JPS63271022A - Air/fuel ratio control device for gas burning equipment - Google Patents

Air/fuel ratio control device for gas burning equipment

Info

Publication number
JPS63271022A
JPS63271022A JP62105708A JP10570887A JPS63271022A JP S63271022 A JPS63271022 A JP S63271022A JP 62105708 A JP62105708 A JP 62105708A JP 10570887 A JP10570887 A JP 10570887A JP S63271022 A JPS63271022 A JP S63271022A
Authority
JP
Japan
Prior art keywords
hot water
maximum
water temperature
minimum
solenoid valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62105708A
Other languages
Japanese (ja)
Other versions
JPH0745930B2 (en
Inventor
Takaaki Araki
荒木 高明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Paloma Kogyo KK
Original Assignee
Paloma Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paloma Kogyo KK filed Critical Paloma Kogyo KK
Priority to JP62105708A priority Critical patent/JPH0745930B2/en
Publication of JPS63271022A publication Critical patent/JPS63271022A/en
Publication of JPH0745930B2 publication Critical patent/JPH0745930B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/08Regulating fuel supply conjointly with another medium, e.g. boiler water
    • F23N1/10Regulating fuel supply conjointly with another medium, e.g. boiler water and with air supply or draught
    • F23N1/102Regulating fuel supply conjointly with another medium, e.g. boiler water and with air supply or draught using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/08Microprocessor; Microcomputer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/18Measuring temperature feedwater temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • F23N2233/08Ventilators at the air intake with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/14Fuel valves electromagnetically operated

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)

Abstract

PURPOSE:To prevent deterioration of durability and instability of burning due to a gas supply greater than or less than the burning capacity of equipment by regulating an opening range setting means for solenoid valve and a speed range setting means for electric fan in advance according to the gas species. CONSTITUTION:CPU 31 has connected to it a hot water temperature setting device 40 for setting the hot water delivery temperature, an opening degree input device 41 for an opening range setting means 1 and a rotational speed input device 42 for a rotational speed range setting means 2. Variable resistors in the opening degree input device 41 limits the maximum and minimum current applied to a solenoid valve 11 by their being adjusted to limit the maximum and minimum opening of the solenoid valve 11 so that the gas supply amount to gas burning equipment may not be greater than its maximum burning capacity or smaller than the minimum burning capacity. Variable resistors in the rotational speed input device 42 sets the maximum and minimum current applied to an electric motor 12 by their being adjusted corresponding to the maximum and minimum opening of the solenoid valve 11 to set the maximum and minimum rotational speed of the fan 12 so that the air/fuel ratio at that time may be appropriate for the gas species.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガスバーナに供給されるガス供給量と一次空
気供給量の比率(以下単に空燃比という)をほぼ一定に
保つようにしたガス燃焼機器の空燃比制御装置に関する
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a gas combustion system in which the ratio between the amount of gas supplied to a gas burner and the amount of primary air supplied (hereinafter simply referred to as the air-fuel ratio) is kept almost constant. The present invention relates to an air-fuel ratio control device for equipment.

〔従来技術〕[Prior art]

ガス燃焼機器をコンパクト化するために空燃比を適当に
増大させ、あるいは燃焼に必要な空気の全部を一次空気
としてガスに混合するようにした完全予混合式のガス燃
焼機器においては、炎のリフトやバツクファイアのない
安定した燃焼を得るために、空燃比を常にほぼ一定の適
正な値に保つ必要がある。このような必要性を満す技術
とじては、例えば特開昭60−80018号公報に示す
ガス燃焼制御装置があり、この技術においては燃焼量調
節信号によりガス量調節手段を制御し、また同燃焼量調
節信号により演算した空気量信号を補正した信号で空気
1tiJfi1節手段を制御している。
In fully premixed gas combustion equipment, where the air-fuel ratio is appropriately increased to make the gas combustion equipment more compact, or where all of the air required for combustion is mixed with the gas as primary air, flame lift is required. In order to obtain stable combustion without backfire or backfire, it is necessary to keep the air-fuel ratio at a nearly constant and appropriate value. An example of a technology that satisfies this need is a gas combustion control device disclosed in Japanese Patent Application Laid-Open No. 60-80018. In this technology, a gas amount adjustment means is controlled by a combustion amount adjustment signal. The air 1tiJfi1 node means is controlled by a signal obtained by correcting the air amount signal calculated based on the combustion amount adjustment signal.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ガス燃焼機器はその設置地域により異なるガス種のガス
が供給され、ガス種により単位発熱量。
Gas combustion equipment is supplied with different gas types depending on the area where it is installed, and the unit calorific value varies depending on the gas type.

ガス圧、燃焼特性等が相違している。従って、同一のガ
ス燃焼機器でも、ガス供給量を制御する電磁弁への印加
電流と一次空気供給量を制御する電動ファンへの印加電
圧との間の特性は、第6図のA、B、Cに示す如くガス
種に応じて異なったものとする必要があり、さもなけれ
ばガス種に応じた適切な空燃比を与えて安定した燃焼を
得ることはできず、あるいは機器の最大燃焼能力をオー
バーして耐久性を低下させたり最小装置能力以下となっ
て燃焼が不安定になるという問題が生じる。
Gas pressure, combustion characteristics, etc. are different. Therefore, even in the same gas combustion equipment, the characteristics between the current applied to the solenoid valve that controls the gas supply amount and the voltage applied to the electric fan that controls the primary air supply amount are A, B in Fig. 6, As shown in C, it is necessary to use different air-fuel ratios depending on the gas type, otherwise it will not be possible to provide an appropriate air-fuel ratio according to the gas type and achieve stable combustion, or the maximum combustion capacity of the equipment will not be achieved. Problems arise in that if the fuel is exceeded, durability is reduced, or if the capacity is below the minimum equipment capacity, combustion becomes unstable.

このために前記電磁弁への印加電流と電動ファンへの印
加電圧の間の特性を与える特性マツプあるいは演算式は
ガス種毎に異なったものにする必要があるが、これによ
り同一のガス燃焼機器でも使用する地域により仕様が異
なったものとなるので、総在庫数が増大して経費が増大
し、また在庫管理や出庫管理の手間が増大するという問
題がある。
For this reason, the characteristic map or calculation formula that determines the characteristics between the current applied to the solenoid valve and the voltage applied to the electric fan needs to be different for each gas type, but this makes it possible to However, since the specifications differ depending on the region of use, there are problems in that the total number of items in stock increases, costs increase, and the effort involved in inventory management and shipping management increases.

本発明は、適切な空燃比を得るための電磁弁の開度と電
動ファンの回転数の間の特性は、定量的にはガス種によ
り大幅に変化するが定性的には類似していることに着目
して、上記問題を解決したものである。
The present invention is based on the fact that the characteristics between the opening degree of the solenoid valve and the rotation speed of the electric fan to obtain an appropriate air-fuel ratio quantitatively vary greatly depending on the gas type, but are qualitatively similar. The above problem was solved by focusing on the following.

〔問題点を解決するための手段〕[Means for solving problems]

このために、本発明によるガス燃焼機器の空燃比制御装
置は、第1図に示す如く、熱交換器20内を通る給水を
加熱するガスバーナ10と、印加電流に応じて開度が連
続的に変化して前記ガスバーナ10へのガス供給量を制
御する電磁弁11と、印加電圧に応じて回転数が連続的
に変化して前記ガスバーナへ10の一次空気供給量を制
御する電動ファン12を備えてなるガス燃焼機器の空燃
比制御装置において、出湯温度を設定する湯温設定装置
40と、前記熱交換器20からの出湯温度を検出する湯
温センサ43と、前記電磁弁11の最大及び最小開度を
予め所定の値に設定する開度範囲設定手段1と、前記電
動ファン12の最大及び最小回転速度を予め所定の値に
設定する回転速度範囲設定手段2と、前記最大及び最小
開度に対応する最大及び最小印加電流を基準とする前記
電磁弁11への印加電流の比率と前記最大及び最小回転
速度に対応する最大及び最小印加電圧を基準とする前記
電動ファン12への印加電圧の比率との間の予め設定さ
れた特性を記憶する記憶手段3と、前記湯温設定装置4
0により設定された出湯温度と前記湯温センサ43によ
り検出された出湯温度を対比して前記最大及び最小印加
電流の範囲内において前記両出湯温度の差が減少するよ
うに前記電磁弁11の開度を変化させる印加電流を演算
する第1演算手段4と、この第1演算手段により演算さ
れた印加電流を前記電磁弁11に印加する電磁弁駆動装
置45と、前記第1演算手段4により演算された印加電
流の前記最大及び最小電流を基準とする比率を演算する
第2演算手段5と、この第2演算手段により演算された
比率に基づき前記記憶手段3に記憶された前記特性から
前記電動ファン12への印加電流の比率を演算する第3
演算十段6と、この第3演算手段により演算された比率
と前記最大及び最小印加電圧に基づき前記電動ファン1
2への印加電圧を演算する第4演算手段7と、この第4
演算手段により演算された印加電圧を前記電動ファン1
2に印加するモータ駆動装置46を備えたことを特徴と
するものである。
For this purpose, the air-fuel ratio control device for gas combustion equipment according to the present invention, as shown in FIG. It includes an electromagnetic valve 11 that changes to control the amount of gas supplied to the gas burner 10, and an electric fan 12 whose rotation speed continuously changes depending on the applied voltage to control the amount of primary air supplied to the gas burner 10. The air-fuel ratio control device for gas combustion equipment includes a hot water temperature setting device 40 that sets the hot water temperature, a hot water temperature sensor 43 that detects the hot water temperature from the heat exchanger 20, and a maximum and minimum temperature of the solenoid valve 11. an opening range setting means 1 for setting the opening degree to a predetermined value; a rotation speed range setting means 2 for setting the maximum and minimum rotational speeds of the electric fan 12 to predetermined values; and the maximum and minimum opening degrees. The ratio of the current applied to the electromagnetic valve 11 based on the maximum and minimum applied currents corresponding to the ratio and the voltage applied to the electric fan 12 based on the maximum and minimum applied voltages corresponding to the maximum and minimum rotation speeds. a storage means 3 for storing preset characteristics between the ratios and the hot water temperature setting device 4;
The electromagnetic valve 11 is opened so that the difference between the two outlet temperatures is reduced within the range of the maximum and minimum applied current by comparing the outlet temperature set by 0 and the outlet temperature detected by the hot water temperature sensor 43. a first calculating means 4 that calculates an applied current that changes the degree; a solenoid valve driving device 45 that applies the applied current calculated by the first calculating means to the solenoid valve 11; a second calculation means 5 for calculating a ratio of the applied currents based on the maximum and minimum currents; A third device that calculates the ratio of current applied to the fan 12.
The electric fan 1 is calculated based on the tenth calculation stage 6, the ratio calculated by the third calculation means, and the maximum and minimum applied voltages.
a fourth calculation means 7 for calculating the voltage applied to the fourth calculation means 7;
The applied voltage calculated by the calculation means is applied to the electric fan 1.
The present invention is characterized in that it is equipped with a motor drive device 46 that applies an electric current to the motor.

〔作用〕[Effect]

予め使用するガス種に応じて、開度範囲設定手段1を調
節してガス量が機器の最大燃焼能力以上とならないよう
に、また最小燃焼能力以下とならないように電磁弁11
の最大及び最小開度を設定し、また回転速度範囲設定手
段2を調節して前記最大及び最小開度の際の空燃比がガ
ス種に応じた適切な値となるように電動ファン12の最
大及び最小回転速度を設定しておく。ガス燃焼機器が作
動すれば、第1演算手段1は湯温センサ43により検出
された出湯温度を湯温設定装置40により予め設定され
た出湯温度と対比して電磁弁11への印加電流を演算し
、電磁弁駆動装置45はこの値の印加電流を電磁弁11
に印加し、前記岡山湯温度に差があれば電磁弁11の開
度を変化させてガスバーナ10へのガス供給量を変化さ
せ、熱交換器20からの出湯温度を湯温設定装置40に
より設定された値に近付ける。前記印加電流は、電磁弁
11の最大及び最小開度に対応する最大及び最小印加電
流の範囲内となるように演算される。
Depending on the type of gas to be used, the opening range setting means 1 is adjusted in advance so that the gas amount does not exceed the maximum combustion capacity of the device and does not fall below the minimum combustion capacity of the solenoid valve 11.
The maximum and minimum opening degrees of the electric fan 12 are set, and the rotation speed range setting means 2 is adjusted so that the air-fuel ratio at the maximum and minimum opening degrees becomes an appropriate value according to the gas type. and minimum rotation speed. When the gas combustion equipment is activated, the first calculating means 1 compares the hot water temperature detected by the hot water temperature sensor 43 with the hot water temperature preset by the hot water temperature setting device 40, and calculates the current applied to the solenoid valve 11. The solenoid valve drive device 45 applies this value of applied current to the solenoid valve 11.
If there is a difference in the temperature of the Okayama hot water, the opening degree of the solenoid valve 11 is changed to change the amount of gas supplied to the gas burner 10, and the temperature of the hot water discharged from the heat exchanger 20 is set by the hot water temperature setting device 40. value. The applied current is calculated to be within the range of the maximum and minimum applied currents corresponding to the maximum and minimum opening degrees of the solenoid valve 11.

第2演算手段5は、第1演算手段4により演算された印
加電流の前記最大及び最小印加電流を基準とする比率を
演算し、第3演算手段6はこの比率に基づいて記憶手段
3に記憶された特性から電動ファン12に印加する電圧
の比率を演算する。
The second calculation means 5 calculates a ratio of the applied current calculated by the first calculation means 4 based on the maximum and minimum applied currents, and the third calculation means 6 stores it in the storage means 3 based on this ratio. The voltage ratio to be applied to the electric fan 12 is calculated from the obtained characteristics.

第4演算手段7は、第3演算手段6により演算された比
率と電動ファン12の最大及び最小回転速度に対応する
最大及び最小印加電圧に基づき、電動ファン12への印
加電圧を演算し、モータ駆動装置46はこの値の印加電
圧を電動ファン12に印加する。これにより電動ファン
12の回転速度は電磁弁11の開度に応じた値となり、
ガス供給量に応じた量の一次空気がガスバーナ10に供
給される。
The fourth calculation means 7 calculates the voltage applied to the electric fan 12 based on the ratio calculated by the third calculation means 6 and the maximum and minimum applied voltages corresponding to the maximum and minimum rotational speeds of the electric fan 12, and applies the voltage to the electric fan 12. The drive device 46 applies this value of applied voltage to the electric fan 12 . As a result, the rotational speed of the electric fan 12 becomes a value corresponding to the opening degree of the solenoid valve 11.
Primary air is supplied to the gas burner 10 in an amount corresponding to the amount of gas supplied.

適切な空燃比を得るための電磁弁11の開度と電動ファ
ン12の回転速度との間の特性は定量的にはガス種によ
り大幅に変化するが定性的には類似しているので、記憶
手段3に記憶される電磁弁への印加電流の比率と電動フ
ァンへの印加電圧の比率の間の特性は、ガス種が異なっ
ても実質的に同一のものとなる。
The characteristics between the opening degree of the solenoid valve 11 and the rotational speed of the electric fan 12 to obtain an appropriate air-fuel ratio quantitatively vary greatly depending on the gas type, but qualitatively they are similar, so it is important to memorize them. The characteristics between the ratio of the current applied to the electromagnetic valve and the ratio of the voltage applied to the electric fan, which are stored in the means 3, are substantially the same even if the gas types are different.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明によれば、使用するガス種に応じて
予め開度範囲設定手段と回転速度範囲設定手段を調節す
ることにより、同一仕様のガス燃焼機器を種々の異なる
ガス種に適応させて適切なガス供給量及び空燃比を得ら
れるようにすることができ、機器の燃焼能力以上または
以下の量のガス供給や不適な空燃比による耐久性の低下
や燃焼の不安定を防止することができる。また、ガス種
による調節は電磁弁の最大及び最小開度とこれに対応す
る電動ファンの最大及び最小回転速度の位置において行
われるが、適切な空燃比を得るための電磁弁の開度と電
動ファンの回転速度の間の特性はガス種が異なっても定
性的に同一であるので、前記各最大及び最小値以外の値
においても空燃比はガス種に応じた所定値に保たれる。
As described above, according to the present invention, by adjusting the opening range setting means and the rotation speed range setting means in advance according to the gas type to be used, gas combustion equipment with the same specifications can be adapted to various different gas types. It is possible to obtain an appropriate gas supply amount and air-fuel ratio by using the equipment, and to prevent a decrease in durability and instability of combustion due to gas supply exceeding or below the combustion capacity of the equipment or an inappropriate air-fuel ratio. Can be done. In addition, the adjustment based on the gas type is performed at the maximum and minimum opening of the solenoid valve and the corresponding maximum and minimum rotational speed of the electric fan. Since the characteristics between fan rotational speeds are qualitatively the same even if the gas types are different, the air-fuel ratio is maintained at a predetermined value depending on the gas type even at values other than the maximum and minimum values.

〔実施例〕〔Example〕

先ず第2図〜第4図に示す実施例の説明をする。 First, the embodiment shown in FIGS. 2 to 4 will be explained.

第2図に示す如く、熱交換器20の一端には給水管21
が接続れ、他端には先端部に給湯栓23を有する給湯管
22が接続されている。給湯栓23が開いた状態におい
て給水管21より供給される給水は熱交換器20を通過
する際にガスバーナ10により加熱されて所定の出湯温
度となり、給湯栓23より出湯される。ガスバーナ10
に接続された混合室15には、印加電流に応じて開度が
変化する電磁弁11を設けたガス供給管13と、印加電
圧に応じて回転速度が変化する電動ファン12からの空
気供給管14が接続されている。電磁弁11の開度と電
動ファン12の回転速度は後述する電子制御装置30に
より連動して制御され、ガス供給管13からのガスの燃
焼に必要な空気は全量が一次空気として空気供給管14
から供給され、混合室15で混合されてガスバーナ10
に供給される。
As shown in FIG. 2, a water supply pipe 21 is connected to one end of the heat exchanger 20.
A hot water supply pipe 22 having a hot water tap 23 at its tip is connected to the other end. When the hot water supply tap 23 is open, water supplied from the water supply pipe 21 is heated by the gas burner 10 when passing through the heat exchanger 20, reaches a predetermined hot water temperature, and is discharged from the hot water tap 23. gas burner 10
The mixing chamber 15 is connected to a gas supply pipe 13 equipped with a solenoid valve 11 whose opening degree changes according to the applied current, and an air supply pipe from an electric fan 12 whose rotation speed changes according to the applied voltage. 14 are connected. The opening degree of the solenoid valve 11 and the rotational speed of the electric fan 12 are controlled in conjunction with each other by an electronic control device 30, which will be described later.
is supplied from the gas burner 10 and mixed in the mixing chamber 15.
supplied to

電子制御装置30は、マイクロプロセッサ(以下単にC
PUという)31と、読出し専用メモリ(以下単にRO
Mという)32と、書込み可能メモリ (以下単にRA
Mという)33を主要な構成要素とし、CPU31には
、それぞれ電磁弁駆動装置45及びモータ駆動装置46
を介して電磁弁11及び電動ファン12が接続されてい
る。本実施例においては、電磁弁11は印加電流に比例
して開度が変化する比例電磁弁であり、電動ファン12
のモータは印加電圧に比例して回転速度が変化するブラ
シレス直流モータである。
The electronic control unit 30 is a microprocessor (hereinafter simply C
(referred to as PU) 31, and read-only memory (hereinafter simply referred to as RO).
M) 32 and writable memory (hereinafter simply RA
The CPU 31 includes a solenoid valve drive device 45 and a motor drive device 46, respectively.
A solenoid valve 11 and an electric fan 12 are connected via. In this embodiment, the solenoid valve 11 is a proportional solenoid valve whose opening degree changes in proportion to the applied current, and the electric fan 12
The motor is a brushless DC motor whose rotational speed changes in proportion to the applied voltage.

熱交換器20の直後に位置して出湯管22には出湯温度
を検出するサーミスタ等の湯温センサ43が設けられ、
また電動ファン12にはその回転速度に比例した数のパ
ルスを発生ずる回転速度センサ44が設けられ、両セン
サ43,4.4は囲路のインターフェイスを介してCP
U31に接続さている。CPU31には、また、出湯温
度を設定する湯温設定装置40と、開度範囲設定手段1
のための開度入力装置41と、回転速度範囲設定手段2
のための回転速度入力装置42が囲路のインターフェイ
スを介して接続されている。本実施例においてば、湯温
設定装置40は外部に設けたつまみにより調節可能な1
個の可変抵抗器を主体とし、また各入力装置4L  4
2はガス種に応じて最大値及び最小値を設定するそれぞ
れ2個の半固定式の可変抵抗器を主体としている。開度
入力装置41の各可変抵抗器は、その調節により電磁弁
11への最大印加電流と最小印加電流を制限して、ガス
燃焼機器へのガス供給量が最大燃焼能力以上とならない
ように、また最小燃焼能力以下とならないように、電磁
弁11の最大及び最小開度を制限するものである。また
回転速度入力装置42の各可変抵抗器は、その調節によ
り電磁弁11の最大及び最小開度に対応する電動モータ
12への最大印加電圧及び最小印加電圧を設定して、そ
の際の空燃比がガス種に応した所定の適切な値となるよ
うに電動ファン12の最大及び最小回転速度を設定する
ものである。両入力装置41.42の各可変抵抗器の調
節は、工場又は販売店等からの出荷の際に出荷地域のガ
ス種に合せて行い、その後は調節ができないように封印
するものである。
A hot water temperature sensor 43 such as a thermistor is provided in the hot water outlet pipe 22 located immediately after the heat exchanger 20 to detect the hot water temperature.
The electric fan 12 is also provided with a rotation speed sensor 44 that generates a number of pulses proportional to its rotation speed, and both sensors 43, 4.4 are connected to the CP via an interface in the enclosure.
It is connected to U31. The CPU 31 also includes a hot water temperature setting device 40 for setting the hot water temperature, and an opening range setting means 1.
opening input device 41 and rotation speed range setting means 2 for
A rotational speed input device 42 for is connected via the enclosure interface. In this embodiment, the hot water temperature setting device 40 is a hot water temperature setting device 40 that can be adjusted by an external knob.
The main body is a variable resistor, and each input device 4L 4
2 is mainly composed of two semi-fixed variable resistors each having a maximum value and a minimum value set according to the type of gas. Each variable resistor of the opening input device 41 limits the maximum and minimum applied current to the solenoid valve 11 by adjusting it, so that the amount of gas supplied to the gas combustion equipment does not exceed the maximum combustion capacity. Furthermore, the maximum and minimum opening degrees of the solenoid valve 11 are limited so that the combustion capacity does not fall below the minimum combustion capacity. Further, each variable resistor of the rotational speed input device 42 is adjusted to set the maximum and minimum voltages applied to the electric motor 12 corresponding to the maximum and minimum opening degrees of the solenoid valve 11, and adjust the air-fuel ratio at that time. The maximum and minimum rotational speeds of the electric fan 12 are set so that the rotational speed of the electric fan 12 is a predetermined appropriate value depending on the type of gas. The variable resistors of both input devices 41 and 42 are adjusted to match the type of gas in the shipping area at the time of shipment from the factory or store, etc., and are then sealed to prevent adjustment.

ROM32には、電磁弁11への印加電流の、その最大
印加電流(第6図の八rmax 、Blmax、CIm
ax等)を100%とし、その最小印加電流(第6図の
A1m1n 、B1m1n、C1m1n等)を0%とす
る比率R4と、電動ファン12への印加電圧の、その最
大印加電圧(第6図の八Vmax +BVmax、CV
max等)を100%とし、その最小印加電圧(第6図
の八Vmin 、 BVmin 。
The ROM 32 stores maximum applied currents (rmax, Blmax, CIm in FIG. 6) of the applied currents to the solenoid valve 11.
ax, etc.) as 100% and the minimum applied current (A1m1n, B1m1n, C1m1n, etc. in Fig. 6) as 0%, and the maximum applied voltage (Fig. 6) of the applied voltage to the electric fan 12. 8Vmax +BVmax,CV
max, etc.) is 100%, and the minimum applied voltage (8Vmin, BVmin in FIG. 6) is 100%.

CVmin等)を0%とする比率RvO間の特性が特性
マツプとして記憶されている。第3図はこのような特性
マツプを図形化して示したもので、電磁弁11及び電動
ファン12のモータとして前述の如き比例電磁弁及びブ
ラシレス直流モータを使用しく13) た本実施例においては、空燃比を一定とするために、理
論的には印加電圧の比率Rνは印加電流の比率Riの平
方根に比例して増大する特性Pとしなければならない。
The characteristics between the ratios RvO and 0% (CVmin, etc.) are stored as a characteristic map. FIG. 3 is a graphical representation of such a characteristic map. In this embodiment, the proportional solenoid valve and the brushless DC motor as described above are used as the motors for the solenoid valve 11 and the electric fan 12. In order to keep the air-fuel ratio constant, the applied voltage ratio Rv should theoretically have a characteristic P that increases in proportion to the square root of the applied current ratio Ri.

これはガスバーナ10へのガス供給量は電磁弁11の二
次側圧力の平方根に比例し、この二次側圧力は電磁弁1
1の開度に比例し、また−次空気量は電動ファン12の
回転速度に比例するためである。なお、本実施例におい
ては、上記比率Ri及びRvは何れも255ビツトにデ
ジタル化された値をとっているので上記特性マツプはP
に示す如く連続したものではなくpに示す如くPに沿っ
た階段状のものとなる。ROM32には、また、第4図
のフローチャートに示す制御動作を実行するための制御
プログラムが記憶されている。
This is because the amount of gas supplied to the gas burner 10 is proportional to the square root of the secondary side pressure of the solenoid valve 11, and this secondary side pressure is
This is because the second air amount is proportional to the rotational speed of the electric fan 12. In this example, since the ratios Ri and Rv are both digitized values of 255 bits, the characteristic map is P.
It is not continuous as shown in , but is step-like along P as shown in p. The ROM 32 also stores a control program for executing the control operations shown in the flowchart of FIG.

次に、主として第4図に示すフローチャートにより本発
明の制御動作を説明する。
Next, the control operation of the present invention will be explained mainly with reference to the flowchart shown in FIG.

ガス燃焼機器を作動させるための電源を投入すれば、電
子制御装置30は、先ず各変数を0または所定の初期値
にセントした後、囲路の制御フローにより給水管21に
通水がなされているか否かを判断する。給湯栓23が開
かれて給水管21に通水されていれば、電子制御装置3
0は凹路の計時フローを作動させて0.3秒毎に割込信
号を発生させ、その都度第4図のフローチャートによる
制御動作の実行を開始させる。
When the power is turned on to operate the gas combustion equipment, the electronic control unit 30 first sets each variable to 0 or a predetermined initial value, and then water is supplied to the water supply pipe 21 according to the control flow of the enclosure. Determine whether or not there is. If the hot water tap 23 is opened and water is flowing through the water supply pipe 21, the electronic control device 3
0 activates the concave road timing flow to generate an interrupt signal every 0.3 seconds, each time starting execution of the control operation according to the flowchart of FIG.

CPU31は、先ずステップ101において湯温設定装
置40により設定された出湯温度TIをデジタル化され
た信号として読み込み、ステップ102においで湯温セ
ンサ43により検出された出湯温度T2を同様に読み込
む。次いでステップ103において回転速度センサ44
により検出された電動ファン12の回転速度N2を同様
に読み込み、続くステップ104において前回の制御動
作のステップ117において電動ファン12に出力され
た印加電圧Vから、ROM32に記憶された電動ファン
12の印加電圧と回転速度の特性に基づいて、電動ファ
ン12の設定回転速度N1を演算した後、ステップ10
5において次式 %式%) により電動ファン12の回転速度誤差比率βを演算する
。次いで、CPU3 ]は、ステップ106において、
この回転速度誤差比率βの絶対値を所定の誤差比率限界
値K (−0,1〜0.2)と比較し、1βbKでなけ
れば次のステップ107に進み、1β1〉Kならば、ス
テップ119において電磁弁11を全閉とすると共に電
動ファン12を停止させることによりガスバーナ10の
燃焼を停止させた後、前記計時フローを含む全ての制御
フローを停止させる。この回転速度誤差比率βは、電動
ファン12への印加電圧を補正して電動ファン12の回
転数を電磁弁11の開度に応じた設定回転数に近付ける
ために後述のステップ117において使用するものであ
るが、1βl>Kであるということは電動ファン12ま
たはこれに関連する部分に何等かの異常が生じたことを
意味し、ステップ106及び119はこのような場合の
緊急停止を行うためのものである。
First, the CPU 31 reads the hot water outlet temperature TI set by the hot water temperature setting device 40 in step 101 as a digitized signal, and similarly reads the hot water outlet temperature T2 detected by the hot water temperature sensor 43 in step 102. Next, in step 103, the rotational speed sensor 44
The rotational speed N2 of the electric fan 12 detected by is read in the same way, and in the subsequent step 104, the applied voltage V of the electric fan 12 stored in the ROM 32 is determined from the applied voltage V output to the electric fan 12 in step 117 of the previous control operation. After calculating the set rotation speed N1 of the electric fan 12 based on the voltage and rotation speed characteristics, step 10
In step 5, the rotation speed error ratio β of the electric fan 12 is calculated using the following formula (% formula %). Then, in step 106, the CPU 3
The absolute value of this rotational speed error ratio β is compared with a predetermined error ratio limit value K (-0, 1 to 0.2), and if it is not 1βbK, proceed to the next step 107, and if 1β1>K, step 119 After the electromagnetic valve 11 is fully closed and the electric fan 12 is stopped to stop combustion in the gas burner 10, all control flows including the timing flow are stopped. This rotational speed error ratio β is used in step 117 described below to correct the voltage applied to the electric fan 12 and bring the rotational speed of the electric fan 12 closer to the set rotational speed according to the opening degree of the solenoid valve 11. However, 1βl>K means that some abnormality has occurred in the electric fan 12 or related parts, and steps 106 and 119 are steps for performing an emergency stop in such a case. It is something.

ステップ107において、CPU31は次式6式%) α:作動条件により定まる比例定数 により電磁弁11への印加電流Iの増加率ΔIを演算し
、続くステップ108において次式6式%) Imax、lm1n :開度入力装置41により設定さ
れた電磁弁11の最大及び最 小開度に対応する最大及び最小印 加電流 により印加電流Iを演算する。続くステップ109〜1
12において、印加電流Iにその値が最大値1maにと
最小値lm1nの範囲内となるように制限を加えた後、
CPU31はステップ113において、この印加電流I
を電磁弁駆動装置45を介して電磁弁11に印加する出
力を行う。
In step 107, the CPU 31 calculates the increase rate ΔI of the current I applied to the solenoid valve 11 using the following formula 6 (%) α: a proportional constant determined by the operating conditions, and in the subsequent step 108, the following formula 6 (%) Imax, lm1n : The applied current I is calculated based on the maximum and minimum applied currents corresponding to the maximum and minimum opening degrees of the solenoid valve 11 set by the opening input device 41. Following steps 109-1
12, after limiting the applied current I so that its value is within the range of the maximum value 1ma and the minimum value lm1n,
In step 113, the CPU 31 controls the applied current I.
An output is applied to the solenoid valve 11 via the solenoid valve drive device 45.

次いでCPU31はステップ114において次式 %式%) により印加電流Iの前記比率R4を演算した後、ステッ
プ115において、ROM32に記憶された第3図の特
性マツプから、この比率Riに対応する電動ファン12
への印加電流の比率Rvを演算する。
Next, in step 114, the CPU 31 calculates the ratio R4 of the applied current I using the following formula (%), and then in step 115, calculates the electric fan corresponding to this ratio Ri from the characteristic map shown in FIG. 12
The ratio Rv of the applied current to is calculated.

CPU31は続(ステップ116において次式6式% Vmax、νmin s回転速度入力装置42により設
定された電動ファン12の最 大及び最小回転速度に対応する最 大及び最小印加電圧 により電動ファン12への印加電圧Vを演算し、ステッ
プ117においてこの印加電圧Vを次式6式%(1) により補正した後、ステップ118においてこの印加電
圧Vをモータ駆動装置46を介して電動ファン12に印
加する出力を行い、第4図のフローチャートによる制御
動作を停止させる。ステップ117は、電動ファン12
の印加電圧と回転速度の間の特性が製品毎にばらついた
り経時変化したりした場合でも、電動ファン12の回転
速度が電磁弁11の開度に応じた所定の値となるように
補正して空燃比に誤差が生ずるのを防(ためである。
In step 116, the CPU 31 calculates the voltage applied to the electric fan 12 according to the maximum and minimum applied voltages corresponding to the maximum and minimum rotation speeds of the electric fan 12 set by the rotation speed input device 42. After calculating V and correcting this applied voltage V in step 117 using the following formula 6, % (1), in step 118 this applied voltage V is output to be applied to the electric fan 12 via the motor drive device 46. , stops the control operation according to the flowchart of FIG. 4. In step 117, the electric fan 12
Even if the characteristics between the applied voltage and the rotational speed vary from product to product or change over time, the rotational speed of the electric fan 12 can be corrected to a predetermined value according to the opening degree of the solenoid valve 11. This is to prevent errors in the air-fuel ratio.

第4図のフローチャートによる制御動作は、前述の如<
0.3秒毎に繰り返して実行され、これにより電子制御
装置30は、T2< Tlの場合は電磁弁11の開度を
最大開度以下の範囲内において増加させ、T2> TI
の場合は電磁弁11の開度を最小開度以上の範囲内にお
いて減少させて、熱交換器20からの出湯温度T2を湯
温設定装置40により設定された出湯温度TIに近付け
て両温塵TI、T2を一致させる。出荷時におけるガス
種による空燃比の調節は、電磁弁11の最大及び最小開
度と、これに対応する電動ファン12の最大及び最小回
転速度の位置においてのみ行われるが、適切な空燃比を
得るための電磁弁11の開度と電動ファン12の回転速
度との間の特性は、第6図に示す如(、定性的にはガス
種が異なっても同一であるので、第3図に示す1つの特
性マツプを用いて前記各最大及び最小値以外の値におい
ても空燃比をガス種に応じた所定の値に保つことができ
る。
The control operation according to the flowchart in FIG. 4 is as described above.
This is repeated every 0.3 seconds, and as a result, the electronic control unit 30 increases the opening degree of the solenoid valve 11 within a range below the maximum opening degree when T2<TI.
In this case, the opening degree of the solenoid valve 11 is decreased within the range of the minimum opening degree or more, and the hot water temperature T2 from the heat exchanger 20 is brought closer to the hot water temperature TI set by the hot water temperature setting device 40, thereby reducing the temperature of both hot water and dust. Match TI and T2. Adjustment of the air-fuel ratio according to the gas type at the time of shipment is performed only at the maximum and minimum opening degrees of the solenoid valve 11 and the corresponding maximum and minimum rotation speeds of the electric fan 12, but an appropriate air-fuel ratio can be obtained. The characteristics between the opening degree of the solenoid valve 11 and the rotational speed of the electric fan 12 for Using one characteristic map, the air-fuel ratio can be maintained at a predetermined value depending on the gas type even at values other than the maximum and minimum values.

上記実施例においては、前述の如く印加電流の比率Ri
と印加電圧の比率Rvの間の特性マツプは、理論的には
第3図に示す如く平方根のカーブPであるが、両氏率R
4,Rvは何れも255ビツトにデジタル化された値と
しているので、実際にはpに示す如く階段状となってい
る。このような特性マツプの場合には印加電流の比率R
iが小さく (電磁弁11の開度が小さく)従ってカー
ブPの勾配が大なる範囲においては、印加電圧の比率R
νは1ビツトを越える単位で変化することになるので、
出力される印加電圧の比率Rνの理論的な値に対する誤
差は2ピツI・以上となり、これにより供給される一次
空気量の理論値からの誤差が増大する。この状態におい
ては一次空気量の絶対値も小さいので相対誤差は一層増
大し、空燃比の誤差が増大するので燃焼が不安定あるい
は不完全になり易い。この問題は、第5図に図形化して
示す如く、ROM32に記憶される特性マツプの横軸を
印加電流の比率Riの2乗をデジタル化した値とし、縦
軸を印加電圧の比率Rvをデジタル化した値とすること
により解決することができる。このようにすれば比率R
iの2乗と比率RvO間の特性マツプは、理論的には第
5図の直線Qに示す通りとなり、これをデジタル化すれ
ば直線Qに沿った段階状のものqとなる。第5図に示す
特性マツプによれば、印加電流の比率Riの2乗の全範
囲において印加電流Rvの比率は殆どの場合1ビツトず
つ変化することになるので、出力される印加電圧の比率
Rvの理論的な値に対する誤差は1ビツト以上となるこ
とは殆どなくなる。これにより供給される一次空気量の
誤差は減少するので、空燃比の誤差も減少し、燃焼は安
定したものとなる。なおこの場合は、第4図のフローチ
ャートはステップ115が前述の説明とは相違したもの
となり、ステップ114で演算した印加電流の比率Ri
を自乗した後、この比率Riの自乗に基づいて第5図に
示す特性マツプから印加電圧の比率Rνを演算すること
になる。
In the above embodiment, as described above, the applied current ratio Ri
The characteristic map between Rv and the ratio Rv of the applied voltage is theoretically a square root curve P as shown in FIG.
Since both 4 and Rv are digitized values of 255 bits, they actually have a step-like shape as shown in p. In the case of such a characteristic map, the ratio of applied current R
In the range where i is small (the opening degree of the solenoid valve 11 is small) and therefore the slope of the curve P is large, the ratio of the applied voltage R
Since ν changes in units of more than 1 bit,
The error from the theoretical value of the ratio Rv of the applied voltage to be output is 2 pics I. or more, which increases the error from the theoretical value of the amount of primary air supplied. In this state, the absolute value of the primary air amount is also small, so the relative error further increases, and the error in the air-fuel ratio increases, so combustion tends to become unstable or incomplete. As shown graphically in FIG. 5, the horizontal axis of the characteristic map stored in the ROM 32 is the digitized value of the square of the applied current ratio Ri, and the vertical axis is the digitized value of the applied voltage ratio Rv. This can be solved by using a converted value. In this way, the ratio R
The characteristic map between the square of i and the ratio RvO is theoretically as shown by the straight line Q in FIG. 5, and if this map is digitized, it becomes a stepwise map q along the straight line Q. According to the characteristic map shown in FIG. 5, the ratio of the applied current Rv changes by 1 bit in most cases over the entire range of the square of the applied current ratio Ri, so the ratio of the applied voltage that is outputted Rv The error with respect to the theoretical value is almost never greater than 1 bit. As a result, the error in the amount of primary air supplied is reduced, the error in the air-fuel ratio is also reduced, and combustion becomes stable. In this case, in the flowchart of FIG. 4, step 115 is different from the above explanation, and the applied current ratio Ri calculated in step 114 is
After squaring, the ratio Rv of the applied voltage is calculated from the characteristic map shown in FIG. 5 based on the square of this ratio Ri.

上記実施例及びその変形例においては、ROM32には
予め演算しあるいは実験により求めた多数の数値の組よ
りなる、印加電流の比率Riと印加電圧の比率RvO間
の特性マツプを記憶させたが、このような特性マツプの
代りに演算式を記憶させ、印加電流の比率Riまたはそ
の自乗が演算される都度、この演算式により印加電圧の
比率Rvを演算するようにしてもよい。
In the above embodiment and its modifications, the ROM 32 stores a characteristic map between the applied current ratio Ri and the applied voltage ratio RvO, which is made up of a large number of sets of numerical values calculated in advance or obtained through experiments. Instead of such a characteristic map, an arithmetic expression may be stored, and the applied voltage ratio Rv may be calculated using this arithmetic expression each time the applied current ratio Ri or its square is calculated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるガス燃焼機器の空燃比制御装置の
構成を示す図、第2図〜第4図は本発明の一実施例を示
し、第2図は全体構成図、第3図は電磁弁への印加電流
の比率と電動ファンへの印加電圧の比率の関係を示す特
性マツプを図形化して示す図、第4図は制御プログラム
を示すフローチャート、第5図は変形実施例の第3図相
当図、第6図はガス種毎の電磁弁への印加電流と電動フ
ァンへの印加電圧との間の特性を示す図である。 符号の説明 1・・・開度範囲設定手段、2・・・回転数範囲設定手
段、3・・・記憶手段、4・・・第1演算手段、5・・
・第2演算手段、6・・・第3演算手段、7・・・第4
演算手段、10・・・バーナ、11・・・電磁弁、12
・・・電動ファン、20・・・熱交換器、40・・・湯
温設定装置、43・・・湯温センサ、45・・・電磁弁
駆動装置、46・・・モータ駆動装置。 第2図 ! 1 第3図 O’y’              )tro546
アtyr4ン鈎青−I71少ヒギ’!’  pi第5図 θン・lσ0ヅ龜 (t?カロ史ジ臂遭カ掟奪冠)1 第6図 幌婢への6γ力ロ重)泥I
FIG. 1 is a diagram showing the configuration of an air-fuel ratio control device for gas combustion equipment according to the present invention, FIGS. 2 to 4 show an embodiment of the present invention, FIG. 2 is an overall configuration diagram, and FIG. FIG. 4 is a flowchart showing a control program; FIG. 5 is a third modified example FIG. 6 is a diagram showing the characteristics between the current applied to the electromagnetic valve and the voltage applied to the electric fan for each type of gas. Explanation of symbols 1... Opening range setting means, 2... Rotation speed range setting means, 3... Storage means, 4... First calculation means, 5...
・Second calculation means, 6...Third calculation means, 7...Fourth
Calculating means, 10... Burner, 11... Solenoid valve, 12
... electric fan, 20 ... heat exchanger, 40 ... hot water temperature setting device, 43 ... hot water temperature sensor, 45 ... solenoid valve drive device, 46 ... motor drive device. Figure 2! 1 Figure 3 O'y') tro546
Atyr4n hook blue-I71 small higi'! ' Pi Figure 5 θn・lσ0ヅ龜(t? Karo history Ji 臂 か か Gurunt) 1 Figure 6 6γ force ro weight for the hoodie) Mud I

Claims (2)

【特許請求の範囲】[Claims] (1)熱交換器内を通る給水を加熱するガスバーナと、
印加電流に応じて開度が連続的に変化して前記ガスバー
ナへのガス供給量を制御する電磁弁と、印加電圧に応じ
て回転数が連続的に変化して前記ガスバーナへの一次空
気供給量を制御する電動ファンを備えてなるガス燃焼機
器の空燃比制御装置において、出湯温度を設定する湯温
設定装置と、前記熱交換器からの出湯温度を検出する湯
温センサと、前記電磁弁の最大及び最小開度を予め所定
の値に設定する開度範囲設定手段と、前記電動ファンの
最大及び最小回転速度を予め所定の値に設定する回転速
度範囲設定手段と、前記最大及び最小開度に対応する最
大及び最小印加電流を基準とする前記電磁弁への印加電
流の比率と前記最大及び最小回転速度に対応する最大及
び最小印加電圧を基準とする前記電動ファンへの印加電
圧の比率との間の予め設定された特性を記憶する記憶手
段と、前記湯温設定装置により設定された出湯温度と前
記湯温センサにより検出された出湯温度を対比して前記
最大及び最小印加電流の範囲内において前記両出湯温度
の差が減少するように前記電磁弁の開度を変化させる印
加電流を演算する第1演算手段と、この第1演算手段に
より演算された印加電流を前記電磁弁に印加する電磁弁
駆動装置と、前記第1演算手段により演算された印加電
流の前記最大及び最小電流を基準とする比率を演算する
第2演算手段と、この第2演算手段により演算された比
率に基づき前記記憶手段に記憶された前記特性から前記
電動ファンへの印加電流の比率を演算する第3演算手段
と、この第3演算手段により演算された比率と前記最大
及び最小印加電圧に基づき前記電動ファンへの印加電圧
を演算する第4演算手段と、この第4演算手段により演
算された印加電圧を前記電動ファンに印加するモータ駆
動装置を備えたことを特徴とするガス燃焼機器の空燃比
制御装置。
(1) A gas burner that heats the water supply passing through the heat exchanger;
A solenoid valve whose opening degree continuously changes according to applied current to control the amount of gas supplied to the gas burner; and a solenoid valve whose rotation speed continuously changes according to applied voltage to control the amount of primary air supplied to the gas burner. The air-fuel ratio control device for gas combustion equipment includes an electric fan that controls a hot water temperature, a hot water temperature setting device that sets a hot water temperature, a hot water temperature sensor that detects a hot water temperature from the heat exchanger, and a hot water temperature sensor that detects the hot water temperature of the solenoid valve. opening range setting means for presetting maximum and minimum opening degrees to predetermined values; rotation speed range setting means for presetting maximum and minimum rotational speeds of the electric fan to predetermined values; and said maximum and minimum opening degrees. The ratio of the current applied to the electromagnetic valve based on the maximum and minimum applied current corresponding to the ratio of the applied voltage to the electric fan based on the maximum and minimum applied voltage corresponding to the maximum and minimum rotation speed, storage means for storing preset characteristics between the two; and a storage means for storing preset characteristics between the hot water temperature setting device and the hot water temperature detected by the hot water temperature sensor, and comparing the hot water temperature set by the hot water temperature setting device with the hot water temperature detected by the hot water temperature sensor to determine whether the hot water temperature is within the range of the maximum and minimum applied current. a first calculating means for calculating an applied current to change the opening degree of the solenoid valve so that the difference between the two outlet hot water temperatures is reduced; and applying the applied current calculated by the first calculating means to the solenoid valve. a solenoid valve driving device; a second calculation means for calculating a ratio of the applied current calculated by the first calculation means with reference to the maximum and minimum currents; a third calculation means for calculating the ratio of the current applied to the electric fan from the characteristics stored in the storage means; and a third calculation means for calculating the ratio of the current applied to the electric fan based on the ratio calculated by the third calculation means and the maximum and minimum applied voltages. An air-fuel ratio control device for gas combustion equipment, comprising: a fourth calculation means for calculating an applied voltage; and a motor drive device for applying the applied voltage calculated by the fourth calculation means to the electric fan.
(2)前記記憶手段により記憶される特性は、前記印加
電流の比率の2乗をデジタル化した値とこれに対応する
前記印加電圧の比率をデジタル化した値よりなる特性マ
ップであることを特徴とする特許請求の範囲第1項に記
載のガス燃焼機器の空燃比制御装置。
(2) The characteristic stored by the storage means is a characteristic map consisting of a digitized value of the square of the applied current ratio and a digitized value of the corresponding applied voltage ratio. An air-fuel ratio control device for gas combustion equipment according to claim 1.
JP62105708A 1987-04-28 1987-04-28 Air-fuel ratio controller for gas combustion equipment Expired - Lifetime JPH0745930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62105708A JPH0745930B2 (en) 1987-04-28 1987-04-28 Air-fuel ratio controller for gas combustion equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62105708A JPH0745930B2 (en) 1987-04-28 1987-04-28 Air-fuel ratio controller for gas combustion equipment

Publications (2)

Publication Number Publication Date
JPS63271022A true JPS63271022A (en) 1988-11-08
JPH0745930B2 JPH0745930B2 (en) 1995-05-17

Family

ID=14414847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62105708A Expired - Lifetime JPH0745930B2 (en) 1987-04-28 1987-04-28 Air-fuel ratio controller for gas combustion equipment

Country Status (1)

Country Link
JP (1) JPH0745930B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6537060B2 (en) 2001-03-09 2003-03-25 Honeywell International Inc. Regulating system for gas burners
CN112524634A (en) * 2020-11-30 2021-03-19 芜湖美的厨卫电器制造有限公司 Control method of water heater, water heater and readable storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1399076B1 (en) * 2010-03-23 2013-04-05 Idea S R L Ora Idea S P A DEVICE AND METHOD OF CONTROL OF THE COMBUSTIBLE AIR FLOW OF A BURNER IN GENERAL

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6537060B2 (en) 2001-03-09 2003-03-25 Honeywell International Inc. Regulating system for gas burners
CN112524634A (en) * 2020-11-30 2021-03-19 芜湖美的厨卫电器制造有限公司 Control method of water heater, water heater and readable storage medium

Also Published As

Publication number Publication date
JPH0745930B2 (en) 1995-05-17

Similar Documents

Publication Publication Date Title
US9879859B2 (en) Combustion apparatus supplying combustion air via suction type fan and method for controlling the same
JPS63271022A (en) Air/fuel ratio control device for gas burning equipment
JP2669771B2 (en) Combustion equipment
JPS6115018A (en) Method of detecting abnormality of fan motor for combustion control system
JP3291104B2 (en) Combustion device and combustion capacity updating operation method thereof
JP3603556B2 (en) Air-fuel ratio control device
JP3136751B2 (en) Control devices such as combustors
JPS60159553A (en) Control device for hot-water supplier
JPH0514169B2 (en)
KR100345610B1 (en) A combustion controlling method for a boiler
JP3431054B2 (en) Combustion equipment
JP3300150B2 (en) Combustion apparatus and method for updating combustion capacity
JPS59212639A (en) Control device for boiler
JPH085064A (en) Combustion control device
JP2669662B2 (en) Water heater control device
JP3018811B2 (en) Combustion control device
JPH07310919A (en) Combustion control device
JPH0713543B2 (en) Water heater
JP2001241654A (en) Combustion equipment
JPS63169424A (en) Combustion controller
JPH0297820A (en) Control device for forced draft type combustion device
JPH0271045A (en) Controller for hot water supplying apparatus
KR980010235A (en) Electronic pump variable control device of heating air conditioner
JPH06265206A (en) Temperature control device for hot water feeder
JPH03122417A (en) Air supplying device for combustion device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term