JPS63271978A - Solar battery array - Google Patents

Solar battery array

Info

Publication number
JPS63271978A
JPS63271978A JP62105710A JP10571087A JPS63271978A JP S63271978 A JPS63271978 A JP S63271978A JP 62105710 A JP62105710 A JP 62105710A JP 10571087 A JP10571087 A JP 10571087A JP S63271978 A JPS63271978 A JP S63271978A
Authority
JP
Japan
Prior art keywords
solar battery
solar cell
battery cells
insulation filler
solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62105710A
Other languages
Japanese (ja)
Inventor
Koji Sakurai
宏治 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP62105710A priority Critical patent/JPS63271978A/en
Publication of JPS63271978A publication Critical patent/JPS63271978A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/42Arrangements or adaptations of power supply systems
    • B64G1/44Arrangements or adaptations of power supply systems using radiation, e.g. deployable solar arrays
    • B64G1/443Photovoltaic cell arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To improve the efficiency of the operation by applying an insulation filler to conductive parts of solar battery cells or vacant areas or by filling the above parts or vacant areas with the insulation filler. CONSTITUTION:An insulation filler 6 is applied to conductive parts such as regions except for light receiving planes of solar battery cells 1, in other words, edge parts of the solar battery cells 1, electrodes 1a and 1b of the solar battery cells 1, surfaces of an interconnector 2, bus burs 7, terminal plates and the like as well as to vacant areas between the solar battery cells 1 and also the above conductive parts as well as the vacant areas are filled with the insulation filler 6. A coating material where resins, for example, those of silicon, epoxy, urethane systems and the like, each of which is stable in a space, are mixed with a white coating is used as the insulation filler 6. As a solar battery array is coated by this filler over a wide range, an operational temperature increase in the solar battery array is suppressed and its array can be operated efficiently.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、太陽電池アレイに関し、宇宙基地、衛星等の
宇宙機器における電源あるいは地上用の電源に利用され
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a solar cell array, and is used as a power source in space equipment such as a space base or a satellite, or as a ground power source.

(従来の技術) 近年、衛星の高性能化および多機能化に伴い、この衛星
で取り扱う電力も大幅に増加する傾向にある。特に、宇
宙環境を利用した実験を行うための宇宙基地や太陽光発
電衛星システム等においては、従来の衛星のような数百
ワラトル数kWではなく、数100kW〜数MWないし
数GWといった膨大な電力が必要になる。したがって、
このような高電力を太陽電池アレイから必要な機器まで
供給するに際して、その供給電圧を従来のような衛星差
みに低圧(< 80 V)にすれば非常に大きな4体抵
抗損失が生じるため、上記供給電圧を高圧にする必要が
あった。
(Prior Art) In recent years, as satellites have become more sophisticated and multifunctional, the amount of electric power handled by these satellites has also tended to increase significantly. In particular, in space bases and solar power generation satellite systems that conduct experiments using the space environment, huge amounts of power are required, ranging from several hundred kW to several MW to several GW, rather than several hundred watts and several kilowatts like conventional satellites. is required. therefore,
When supplying such high power from the solar cell array to the necessary equipment, if the supply voltage is set to a lower voltage (<80 V) than conventional satellites, a very large four-body resistance loss will occur. It was necessary to make the supply voltage high.

(発明が解決しようとする問題点) しかしながら、宇宙空間は真空であり、かつ比較的低軌
導では存在する宇宙プラズマと太陽電池回路との相互作
用のため電力供給回路を低圧に留めなければならず、こ
れによる導体抵抗損失は避けることはできない、また、
超電導を利用した給電経路を構成して導体抵抗損失をな
くすことも考えられるが、これに必要な設備機器によっ
て重量が増加するという問題が生じる。
(Problem to be solved by the invention) However, outer space is a vacuum, and in relatively low orbit, the power supply circuit must be kept at low voltage due to the interaction between the space plasma that exists and the solar cell circuit. However, conductor resistance loss due to this cannot be avoided, and
Although it is possible to eliminate conductor resistance loss by configuring a power supply path using superconductivity, the problem arises that the equipment required for this increases the weight.

ところで、太陽光による発電の目的で最も一般的に使用
されているシリコン太陽電池セルやガリラム砒素系太陽
電池セルにおける出力電力は負の温度係数を有しており
、上記したような太陽電池セルから構成されている太陽
電池アレイの動作温度を低くすることによって、より大
きな電力が得られることがわかっている。ここで、太陽
電池アレイの動作温度は、太陽光の照射や地球のアルベ
ド(albedo)等による熱入力と、太陽電池アレイ
から宇宙空間へ放射するエネルギーとの熱収支によって
定まり、その熱収支は、高効率の太陽電池セルにおいて
、α/ε≧1になっている。
By the way, the output power of silicon solar cells and gallium arsenic solar cells, which are most commonly used for the purpose of solar power generation, has a negative temperature coefficient. It has been found that more power can be obtained by lowering the operating temperature of constructed solar arrays. Here, the operating temperature of the solar cell array is determined by the heat balance between the heat input due to sunlight irradiation and the earth's albedo, and the energy radiated from the solar cell array to space, and the heat balance is as follows. In a highly efficient solar cell, α/ε≧1.

α:太陽光によるエネルギーの吸収率 ε:放射率 (α/ε−1で収支同じ)これにより、こ
の太陽電池アレイの温度は上昇していく傾向にある。そ
こで、従来、太陽電池アレイの動作温度の上昇を抑える
ために各太陽電池セル間の空エリアに塗料(サーマルペ
イント)による塗布が行われていたが、これでは十分な
効果が期待できず、太陽電池アレイの動作温度をより低
くすることが要望されていた。
α: absorption rate of energy by sunlight ε: emissivity (balance is the same at α/ε-1) As a result, the temperature of this solar cell array tends to rise. Conventionally, the empty areas between each solar cell were coated with paint (thermal paint) in order to suppress the rise in the operating temperature of the solar array, but this method was not expected to have a sufficient effect, and There has been a desire to lower the operating temperature of battery arrays.

(問題点を解決するための手段) 本発明の太陽電池アレイは、基板上に複数個の太陽電池
セルを配置し、これら太陽電池セルを電気的に接続させ
てなる太陽電池アレイにおいて、前記太陽電池セルの導
電性部分または太陽電池セル間の空エリアに、絶縁性充
填剤が塗布あるいは充填されたものである。
(Means for Solving the Problems) The solar cell array of the present invention is a solar cell array in which a plurality of solar cells are arranged on a substrate and these solar cells are electrically connected. An insulating filler is coated or filled in the conductive parts of the battery cells or in the empty areas between the solar cells.

(作用) 太陽電池セルの導電性部分を絶縁性充填剤で塗布または
充填することにより、導電性部分が宇宙プラズマに抵触
することがなく、この宇宙プラズマとの相互作用が減少
またはなくなる。また、絶縁性充填剤を太陽電池セルの
受光面以外に塗布または充填することにより、太陽電池
アレイの広い範囲をこの絶縁性充填剤が被覆する。
(Operation) By coating or filling the conductive portion of the solar cell with an insulating filler, the conductive portion does not come into contact with the space plasma, and interaction with the space plasma is reduced or eliminated. Furthermore, by applying or filling the insulating filler on areas other than the light-receiving surface of the solar cell, the insulating filler covers a wide range of the solar cell array.

(実施例) 以下、本発明の一実施例を図面を参照して説明する。(Example) Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の太陽電池アレイの一部を示す平面図、
第2図は第1図のA部を拡大した拡大図、第3図は第2
図におけるB−B’線で切欠いjこ断面図、第4図は第
2図におけるc−c ’線で切欠いた断面図である。
FIG. 1 is a plan view showing a part of the solar cell array of the present invention;
Figure 2 is an enlarged view of part A in Figure 1, and Figure 3 is an enlarged view of part A in Figure 1.
4 is a cross-sectional view taken along the line BB' in the figure, and FIG. 4 is a cross-sectional view taken along the line c-c' in FIG.

太陽電池セルlの受光面には表面電極1aが形成される
とともに、太陽電池セル1の底面には裏面電極1bが形
成されている。この太陽電池セル1は複数個がインタコ
ネクタ2によって、直列または直並列に電気的に接続さ
れて太陽電池モジュール4を作製し、この太陽電池モジ
ュール4が基板3上に接着剤5で接合配置されて太陽電
池アレイ10が構成されている。図中の符号7は太陽電
池モジュール4における太陽電池セル1の折り返し部分
を結線するためのバスバー、8は太陽電池セルlの受光
面に貼着されたカバーガラスである。
A front electrode 1a is formed on the light receiving surface of the solar cell 1, and a back electrode 1b is formed on the bottom surface of the solar cell 1. A plurality of solar cells 1 are electrically connected in series or in series and parallel by interconnectors 2 to produce a solar cell module 4, and this solar cell module 4 is bonded and placed on a substrate 3 with an adhesive 5. A solar cell array 10 is constructed. The reference numeral 7 in the figure is a bus bar for connecting the folded portion of the solar cell 1 in the solar cell module 4, and the reference numeral 8 is a cover glass attached to the light-receiving surface of the solar cell 1.

さらに、この太陽電池アレイ10において、太陽電池セ
ル1の受光面を除く領域(つまり、太陽電池セル1のエ
ツジ部、太陽電池セルlの電極1a。
Furthermore, in this solar cell array 10, areas other than the light-receiving surface of the solar cell 1 (that is, the edge portion of the solar cell 1, the electrode 1a of the solar cell 1).

1b、インクコネクタ2の表面、バスパー7、端子板等
の導電性部分および太陽電池セル1間の空エリア)に絶
縁性充填剤6が塗布または充填されている。
1b, the surface of the ink connector 2, the busper 7, conductive parts such as the terminal plate, and the empty area between the solar cells 1) are coated or filled with an insulating filler 6.

絶縁性充填剤6としては、宇宙空間にて性能が安定して
いるシリコーン系、エポキシ系、ウレタン系などの樹脂
に白色塗料を混合したものが用いられている。この絶縁
性充填剤6は白色塗料を混合することにより、太陽照射
光に対する吸収率が小さいものとなり、太陽照射光によ
る温度の上昇を抑えることができる。そして、このよう
な光学的時−性を持つ絶縁性充填剤6は上記太陽電池ア
レイの導電性部分にブラシによる手塗りや印刷方式によ
り塗布される。この時、塗布された絶縁性充填剤6の膜
厚は、太陽電池アレイの重量増加を最小限にするため、
できる限り薄くすることが好ましい。
As the insulating filler 6, a mixture of a white paint and a silicone-based, epoxy-based, or urethane-based resin whose performance is stable in space is used. By mixing the insulating filler 6 with a white paint, it has a low absorption rate for solar irradiation light, and can suppress a rise in temperature due to solar irradiation light. The insulating filler 6 having such optical properties is applied to the conductive portion of the solar cell array by hand painting with a brush or by printing. At this time, the thickness of the applied insulating filler 6 is determined to minimize the increase in weight of the solar cell array.
It is preferable to make it as thin as possible.

また、この太陽電池アレイを構成する太陽電池モジュー
ル4は地上用としても使用することができる。地上では
、宇宙プラズマによる相互作用は問題とならないので、
絶縁性充填剤6は耐候性を改善するために塗布される。
Furthermore, the solar cell module 4 constituting this solar cell array can also be used on the ground. On the ground, interactions due to space plasma are not a problem, so
An insulating filler 6 is applied to improve weather resistance.

地上用の太陽電池モジュール4に塗布される絶縁性充填
剤6としては、シリコーン系、エポキシ系、ウレタン系
などの樹脂に黒色塗料あるいは白色塗料を混合したもの
が用いられる。ここで、地上でのセル温度は宇宙空間の
ように熱放射による影響は低く反射率(1−α)と対流
が重要になるため、前記樹脂への黒色塗料および白色塗
料の混合は使用される環境に合わせて使い分けられてい
る。すなわち、年間平均気温が高い所で使用される場合
には、白色塗料を混合する。また、年間平均気温が低く
、太陽光を遮断する積雪の影響が無視できない場合には
、太陽熱の吸収を増加させ、雪を早く融かすために黒色
塗料を混合する。
As the insulating filler 6 applied to the terrestrial solar cell module 4, a mixture of silicone-based, epoxy-based, urethane-based resin, or the like with black paint or white paint is used. Here, the cell temperature on the ground is not affected by thermal radiation like in space, and reflectance (1-α) and convection are important, so mixing black paint and white paint with the resin is used. They are used differently depending on the environment. That is, when used in a place where the annual average temperature is high, white paint is mixed. In addition, when the annual average temperature is low and the influence of snow blocking sunlight cannot be ignored, black paint is mixed in to increase absorption of solar heat and melt snow faster.

このように、白色塗料と黒色塗料とを使用される環境に
合わせて選択的に混合して、絶縁性充填剤6の持つ光学
的特性、つまり太陽照射光に対する吸収率αを調節する
ことで、太陽電池セルを効率よく動作させることができ
る。
In this way, by selectively mixing the white paint and the black paint according to the environment in which they are used, and adjusting the optical properties of the insulating filler 6, that is, the absorption rate α for solar irradiation, Solar cells can be operated efficiently.

なお、地上用太陽電池モジュールでは、絶縁性充填剤6
の塗布による重量増加は多少片されるため、太陽電池セ
ルlの受光面を除いた全体をこの絶縁性充填剤6で充填
することによって全体を被覆することも可能である。
In addition, in terrestrial solar cell modules, insulating filler 6
Since the weight increase due to the coating is somewhat reduced, it is also possible to cover the entire solar cell l except for the light-receiving surface by filling it with this insulating filler 6.

(発明の効果) 以上述べたように、本発明によれば、太陽電池セルの導
電性部分を絶縁性充填剤で塗布または充填することで、
宇宙プラズマとの相互作用が減少またはなくなるため、
供給電圧の上昇が見込まれ高圧給電が可能になる。また
、絶縁性充填剤を太陽電池セルの受光面以外に塗布また
は充填し、太陽電池アレイの広い範囲を被覆するため、
太陽電池アレイにおける動作温度の上昇を抑えることが
でき、太陽電池アレイを効率良く動作させることができ
る。
(Effects of the Invention) As described above, according to the present invention, by coating or filling the conductive portion of the solar cell with an insulating filler,
Because interaction with space plasma is reduced or eliminated,
The supply voltage is expected to increase, making high-voltage power supply possible. In addition, in order to coat or fill an area other than the light-receiving surface of the solar cell with an insulating filler to cover a wide area of the solar cell array,
It is possible to suppress an increase in operating temperature in the solar cell array, and the solar cell array can be operated efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の太陽電池アレイの一部を示す平面図、
第2図は第1図のA部を拡大した拡大図、第3図は第2
図におけるB−B ’線で切欠いた断面図、第4図は第
2図におけるc−c ’線で切欠いた断面図である。 1・・・太陽電池セル  4・・・太陽電池モジュール
6・・・絶縁性充填剤 10・・・太陽電池アレイ11
7図 lI26!l! Lc′
FIG. 1 is a plan view showing a part of the solar cell array of the present invention;
Figure 2 is an enlarged view of part A in Figure 1, and Figure 3 is an enlarged view of part A in Figure 1.
FIG. 4 is a cross-sectional view taken along the line BB' in FIG. 2, and FIG. 4 is a cross-sectional view taken along the line c-c' in FIG. 1... Solar cell 4... Solar cell module 6... Insulating filler 10... Solar cell array 11
Figure 7 lI26! l! Lc′

Claims (1)

【特許請求の範囲】 1)基板上に複数個の太陽電池セルを配置し、これら太
陽電池セルを電気的に接続させてなる太陽電池アレイに
おいて、 前記太陽電池セルの導電性部分または太陽電池セル間の
空エリアに、絶縁性充填剤が塗布あるいは充填されたこ
とを特徴とする太陽電池アレイ。
[Scope of Claims] 1) In a solar cell array formed by arranging a plurality of solar cells on a substrate and electrically connecting these solar cells, the conductive portion of the solar cell or the solar cell A solar cell array characterized in that an insulating filler is applied or filled in the empty area between.
JP62105710A 1987-04-28 1987-04-28 Solar battery array Pending JPS63271978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62105710A JPS63271978A (en) 1987-04-28 1987-04-28 Solar battery array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62105710A JPS63271978A (en) 1987-04-28 1987-04-28 Solar battery array

Publications (1)

Publication Number Publication Date
JPS63271978A true JPS63271978A (en) 1988-11-09

Family

ID=14414897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62105710A Pending JPS63271978A (en) 1987-04-28 1987-04-28 Solar battery array

Country Status (1)

Country Link
JP (1) JPS63271978A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02113346U (en) * 1989-02-27 1990-09-11
WO2005053039A3 (en) * 2003-11-27 2006-03-16 Kyocera Corp Solar cell module
JP2012004176A (en) * 2010-06-14 2012-01-05 Mitsubishi Electric Corp Solar battery panel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02113346U (en) * 1989-02-27 1990-09-11
WO2005053039A3 (en) * 2003-11-27 2006-03-16 Kyocera Corp Solar cell module
AU2004294031B2 (en) * 2003-11-27 2009-09-17 Kyocera Corporation Solar cell module
KR101087202B1 (en) 2003-11-27 2011-11-29 쿄세라 코포레이션 Solar cell module
JP2012004176A (en) * 2010-06-14 2012-01-05 Mitsubishi Electric Corp Solar battery panel

Similar Documents

Publication Publication Date Title
US4078944A (en) Encapsulated solar cell assembly
US4233085A (en) Solar panel module
US4341918A (en) High voltage planar multijunction solar cell
US4849028A (en) Solar cell with integrated interconnect device and process for fabrication thereof
US6294725B1 (en) Wireless solar cell array electrical interconnection scheme
US5133809A (en) Photovoltaic device and process for manufacturing the same
US5330583A (en) Solar battery module
US8148628B2 (en) Solar cell receiver for concentrator modules
US3571915A (en) Method of making an integrated solar cell array
KR20160138491A (en) High voltage solar modules
PT10687U (en) MODULE OF CONCENTRATED PHOTOVOLTAIC SYSTEM USING SEMICONDUCTOR SOLAR CELLS III-V
US4914044A (en) Method of making tandem solar cell module
Jee et al. Electrically conductive adhesives and the shingled array cell for high density modules
EP3790058A1 (en) Thermo-photovoltaic cell and method of manufacturing same
JPS63271978A (en) Solar battery array
Loeckenhoff et al. Development, characterisation and 1000 suns outdoor tests of GaAs monolithic interconnected module (MIM) receivers
JPH088372B2 (en) Solar power supply
US10749045B1 (en) Solar cell side surface interconnects
JP2004506329A (en) Discharge resistant solar power generator for outer space
KR101941237B1 (en) Solar cell array, Solar cell module and Method for manufacturing the same
Ward et al. A novel design for monolithically interconnected modules (MIMs) for thermophotovoltaic power conversion
US4854975A (en) Solar cell with integrated interconnect device and process for fabrication thereof
Peiffer et al. Electrical performance evaluation of photovoltaic tether samples for deorbit applications
JPH0360186B2 (en)
KR101120100B1 (en) Thin film silicon solar cell module and Method for manufacturing thereof, Method for connecting the module