spike signal (2) is binarized using its own gate threshold to form a thermal printing pulse signal (2).

尚、CPU7はサーマル印字パルス信号■に同期して所
定時間経過後にリセット信号■を出力し、ダイオードD
を介してコンデンサCを逆方向にディスチャージする。
In addition, the CPU 7 outputs a reset signal ■ after a predetermined period of time in synchronization with the thermal printing pulse signal ■, and the diode D
The capacitor C is discharged in the opposite direction through the .

スパイク信号■の負のレベルを深くとり、十分な印字パ
ルス幅のレンジを得るためである。
This is to make the negative level of the spike signal (2) deep and to obtain a sufficient range of printing pulse width.

前述した如く、実施例の印字パルス信号■のパルス幅も
電流供給回路からの供給電流に依存する。しかし可変抵
抗VRを含むバイアス回路はVlで動作する。従ってサ
ーマルヘッドの印字ドツトの動作個数による電池電圧の
変動に追従する。一方、消耗した電池電圧V1の低下を
補うために、実施例の電流供給回路は電池電圧V1と電
圧レギュレータの出力V2どの差で動作する電流供給源
13を備える。電流供給源13は非線形素子(例えば定
電圧ダイオードZD)と抵抗R3の直列回路から成り、
電池電圧V1が低く、定電圧ダイオードZDがONの状
態にあるときは抵抗R3によって決る電流がトランジス
タQのベースに流れ込み、コンデンサCへの充電電流を
大ぎくする。従って印字パルス幅は短くなり、サーマル
ヘッド4は一定の電力を消費するようにドライブされる
As described above, the pulse width of the print pulse signal (2) in the embodiment also depends on the current supplied from the current supply circuit. However, the bias circuit including the variable resistor VR operates at Vl. Therefore, it follows fluctuations in battery voltage depending on the number of printed dots operated by the thermal head. On the other hand, in order to compensate for the drop in the voltage V1 of the exhausted battery, the current supply circuit of the embodiment includes a current supply source 13 that operates based on the difference between the battery voltage V1 and the output V2 of the voltage regulator. The current supply source 13 consists of a series circuit of a nonlinear element (for example, a constant voltage diode ZD) and a resistor R3,
When the battery voltage V1 is low and the constant voltage diode ZD is in the ON state, a current determined by the resistor R3 flows into the base of the transistor Q, increasing the charging current to the capacitor C. Therefore, the printing pulse width becomes short, and the thermal head 4 is driven to consume constant power.

第2図(b)に示す如く定電圧ダイオードZDの逆特性
は比較的滑らかな部分を使用する。故に急激な補償が起
らないように制御可能である。しかし、従来のものと異
り、補償電流は非線形に変化するから消耗により低下し
た電池電圧を補うに十分な補償幅を有する。即ち、本実
施例では電流供給源13が電池電圧が十分にあるときに
は、パルス幅に抑制をかけないように設定される。従つ
て、やがて電池電圧V1が低くなり、定電圧ダイオード
ZDがONの状態になるときはトランジスタQのヘース
にはZDよりの電流は流れ込み、従ってコンデンサCへ
の充電電流が増加し、最終的には電池電圧が高いときに
可変抵抗VRで設定されたヘッドへの供給電力に近づく
As shown in FIG. 2(b), the inverse characteristic of the constant voltage diode ZD uses a relatively smooth portion. Therefore, it is possible to control so that sudden compensation does not occur. However, unlike the conventional type, the compensation current changes non-linearly, so it has a compensation width sufficient to compensate for the battery voltage that has decreased due to consumption. That is, in this embodiment, the current supply source 13 is set so as not to suppress the pulse width when the battery voltage is sufficient. Therefore, when the battery voltage V1 eventually becomes low and the voltage regulator diode ZD is turned on, the current from ZD flows into the heath of the transistor Q, so the charging current to the capacitor C increases, and finally approaches the power supplied to the head set by the variable resistor VR when the battery voltage is high.

また、印字雰囲気温度は電流供給トランジスタQ及び定
電圧ダイオードZDによって検知される。即ち、トラン
ジスタQの温度か高くなると電流増幅率Hfeか犬きく
なるので、コンデンサCへの充電電流が大きくなり、印
字パルス幅が短くなる。しかも定電圧ダイオードZDの
ON%E圧が小さくなるので補償が相乗的にきいてくる
。またトランジスタQの温度か低くなると電流増幅率H
feが小さくなるので、コンデンサCへの充電電流が小
さくなり、サーマル印字パルス幅が長くなる。この場合
も定電圧ダイオードZDのON電圧が大きくなるので補
償が相乗的にきいてくる。かようにして温度によるサー
マル印字濃度の変化を」−分に補償できる。
Further, the printing ambient temperature is detected by the current supply transistor Q and the constant voltage diode ZD. That is, as the temperature of the transistor Q increases, the current amplification factor Hfe increases, so the charging current to the capacitor C increases and the print pulse width becomes shorter. Moreover, since the ON%E voltage of the constant voltage diode ZD becomes smaller, the compensation is applied synergistically. Also, when the temperature of transistor Q decreases, the current amplification factor H
Since fe becomes smaller, the charging current to the capacitor C becomes smaller, and the thermal printing pulse width becomes longer. In this case as well, since the ON voltage of the constant voltage diode ZD increases, the compensation is applied synergistically. In this way, changes in thermal print density due to temperature can be compensated for by 1-min.

[発明の効果] 以上述べた如く本発明によれば、電池消耗による電池電
圧の変動による印字濃度の変化を軽減できる。また外気
温の影響による印字濃度の変化を軽減できる。従って、
例えば電子血圧計のような携帯用機器の測定値及びグラ
フ化したデータのプリントアウトを鮮明なものとし、読
み取れない状態を解消できる。
[Effects of the Invention] As described above, according to the present invention, changes in print density due to fluctuations in battery voltage due to battery consumption can be reduced. Also, changes in print density due to the influence of outside temperature can be reduced. Therefore,
For example, it is possible to print out clearly the measured values and graphed data of a portable device such as an electronic blood pressure monitor, thereby eliminating the unreadable state.

また、高い電池電圧から低い電池電圧まで十分に濃度補
償できるので、電池の使用時間が長くな1す る。
Further, since the concentration can be sufficiently compensated for from a high battery voltage to a low battery voltage, the usage time of the battery is extended.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例のサーマル印字装置のブロック
構成図、 第2図(a)は第1図の名分の波形を示すタイミングチ
ャート、 第2図(b)は定電圧ダイオードの一電圧電流特性を示
す図、 第3図は従来のサーマル印字装置のブロック構成図であ
る。 図中、1・・・電源電池、2・・・電圧レギュレータ(
VR)、3・・・サーマルヘッドの駆動制御回路、4・
・・サーマルヘッド、5・・・タコゼネレータ、6・・
・増幅器(AMP)、7・・・マイクロプロセッサ(C
PU)、8・・・ラッチ、9・・・駆動回路、1o・・
・ワンショット回路、11.12・・・NORゲートで
ある。 特許出願人    テルモ株式会社 第2rM (b)
Fig. 1 is a block diagram of a thermal printing device according to an embodiment of the present invention, Fig. 2(a) is a timing chart showing waveforms equivalent to Fig. 1, and Fig. 2(b) is a diagram of a voltage regulator diode. FIG. 3 is a block diagram of a conventional thermal printing device. In the figure, 1... power supply battery, 2... voltage regulator (
VR), 3... Thermal head drive control circuit, 4.
... Thermal head, 5... Tacho generator, 6...
・Amplifier (AMP), 7... Microprocessor (C
PU), 8...Latch, 9...Drive circuit, 1o...
・One-shot circuit, 11.12...NOR gate. Patent applicant: Terumo Corporation No. 2rM (b)

Claims (2)

【特許請求の範囲】[Claims] (1)印字パルス幅を変えて印字濃度を調整するサーマ
ル印字装置において、バッテリ電源に負荷されるサーマ
ルヘッドと、前記バッテリ電源の電圧降下に従つて印字
補償電流を変える電流補償回路と、前記印字補償電流に
従つて印字パルス幅を補償するパルス発生回路とを備え
ることを特徴とするサーマル印字装置。
(1) In a thermal printing device that adjusts printing density by changing the printing pulse width, a thermal head loaded with a battery power source, a current compensation circuit that changes a printing compensation current according to a voltage drop of the battery power source, and the printing A thermal printing device comprising: a pulse generation circuit that compensates a printing pulse width according to a compensation current.
(2)電流補償回路はバッテリ電源に接続された抵抗器
と非線形素子の直列回路を含むものであることを特徴と
する特許請求の範囲第1項記載のサーマル印字装置。
(2) The thermal printing device according to claim 1, wherein the current compensation circuit includes a series circuit of a resistor and a nonlinear element connected to a battery power source.
JP16993786A 1986-07-21 1986-07-21 Thermal printer Granted JPS6327272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16993786A JPS6327272A (en) 1986-07-21 1986-07-21 Thermal printer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16993786A JPS6327272A (en) 1986-07-21 1986-07-21 Thermal printer

Publications (2)

Publication Number Publication Date
JPS6327272A true JPS6327272A (en) 1988-02-04
JPH0458796B2 JPH0458796B2 (en) 1992-09-18

Family

ID=15895675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16993786A Granted JPS6327272A (en) 1986-07-21 1986-07-21 Thermal printer

Country Status (1)

Country Link
JP (1) JPS6327272A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02123088A (en) * 1988-10-28 1990-05-10 Hitachi Ltd Elevator door controller
EP0574742A2 (en) * 1992-06-17 1993-12-22 Sharp Kabushiki Kaisha Power source for printer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824466A (en) * 1981-08-05 1983-02-14 Seiko Epson Corp Driving circuit for thermal printer
JPS58155238U (en) * 1982-04-09 1983-10-17 株式会社東芝 Thermal printer control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824466A (en) * 1981-08-05 1983-02-14 Seiko Epson Corp Driving circuit for thermal printer
JPS58155238U (en) * 1982-04-09 1983-10-17 株式会社東芝 Thermal printer control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02123088A (en) * 1988-10-28 1990-05-10 Hitachi Ltd Elevator door controller
EP0574742A2 (en) * 1992-06-17 1993-12-22 Sharp Kabushiki Kaisha Power source for printer
EP0574742A3 (en) * 1992-06-17 1995-04-05 Sharp Kk Power source for printer.

Also Published As

Publication number Publication date
JPH0458796B2 (en) 1992-09-18

Similar Documents

Publication Publication Date Title
CN102285254B (en) Detection device, printer, and control method for a detection device
TW200636655A (en) Display device and method of driving the same
JPS6327272A (en) Thermal printer
JP2975480B2 (en) Heating recording device
JPH01120357A (en) Dot printing system
JPS60203472A (en) Pulse width controller for drive pulse of heating resistor
JP3223602B2 (en) Thermal head print density controller
JPS62279964A (en) Thermal head controlling method
JPS6256161A (en) Printing apparatus
JPS60225772A (en) Power source circuit for driving thermal printing head
JPH0373361A (en) Power controller for dot printer
JPS59194874A (en) Thermal head driver
JPH056129Y2 (en)
JPS62203393A (en) Laser diode optical output stabilizing circuit
JPH03159776A (en) Printer
JPS59187453U (en) printing device
JPS6241057A (en) Thermal printer
JPS637605A (en) Coil driving device
JPS62120006A (en) Drive control system for inductive load
JP2005017217A (en) Power load test device
JPH02241762A (en) Compact thermal printer
JPS60125678A (en) Thermal head driver
JPS5738171A (en) Thermal transfer type printing apparatus
JPS61247120A (en) Method and apparatus for driving coil
JPH05124229A (en) Printing control circuit in impact-type printer device