JPS63271154A - High separability electrophoresis method - Google Patents
High separability electrophoresis methodInfo
- Publication number
- JPS63271154A JPS63271154A JP62104243A JP10424387A JPS63271154A JP S63271154 A JPS63271154 A JP S63271154A JP 62104243 A JP62104243 A JP 62104243A JP 10424387 A JP10424387 A JP 10424387A JP S63271154 A JPS63271154 A JP S63271154A
- Authority
- JP
- Japan
- Prior art keywords
- gel
- thickness
- migration
- electrophoresis
- electrophoresis method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001962 electrophoresis Methods 0.000 title claims abstract description 13
- 238000000034 method Methods 0.000 title claims abstract description 10
- 238000013508 migration Methods 0.000 claims abstract description 23
- 230000005012 migration Effects 0.000 claims abstract description 23
- 238000000926 separation method Methods 0.000 claims description 18
- 239000000126 substance Substances 0.000 claims description 3
- 238000001502 gel electrophoresis Methods 0.000 abstract description 2
- 239000000499 gel Substances 0.000 description 40
- 230000005684 electric field Effects 0.000 description 5
- 102000039446 nucleic acids Human genes 0.000 description 5
- 108020004707 nucleic acids Proteins 0.000 description 5
- 150000007523 nucleic acids Chemical class 0.000 description 5
- 238000000211 autoradiogram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000011544 gradient gel Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 108091005461 Nucleic proteins Proteins 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000000539 two dimensional gel electrophoresis Methods 0.000 description 1
Landscapes
- Peptides Or Proteins (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は蛋白質、核酸などの分離分析法に係わり、特に
、これらの°物質の分子量が接近した成分の分離に好適
な電気泳動法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for separating and analyzing proteins, nucleic acids, etc., and particularly to an electrophoresis method suitable for separating components of these substances with similar molecular weights.
良く知られているように、水溶液中に置かれた荷電分子
の泳動距離、yは次式(1)に示すように、溶液に付与
された電界強度をE、泳動時間をt。As is well known, the migration distance of a charged molecule placed in an aqueous solution, y, is the electric field strength applied to the solution, E, and the migration time, t, as shown in the following equation (1).
単位時間、単位電界強度当りの泳動速度を70として、
y=uoEt ・・・・・・
・・・(1)で与えられる。ゲル状媒体中では泳動距離
は(1)式で与えられる値よりも減少する。厚み一定の
ゲル板を用いた場合にはプロシーディンゲス オブナシ
ョナル アカデミ−オブ サイエンス、第65巻、第9
70頁以下、1970年(ProcNat’ Q Ac
ad Sci、 65.970−970 (1970)
) ニ論じられている。Assuming the migration speed per unit time and unit electric field strength to be 70, y=uoEt...
...It is given by (1). In a gel-like medium, the migration distance decreases from the value given by equation (1). When using a gel plate of constant thickness, Proceedings of the National Academy of Sciences, Vol. 65, No. 9
70 pages or less, 1970 (ProcNat' Q Ac
ad Sci, 65.970-970 (1970)
) are discussed.
ゲル中の電界強度はゲル中至る所一定(E)なので、y
は次式で与えられる。Since the electric field strength in the gel is constant (E) throughout the gel, y
is given by the following equation.
y = uoE t e−に丁−−−(2)ここに、に
は泳動している分子の分子量に正の相関を有するパラメ
ータ、Tはゲル濃度である。尚、変性した核酸及び蛋白
質分子においては、丁0は分子量に依存せず一定値とな
ることが知られている。y = uoE te - (2) Here, is a parameter that has a positive correlation with the molecular weight of the migrating molecules, and T is the gel concentration. In addition, it is known that in denatured nucleic acid and protein molecules, 0 is a constant value independent of the molecular weight.
式(2)によれば、分子は大きさが異なればkが異なる
のでyが異なる結果となり、混合物を泳動しても相互に
ゲル上に分離される。この従来技術の分離能の限界は1
分離しようとしているA、 B2種の分子のkをに^、
ka、としたとき、この2分成の最大分離比1lt(Δ
y、1)として与えられる。According to equation (2), molecules of different sizes have different k, resulting in different y, and even if a mixture is electrophoresed, they will be separated from each other on the gel. The limit of the resolution of this conventional technology is 1
The k of the two molecules A and B that we are trying to separate is ^,
ka, the maximum separation ratio of these two components is 1lt(Δ
y, 1).
一般にゲル濃度Tのときの上記2成分の分離距離Δy、
は
Δy = u oE t (e −kA” −e″″k
BT) 、、、 、、、 (3)となる。ΔyのT
に関する微分係数をゼロと置くことにより、Δyを最大
にするTの値(T、)を以下の如くに決定できる。すな
わち、
近接した分子量を有する2成分の分離に適したゲル濃度
はT1のに^→ka(=k)のときの極限値すなわち1
/にとして与えられる。そして、T=1/にのとき小さ
い成分Aがしたけ泳動したときのA、B成分のΔy、す
なわち、Δy、1はΔymz=L(1−e’−1)
−(5)として与えられる。ここに、Rは
1より小さい正数でに^/kaに等しい。R=1では勿
論Δy=Oである今、Rは1に近いので式(5)の右辺
のRに関する微分から、Rの1からの微小変位dRに対
する微小なyの変位dyz(絶対値)はdyz=LdR
・・・・・・・・・(6)と書ける。すなわち、従来技
術においては2成分の分子量差に対応するdRのL倍だ
け分離することができ、これが最大分離距離となる。Generally, the separation distance Δy of the above two components when the gel concentration is T,
is Δy = u oE t (e −kA” −e″″k
BT) , , , , (3). T of Δy
By setting the differential coefficient with respect to zero as zero, the value of T (T,) that maximizes Δy can be determined as follows. In other words, the gel concentration suitable for separating two components with close molecular weights is the limit value of T1 when ^→ka (=k), that is, 1
/ given as. Then, when T=1/, the Δy of the A and B components when the small component A migrates, that is, Δy, 1 is Δymz=L(1-e'-1)
−(5). Here, R is a positive number smaller than 1 and equal to ^/ka. When R = 1, of course Δy = O. Since R is close to 1, from the differentiation with respect to R on the right side of equation (5), the minute displacement dyz (absolute value) of y for the minute displacement dR of R from 1 is dyz=LdR
・・・・・・・・・(6) can be written. That is, in the prior art, separation can be achieved by L times dR corresponding to the molecular weight difference between the two components, which is the maximum separation distance.
上記原理に基づ〈従来技術においては一定のdRのL倍
だけしか分離できないが1本発明の目的は一定のdRの
L倍以上の分離距離を与える電気泳動法を提供すること
にある。Based on the above principle, it is an object of the present invention to provide an electrophoresis method that provides a separation distance of L times or more of a constant dR, whereas the prior art allows separation only by L times a constant dR.
上記目的はゲルの厚みを泳動方向に対して増大させるこ
とにより達成される。すなわち、泳動方向に対して平行
な面で切断した横断面が第1図に示したような形状を有
するゲルを用いる。第1図において1はゲルの断面、2
は一般に曲面からなるゲルの上面である。ゲルは泳動方
向に対してLの長さを有し、底面は取扱の便を考えて平
面とした。The above object is achieved by increasing the thickness of the gel in the direction of migration. That is, a gel whose cross section cut along a plane parallel to the electrophoresis direction has a shape as shown in FIG. 1 is used. In Figure 1, 1 is a cross section of the gel, 2
is the upper surface of the gel, which is generally a curved surface. The gel had a length L in the direction of migration, and the bottom surface was flat for ease of handling.
ゲルの厚みを泳動距離yの関数f (y)で表わせばオ
ームの法則からゲルの全抵抗ρ0はとなる。ここにγは
ゲルの比抵抗であり、ゲルの幅(泳動方向に直角な方向
の奥行)は単位長とした。ゲルに掛ける全電圧差をEo
とすると、ゲルの泳動距離yにおける電界強度d E/
d yはとなり、このゲル中の泳動速度d y/d t
はとなる。f(y)を具体的に規定すれば微分方程式(
9)の解としてtの関数としてのyが求まる。If the thickness of the gel is expressed as a function f (y) of the migration distance y, the total resistance ρ0 of the gel will be given by Ohm's law. Here, γ is the specific resistance of the gel, and the width of the gel (depth in the direction perpendicular to the electrophoresis direction) is the unit length. The total voltage difference applied to the gel is Eo
Then, the electric field strength d E/ at the migration distance y of the gel is
d y becomes, and the migration speed in this gel is d y/d t
Hato becomes. If f(y) is specified specifically, the differential equation (
9), y as a function of t is found.
今、ゲル層が指数関数的に急激に増大するゲルを考える
。泳動起点におけるゲル厚をC,Dを1より大きい実数
として
J’ (y)=CD’=Ce”nD”−(10)と置く
。この場合、式(9)の解として・・・・・・・・・(
11)
が得られる。式(4)を求めたのと同一の手法によりこ
の場合のT、は
・・・・・・・・・(12)
となる。このT、のに^→kn(=k)のときの極に
け泳動じたときのΔyすなわち、Δy、2は・・・・・
・・・・(13)
となる。ΔymZをRで微分し、R→1の極限値を求め
ることにより、式(6)に対応する指数関数的ゲルの分
離能dyzは
d y z = −CD ’ −1) d R・・・・
・・(14)nD
となる。式(14)と式(6)からdyの絶対値の比を
求めると、
dyt 2 6
・・・・・・・・・(15)
となりdyzがdyzより大きく、指数関数ゲルの方が
均一厚ゲルよりも高分離能であることがわかる。Now, consider a gel in which the gel layer rapidly increases exponentially. The gel thickness at the starting point of migration is set as J' (y) = CD' = Ce"nD" - (10) where C and D are real numbers larger than 1. In this case, as a solution to equation (9)...
11) is obtained. Using the same method used to obtain equation (4), T in this case becomes...(12). At this T, Δy when migrating to the pole when ^→kn (=k), that is, Δy, 2 is...
...(13) becomes. By differentiating ΔymZ with R and finding the limit value of R→1, the separation power dyz of the exponential gel corresponding to equation (6) is dyz = -CD' -1) d R...
...(14)nD. If we calculate the ratio of the absolute values of dy from equations (14) and (6), we get: dyt 2 6 ...... (15) dyz is larger than dyz, and the exponential gel has a more uniform thickness. It can be seen that the resolution is higher than that of gel.
次に、指数関数ゲルよりも実際的に作り易い直線的に厚
みが増大するゲルの分離能を求める。この場合、起点の
ゲル厚をす、終点の厚みをaとすると、
となる。上記と同様にして、
・・・・・・・・・(17)
・・・・・・・・・(18)
となる、に^→ka(=k)のときのT、の極限値の分
離距離、Δy、8は
・・・・・・・・・(19)
となる。Δy1δをRで微分し、R=1と置くことによ
り直線勾配ゲルの分離能dysは
ここにgはゲルの両端の厚みの比、すなわちg=a /
bである。dysをgで微分すればわかるように、c
tyδはg = 1 + 5でLdRよりも大きい極大
値(約1.21 LdR)を持つ。Next, the separation power of a gel whose thickness increases linearly, which is easier to produce than an exponential gel, is determined. In this case, if the gel thickness at the starting point is s and the thickness at the end point is a, then the following equation is obtained. In the same way as above, we can calculate the limit value of T when ^→ka (=k), so that ・・・・・・・・・(17) ・・・・・・・・・(18) The separation distance, Δy, 8 is (19). By differentiating Δy1δ with R and setting R=1, the resolution dys of the linear gradient gel is obtained as follows: where g is the ratio of the thickness at both ends of the gel, that is, g=a/
It is b. As can be seen by differentiating dys with respect to g, c
tyδ has a maximum value (approximately 1.21 LdR) larger than LdR at g = 1 + 5.
なお、式(14)を見ればわかるようにLは一定でもD
を大きくすることによりいくらでも指数関数ゲルの分離
能は増大する。Furthermore, as can be seen from equation (14), even if L is constant, D
By increasing , the separation power of the exponential gel increases as much as possible.
又、本発明における高分離能ゲルを他の1例えば等電点
差による分離法と組み合せれば、高分離能の二次元電気
泳動法が可能になる。Furthermore, if the high-resolution gel of the present invention is combined with another separation method, such as one based on isoelectric point difference, a two-dimensional electrophoresis method with high resolution becomes possible.
以上のように本発明においては、電界強度が泳動距離と
共に次第に減少するように設定したことにより、2成分
間の泳動距離の差を拡大することができる。As described above, in the present invention, by setting the electric field strength to gradually decrease with the migration distance, it is possible to increase the difference in the migration distance between the two components.
以下、実施例により本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.
実施例1
あらかじめ常法により精造を決定し分子量が68340
と68000であることが判明しているデオキシリボ核
酸の一本鎖梼造のものの混合物(82Pで標識しである
)を被分析試料として用いた。Example 1 Purification was determined in advance by a conventional method and the molecular weight was 68340.
A mixture of single-stranded deoxyribonucleic acids (labeled with 82P) known to be 68,000 and 68,000 was used as the sample to be analyzed.
まず、この試料を厚みが0.5 mmの均一厚で長さが
10amのゲル(ゲル濃度4.6%で7Mの尿素、90
mMのトリス−ホウ酸水溶液、pH8,3゜1mMのエ
チレンジアミン四酢酸を含む)を用い電気泳動し、泳動
後ゲル上にX線フィルムを乗せlapのベータ線を用い
てオートラジオグラムを作成した。このオートラジオグ
ラムを調べたところゲル端迄10cm試料が泳動した時
点でも分離バンドは一本であり2成分の分離は認められ
なかった。First, this sample was mixed with a gel having a uniform thickness of 0.5 mm and a length of 10 am (gel concentration 4.6%, 7M urea, 90%
Electrophoresis was performed using an mM Tris-boric acid aqueous solution, pH 8, 3° containing 1 mM ethylenediaminetetraacetic acid. After electrophoresis, an X-ray film was placed on the gel and an autoradiogram was created using lap beta rays. When this autoradiogram was examined, even when the sample was migrated 10 cm to the edge of the gel, there was only one separated band, and no separation of the two components was observed.
一方、同一試料を同一ゲル長ではあるが、厚みが泳動起
点で0 、5 r@、終点で2.5maになるように指
数関数的に厚みが増大するゲル(濃度23%、底面は平
面、al型を用いて作成)を用いて泳動し。On the other hand, the same sample has the same gel length, but a gel whose thickness increases exponentially so that the thickness is 0,5 r @ at the migration start point and 2.5 ma at the end point (concentration 23%, bottom surface is flat, (created using the al type).
オートラジオグラムを作成したところ、早い成分がl0
GI泳動じた時点で分離バンドが2本、はっきり認識で
きた。2つの分離バンド間の距離は約1.0 mであっ
た。When I created an autoradiogram, the fast component was l0
Two separated bands were clearly recognized at the time of GI electrophoresis. The distance between the two separated bands was approximately 1.0 m.
実施例2
上記と同一の核酸試料を厚み0.5 mmの均一厚で長
さが70国のゲル(濃度4.6 %)を用いて泳動しオ
ートラジオグラムを作成し、早い成分が70国泳動した
時点で調べたところ、2つのバンド間の距離は約2.0
mmであった。一方、同一核酸試料を泳動起点の厚み
0.5mm、終点の厚みが1.2 rrtnになるよう
な直線的厚み勾配ゲル(ゲル濃度7.9 %、長さ70
G)を用いて泳動したところ、早い成分が70G泳動し
た時点で2つの分離バンド間の距離は約3.0 mに拡
大された。Example 2 An autoradiogram was created by electrophoresing the same nucleic acid sample as above using a gel (concentration 4.6%) with a uniform thickness of 0.5 mm and a length of 70 countries. When I checked it after electrophoresis, the distance between the two bands was about 2.0.
It was mm. On the other hand, the same nucleic acid sample was run on a linear thickness gradient gel (gel concentration 7.9%, length 70 mm) with a thickness of 0.5 mm at the starting point and a thickness of 1.2 rrtn at the end point.
When the fast component migrated at 70G, the distance between the two separated bands was expanded to approximately 3.0 m.
本発明によればゲル電気泳動法の分離能が増大するので
核酸の塩基配列の決定効率を増大できる効果が得られる
。また、蛋白の精製試料の純度がより正確に評価セきる
などの効果もある。According to the present invention, since the separation power of gel electrophoresis is increased, the efficiency of determining the base sequence of a nucleic acid can be increased. It also has the effect of allowing more accurate evaluation of the purity of purified protein samples.
第1図は本発明の実施例で用いるゲルの断面図である。 FIG. 1 is a cross-sectional view of a gel used in an example of the present invention.
Claims (1)
において、泳動方向に対して指数関数的にゲルの厚みが
増大するゲル板を用いることを特徴とする高分離能電気
泳動法。 2、ゲル状の物質を分離用媒体とする電気泳動分離法に
おいて、泳動方向に対して直線的にゲルの厚みが増大し
、かつ、泳動の終点のゲルの厚みが泳動の開始点のゲル
の厚みの(1+√2)倍であるようなゲル板を用いるこ
とを特徴とする高分離能電気泳動法。[Claims] 1. High separation characterized by using a gel plate in which the gel thickness increases exponentially in the direction of electrophoresis in an electrophoretic separation method using a gel-like substance as a separation medium. electrophoresis method. 2. In an electrophoretic separation method using a gel-like substance as a separation medium, the thickness of the gel increases linearly in the direction of migration, and the thickness of the gel at the end of migration is equal to that of the gel at the start of migration. A high-resolution electrophoresis method characterized by using a gel plate having a thickness (1+√2) times.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62104243A JPS63271154A (en) | 1987-04-30 | 1987-04-30 | High separability electrophoresis method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62104243A JPS63271154A (en) | 1987-04-30 | 1987-04-30 | High separability electrophoresis method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63271154A true JPS63271154A (en) | 1988-11-09 |
Family
ID=14375510
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62104243A Pending JPS63271154A (en) | 1987-04-30 | 1987-04-30 | High separability electrophoresis method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63271154A (en) |
-
1987
- 1987-04-30 JP JP62104243A patent/JPS63271154A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Westermeier | Electrophoresis in practice: a guide to methods and applications of DNA and protein separations | |
Westermeier | Electrophoresis in practice: a guide to methods and applications of DNA and protein separations | |
Vesterberg | History of electrophoretic methods | |
Shihabi | Stacking in capillary zone electrophoresis | |
Langen et al. | Effect of protein application mode and acrylamide concentration on the resolution of protein spots separated by two‐dimensional gel electrophoresis | |
Zhu et al. | Protein separation by capillary gel electrophoresis: a review | |
Grossman et al. | Capillary electrophoresis: Theory and practice | |
Walker | SDS polyacrylamide gel electrophoresis of proteins | |
O'Farrell et al. | High resolution two-dimensional electrophoresis of basic as well as acidic proteins | |
US5464517A (en) | Electrophoresis in low conductivity buffers | |
Frings et al. | Electrophoretic separation of serum lipoproteins in polyacrylamide gel | |
US20030104449A1 (en) | Electrophoretic separation of compounds | |
US20080314751A1 (en) | Electrophoretic Separation of Analytes by Molecular Mass | |
Vesterberg | A short history of electrophoretic methods | |
Righetti et al. | Recent advances in electrophoretic techniques for the characterization of protein biomolecules: A poker of aces | |
Chiou et al. | Evaluation of commonly used electrophoretic methods for the analysis of proteins and peptides and their application to biotechnology | |
Haas et al. | Horizontal polyacrylamide gel electrophoresis for the separation of DNA fragments | |
Jenkins et al. | Identification and quantitation of human urine proteins by capillary electrophoresis | |
Srinivas | Introduction to protein electrophoresis | |
Sun et al. | Enhanced albumin protein separations and protein—drug binding constant measurements using anti-inflammatory drugs as run buffer additives in affinity capillary electrophoresis | |
US9182372B2 (en) | Stopped-flow, micro-fluidic device and method for the charge-based separation of complex analyte mixtures | |
Rana et al. | Electrophoresis: Basic principle, types, and applications | |
Oss Van | Electrokinetic separation methods | |
Budowle et al. | Discontinuous polyacrylamide gel electrophoresis of DNA fragments | |
Tseng et al. | Analysis of large-volume DNA markers and polymerase chain reaction products by capillary electrophoresis in the presence of electroosmotic flow |