JPS63271019A - Method and device for uniformly distributing coal pulverized in mill to a plurality of burners - Google Patents

Method and device for uniformly distributing coal pulverized in mill to a plurality of burners

Info

Publication number
JPS63271019A
JPS63271019A JP10360587A JP10360587A JPS63271019A JP S63271019 A JPS63271019 A JP S63271019A JP 10360587 A JP10360587 A JP 10360587A JP 10360587 A JP10360587 A JP 10360587A JP S63271019 A JPS63271019 A JP S63271019A
Authority
JP
Japan
Prior art keywords
pulverized coal
distributor
pulverized
air
mill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10360587A
Other languages
Japanese (ja)
Other versions
JPH0526093B2 (en
Inventor
Mitsuhiro Matsuo
松尾 光広
Shuntaro Koyama
俊太郎 小山
Jinichi Tomuro
戸室 仁一
Atsushi Morihara
淳 森原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP10360587A priority Critical patent/JPS63271019A/en
Publication of JPS63271019A publication Critical patent/JPS63271019A/en
Publication of JPH0526093B2 publication Critical patent/JPH0526093B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To uniformly distribute pulverized coal to a plurality of pulverized coal burners with a suitable solids/gas ratio by modulating the pulverized coal concentration distribution pattern in a distributor with time to equalize the time-sequent average level of the pulverized coal concentration at respective fuel pipe inlets. CONSTITUTION:A guide vane 32 which cuts through a part of the distribution pattern is disposed in a distributor 4, and is rotated at a constant speed by a motor. A solids/gas double-phased flow introduced from the bottom of the distributor 4 has a certain pulverized coal concentration distribution pattern, and moves upwardly through the guide vane 32 as it retains the concentration distribution. Since the guide vane 32 is rotating, the concentration distribution pattern is circumferentially displaced by a rotational angle of the guide vane 32 over the time period for the double-phased flow to pass through the guide vane 32. As the motor speed is determined by random numbers generated at regular intervals, the concentration pattern is randomly changed. Therefore, the time-sequence average level of the pulverized coal concentration near respective fuel pipe inlets is equalized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は微粉炭ボイラの石炭供給系に関わり、特に石炭
供給が、ダイレクトシステムで行われる場合、粉砕した
石炭を複数の微粉炭バーナに均等分配するのに好適な方
法およびそのだめの装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a coal supply system for a pulverized coal boiler, and in particular, when coal is supplied by a direct system, pulverized coal is evenly distributed to a plurality of pulverized coal burners. It relates to a method suitable for dispensing and an apparatus therefor.

〔従来の技術〕[Conventional technology]

微粉炭焚きボイラに微粉炭を供給する万伝VCにビンシ
ステムとダイレクトシステムがアル。ビンシステムとは
、ミルで粉砕した石炭を一旦容器に収容し、適当な2イ
〜ダで切シ出して気流搬送し。
Manden VC, which supplies pulverized coal to pulverized coal-fired boilers, has a bin system and a direct system. In the bin system, coal that has been pulverized by a mill is stored in a container, cut into pieces using an appropriate diameter, and then transported by air flow.

この固−気二相流を分配器を介して複数の燃料管に分け
、微粉炭焚きボイラの複数のバーナに供給するものであ
る。しかし一般に用いられているのは、システムの簡素
さ、運転取扱の容易さ、動力節減等の点から第2図に示
すダイレクトシステムである。第2図におりて、塊炭1
をミル2によって微粉砕する。搬送空気(燃焼−次空気
)源3から提供する空気で微粉炭を気流搬送する。固−
気二相流を形成した微粉炭を分配器4で複数の燃料管8
に分配し、微粉炭ボイラ6に設置された微粉炭バーナ5
に供給する。
This solid-gas two-phase flow is divided into a plurality of fuel pipes via a distributor and is supplied to a plurality of burners of a pulverized coal-fired boiler. However, the direct system shown in FIG. 2 is generally used because of its simplicity, ease of operation, and power savings. In Figure 2, lump coal 1
is pulverized by Mill 2. The pulverized coal is air-flow conveyed by air provided from a conveying air (combustion air) source 3. Solid
The pulverized coal that has formed a gas two-phase flow is passed through a distributor 4 to a plurality of fuel pipes 8.
pulverized coal burner 5 installed in pulverized coal boiler 6
supply to.

第3図にミル2の概要ヲ示す。切願円錐状の分配器4は
ミル頂部に取シ付けられており、これに6〜10本程度
程度料管8が接続される。9は給炭骨、10はサイクロ
ン、11は71ウノング。
Figure 3 shows an overview of Mill 2. A conical distributor 4 is attached to the top of the mill, and about 6 to 10 feed pipes 8 are connected to it. 9 is coal supply bone, 10 is cyclone, 11 is 71 unong.

12はスプリングl 2’を下面に設けたスズリング7
L/−ム、13は上記スプリングl 2’で押圧される
プレッシャーフレーム、+4fd粉砕リング。
12 is a tin ring 7 with a spring l2' provided on the bottom surface.
L/-m, 13 is a pressure frame pressed by the above spring l2', +4fd crushing ring.

15はプレッシャーフレーム13を介してスプリング1
2′の力で粉砕リング14に押し付けられるローラであ
る。
15 is the spring 1 via the pressure frame 13
This roller is pressed against the crushing ring 14 with a force of 2'.

第3図の各部の機能を第4図を用いて説明する。The functions of each part shown in FIG. 3 will be explained using FIG. 4.

原炭は給炭骨9より連続的に供給される。ミルの下方で
は、粉砕リング14が垂直軸に対して回転している。粉
砕リング中央に落下した原炭は、遠心力により粉砕リン
グ外周に移動する。更に粉砕リング外周の溝とハウソン
グ11に支持された粉砕ローラ15との間にはさ丑り圧
縮・せん断力によυ粉砕される。粉砕された微粉炭は一
次空気と共に固−気二相流を形成する。旋回を与えられ
た一次空気によって吹き上げられた粗粉は一次分級によ
り再び粉砕部に導かれる。微粉を含んだ固−気二相流に
対しては、粒径を揃えるためサイクロン10によって二
次分域が行われる。粒径調整された固−気二相流を分配
器4に尋人し谷燃料管8に供給する。
Raw coal is continuously supplied from the coal feeder 9. Below the mill, a grinding ring 14 rotates about a vertical axis. The raw coal that falls into the center of the crushing ring moves to the outer periphery of the crushing ring due to centrifugal force. Further, the material is crushed by compression and shear force between the groove on the outer periphery of the crushing ring and the crushing roller 15 supported by the housing song 11. The crushed pulverized coal forms a solid-gas two-phase flow with the primary air. The coarse powder blown up by the swirled primary air is guided back to the crushing section through primary classification. A solid-gas two-phase flow containing fine powder is subjected to secondary division by a cyclone 10 in order to equalize the particle size. The solid-gas two-phase flow whose particle size has been adjusted is sent to the distributor 4 and supplied to the valley fuel pipe 8.

固−気二相流を均等に各燃料管8に分配するにけ、■ミ
ル2から微粉炭バーナ5までの各燃料管8に、固−気二
相流を流したときの抵抗が同じであること、0分配器4
内で微粉炭粒子がよく分散した状態であること、の二つ
の必要条件がある。
In order to evenly distribute the solid-gas two-phase flow to each fuel pipe 8, ■ the resistance when the solid-gas two-phase flow flows through each fuel pipe 8 from the mill 2 to the pulverized coal burner 5 is the same. There is, 0 distributor 4
There are two requirements: that the pulverized coal particles be well dispersed within the pulverized coal.

従来、ダイレクトシステムの分配に関する研究はあまり
行われておらず、現状では、■の燃料管8の抵抗を揃え
るという要件は、M2図に於て各燃料管8に予め空気の
みを流しその配管抵抗が同じになるようダンパ7で調整
することで代表させている。■に対しては、従来、考慮
されていない。
In the past, not much research has been conducted on direct system distribution, and at present, the requirement of ① to equalize the resistance of the fuel pipes 8 is based on the pipe resistance of flowing only air into each fuel pipe 8 in advance in the M2 diagram. This is represented by adjusting damper 7 so that the values are the same. ① has not been considered in the past.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述したように、従来、ダイレクトシステムにおける複
数の微粉炭バーナに到る各燃料管への微粉炭の分配に関
しては、各燃料管8に予め空気のみを流して、そのとき
の配管抵抗が同じになるようにダンパ7を調整すること
が行われているが。
As mentioned above, conventionally, when distributing pulverized coal to each fuel pipe leading to a plurality of pulverized coal burners in a direct system, only air is allowed to flow through each fuel pipe 8 in advance so that the piping resistance is the same. However, the damper 7 is adjusted so that the

しかし、これのみでは実除に微粉炭−空気の固−気二相
流を流したときの分配が一様にはならず、個々の微粉炭
バーナでは要求する固−気比が得られず、NOxや未燃
成分の増加の原因となるという問題があった。
However, this alone does not result in uniform distribution when a solid-gas two-phase flow of pulverized coal and air flows, and the required solid-air ratio cannot be obtained with each pulverized coal burner. There was a problem in that it caused an increase in NOx and unburned components.

本発明の目的は、ダイレクトシステムにおいて、ミルで
微粉砕した石炭全複数の微粉炭バーナに到る各燃料供給
管に、従来技術に比べて、より良好な固−気比を以て、
よシ均等に分配する方法およびそのための装置を提供す
ることにある。
The object of the present invention is to supply all the coal pulverized in a mill to each fuel supply pipe leading to a plurality of pulverized coal burners in a direct system with a better solid-air ratio than in the prior art.
The object of the present invention is to provide a method for evenly distributing the liquid and a device therefor.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、分配器内の微粉炭濃度分布パターンを経時的
に変化させることによって、各燃料管入り口の微粉炭濃
度の時間的平均値を那しくすることによシ、各燃料管へ
の石炭供給蓋を統計的に等しくするものである。
The present invention changes the pulverized coal concentration distribution pattern in the distributor over time to reduce the temporal average value of the pulverized coal concentration at the entrance of each fuel pipe. This makes the supply lids statistically equal.

分配器内の微粉炭濃度分布のパターンを変更する手段と
しては、分配器内に駆動可能な案内羽根を設けること、
又は、分配器外周部から分配器内に空気を注入する手段
を設けること等を挙けることができる。
As a means for changing the pattern of pulverized coal concentration distribution in the distributor, a driveable guide vane is provided in the distributor;
Alternatively, it is possible to provide means for injecting air into the distributor from the outer periphery of the distributor.

〔作用〕[Effect]

均等分配の必要条件は前述の通り、■各燃料管に固−気
二相流を流したときの抵抗が寺しいこと、0分配器内で
粒子の分散がよく、各燃料管入り口付近の微粉炭粒子濃
度がどれも等しいことである。
As mentioned above, the necessary conditions for uniform distribution are as follows: ■ The resistance when solid-gas two-phase flow is passed through each fuel pipe is high, the particles are well dispersed in the 0 distributor, and the fine powder near the entrance of each fuel pipe is small. The charcoal particle concentration is the same in all cases.

ところで現状の技術では、ダイレクトシステムで使用し
ている固−気比(微粉炭重量/−次全空気重量は0.3
〜0.5であって、粉体流量は検出できないので、各燃
料管に検出端及び操作端を設置し、微粉炭流量を個々に
フィードバック制御することは不可能である。そこで本
発明では、■の燃料管の抵抗を揃えるという条件は、第
2図に於て予め各燃料管8に空気のみを流し、その配管
抵抗が同じになるようダンパ7で調整することにより代
表させることは従来技術と同じであるが、その上で。
By the way, with the current technology, the solid-air ratio (pulverized coal weight/-total air weight used in the direct system is 0.3
~0.5, and the powder flow rate cannot be detected. Therefore, it is impossible to install a detection end and an operation end in each fuel pipe and individually feedback control the pulverized coal flow rate. Therefore, in the present invention, the condition (2) of equalizing the resistances of the fuel pipes is achieved by flowing only air into each fuel pipe 8 in advance and adjusting with the damper 7 so that the pipe resistances are the same as shown in FIG. It is the same as the conventional technology, but on top of that.

■の条件に関して1分配器の工夫によシ、各燃料管人口
の微粉炭濃度を等しくする方法を考えた。
Regarding the condition (2), we devised a method to equalize the pulverized coal concentration in each fuel pipe by devising a distributor.

分配器に導かれる固−気二相流は、ミルの中心軸に対し
て、非対称な構成要素(−次空気入口、粉砕ローラ、ス
プリングフレーム12、プレッシャーフレーム13等)
のために、例えば第5図、第6図に示すような濃度分布
のノくターンを持っている。28は微粉炭濃度の薄い所
、29は中程度の所、30は濃い所を示している。A、
B、C。
The solid-gas two-phase flow guided to the distributor is caused by asymmetrical components (air inlet, grinding rollers, spring frame 12, pressure frame 13, etc.) that are asymmetrical with respect to the central axis of the mill.
Therefore, the concentration distribution has a number of turns as shown in FIGS. 5 and 6, for example. 28 indicates a location where the pulverized coal concentration is low, 29 indicates a location where it is medium, and 30 indicates a location where the pulverized coal concentration is high. A,
B.C.

Dは燃料管を示している。この濃度分布のパターンは一
次空気量1石炭粉砕量等の粉砕条件が一定のとき時間的
に大きく変動することはない。このときの各燃料管の入
口近傍の微粉炭濃度の確率密度分布は第7図のようでる
る。総石炭重量を総金気体積で除した平均濃度に対して
、各燃料管の微粉炭濃度は、ばらついている。結果的に
濃度の濃い場所に接続される燃料管AKは、多量の微粉
炭が流れ、希薄な場所に接続される燃料管Cには、微粉
炭があまり流れない。分配器の直径!’;1.3000
醪以上もあり、この濃度分布のパターン全くずし微粉炭
粒子を分配器内に一様に分散させることは出来ない。そ
こで1本発明では、各燃料管入口付近の微粉炭濃度の時
間的平均値が総て等しくなるように分配器内の濃度分布
のパターンを、経時的に変更させることを考えた。
D indicates a fuel pipe. This concentration distribution pattern does not vary greatly over time when the pulverization conditions, such as the amount of primary air and the amount of pulverized coal, are constant. At this time, the probability density distribution of the pulverized coal concentration near the inlet of each fuel pipe is as shown in FIG. The pulverized coal concentration in each fuel pipe varies with respect to the average concentration obtained by dividing the total coal weight by the total metal volume. As a result, a large amount of pulverized coal flows through the fuel pipe AK connected to a place where the concentration is high, and not much pulverized coal flows through the fuel pipe C connected to a place where the concentration is low. Distributor diameter! ';1.3000
The concentration distribution pattern is completely different and the pulverized coal particles cannot be uniformly dispersed in the distributor. Therefore, in one aspect of the present invention, we considered changing the concentration distribution pattern in the distributor over time so that the temporal average values of the pulverized coal concentrations near the inlets of each fuel pipe are all equal.

分配器内の濃度分布のパターンを変更する手段としては
1分配器内で案内羽根等を駆動する手段、または、分配
器外部からの空気注入を行う手段が考えられる。また、
各燃料管入口付近の微粉炭濃度の平均値を等しくする一
手法として、前記手段を例えば乱数発生装置に接続して
動作させることも考えられる〇 〔実施例〕 以下簡単な実施例モデルを用いて本発明の原理及び作用
を説明する。まず、第8図に示すように。
Possible means for changing the concentration distribution pattern within the distributor include driving guide vanes or the like within one distributor, or means injecting air from outside the distributor. Also,
As a method of equalizing the average value of the pulverized coal concentration near the inlet of each fuel pipe, it is possible to operate the above means by connecting it to, for example, a random number generator〇 [Example] The following is a simple example model. The principle and operation of the present invention will be explained. First, as shown in FIG.

分配器4内に分布パターンの一部を切り取る案内羽根3
2を設け、これをモータ31で一定速度で回転させる実
施例を考える。モータの角速度をdθ/dt、固−気二
相流の上昇速度をVb1羽根の長さをLとするとき、濃
度分布のパターンは、固−気二相流が羽根を通過する時
間T v = I、/V b中にモータが回転する角度
θ=dθ/dt−Tvだけ、周方向に移動する。即ち第
9図の濃度分布パターンから、第10図のパターンに変
更することが可能である。
Guide vanes 3 that cut out part of the distribution pattern in the distributor 4
Consider an example in which a motor 2 is provided and rotated at a constant speed by a motor 31. When the angular velocity of the motor is dθ/dt, the rising speed of the solid-vapor two-phase flow is Vb1, and the length of the blade is L, the concentration distribution pattern is the time for the solid-vapor two-phase flow to pass through the blade T v = The motor moves in the circumferential direction by the rotation angle θ=dθ/dt−Tv during I,/V b. That is, it is possible to change the density distribution pattern shown in FIG. 9 to the pattern shown in FIG. 10.

dθ/dtの速さの大小によって第11図のように濃度
分布パターンを単位時間当シ色々な角度θずらずことが
出来る。この濃度分布パターンの変更を各燃料管入口付
近の微粉炭濃度の時間的平均値が等しくなるように行え
ば5分配器内に微粉炭を均一に分散させるのと等価な効
果が得られる。上記時間的平均値を等しくするためには
例えば次のような方法がある。すなわち上記案内羽根の
回転速度を任意の数列に対応させる。−万、乱数発生装
置で一定時間おきに乱数を発生させる。発生した乱数で
案内羽根の回転数を決定、駆動させれば、濃度分布パタ
ーンが無作為に変更される。このときの各燃料管入口に
おける微粉炭濃度の確率密度分布は第12図のようであ
り、第5図、第6図。
Depending on the speed of dθ/dt, the density distribution pattern can be shifted by various angles θ per unit time as shown in FIG. If this concentration distribution pattern is changed so that the temporal average value of the pulverized coal concentration near the inlet of each fuel pipe becomes equal, an effect equivalent to uniformly dispersing the pulverized coal in the five distributors can be obtained. For example, the following method can be used to equalize the above-mentioned temporal average values. That is, the rotational speed of the guide vane is made to correspond to an arbitrary number sequence. - 10,000, generate random numbers at regular intervals with a random number generator. By determining the rotation speed of the guide vanes using the generated random numbers and driving them, the concentration distribution pattern is changed at random. At this time, the probability density distribution of the pulverized coal concentration at the inlet of each fuel pipe is as shown in FIG. 12, and FIGS. 5 and 6.

第7図に示した燃料管A、B、C,Dの微粉炭濃度の時
間的平均値は一致する。
The temporal average values of the pulverized coal concentrations in the fuel pipes A, B, C, and D shown in FIG. 7 match.

但し乱数の使用は本発明においては必ずしも必要ではな
く、要は、各燃料管人口附近における微粉炭濃度の時間
的平均値が全て等しくなるように分配器内の濃度分布パ
ターンを経時的に変化はせればよい。
However, the use of random numbers is not necessarily necessary in the present invention, and the point is that the concentration distribution pattern in the distributor is not changed over time so that the temporal average values of pulverized coal concentrations near each fuel pipe population are all equal. All you have to do is do it.

上記の実施例モデルに基ついた不発明の一実施例を第1
図を用いて説明する。第1図にネオ分配器は給炭管9、
燃料′u8等の寸法が現状の分配器と全く同じであり、
従って既設のミルに対しても適用可能である。分配器下
部の微粉炭導入部には、ミルの垂直中心軸に対して回転
OJ能な案内羽根32が設置されている。第13図に案
内羽根32の取り付は部分を示す。案内羽根32はベア
リング34によって回転可能に支持された回転リング3
3に接続される。回転リング33はモータに接続された
ビニオン35により駆動される。分配器下部より導入さ
れる固−気二相流は一定の微粉炭濃度分布のパターンを
持っている。固−気二相流は濃度分布を持ったまま案内
羽根内を上昇する。
The first example of non-invention based on the above example model is
This will be explained using figures. Figure 1 shows the Neo distributor with coal feed pipe 9,
The dimensions of the fuel 'u8 etc. are exactly the same as the current distributor,
Therefore, it is also applicable to existing mills. A guide vane 32 that can be rotated about the vertical central axis of the mill is installed in the pulverized coal introduction section at the bottom of the distributor. FIG. 13 shows a portion of how the guide vane 32 is attached. The guide vane 32 is a rotating ring 3 rotatably supported by a bearing 34.
Connected to 3. The rotating ring 33 is driven by a pinion 35 connected to a motor. The solid-gas two-phase flow introduced from the bottom of the distributor has a constant pulverized coal concentration distribution pattern. The solid-gas two-phase flow rises within the guide vane while maintaining its concentration distribution.

案内羽根32#′i回転しているので、固−気二相流が
案内羽根32を通り抜けるのにかかった時間内に案内羽
根が回転した角度だけ、濃度分布パターンが円周方向に
ずれる。モータ回転数は、一定時間おきに発生する乱数
によって決定されるので。
Since the guide vane 32#'i is rotating, the concentration distribution pattern is shifted in the circumferential direction by the angle by which the guide vane rotates within the time it takes for the solid-gas two-phase flow to pass through the guide vane 32. The motor rotation speed is determined by random numbers generated at regular intervals.

濃度分布パターンは無作為に変更される。よって、各燃
料管入口付近の微粉炭濃度の時間的平均値は等しくなる
The concentration distribution pattern is changed randomly. Therefore, the temporal average value of the pulverized coal concentration near each fuel pipe inlet becomes equal.

他の実施例を第14図に示す。前記第1図の実施例では
、ミルの垂直中心軸に対して回転可能な案内羽根32を
設けたのに対して、第14図では図示の夫々の軸36′
を中心にして角変位可能な案内羽根36を設けたもので
ある。この案内羽根の角変位を乱数に対応させることが
できる。
Another embodiment is shown in FIG. In the embodiment shown in FIG. 1, the guide vanes 32 are rotatable with respect to the vertical central axis of the mill, whereas in FIG.
A guide vane 36 is provided which can be angularly displaced around the center. The angular displacement of this guide vane can be made to correspond to a random number.

更に他の実施例を第15図に示す。案内羽根の替わりに
分配器4の側面には、開閉弁37を介して空気源が接続
されている。複数の開閉弁37のうちの一個または数個
の弁の開閉選択を乱数で支配するものである。また、こ
の場合開閉弁の選択を必ずしも乱数で行う必要性はない
。多数の弁のうち一個または隣合う数個の弁を閉じ、他
の弁は開けることにより、微粉炭粒子を閉じた弁の付近
に局在化させる。この閉じた弁を一個ずつ瞬の弁にシフ
トすることによって、各燃料管入口付近の濃度の時間的
平均値を等しくすることが出来る。
Still another embodiment is shown in FIG. An air source is connected to the side surface of the distributor 4 via an on-off valve 37 instead of the guide vane. The opening/closing selection of one or several of the plurality of on-off valves 37 is controlled by random numbers. Further, in this case, it is not necessary to select the on-off valve using random numbers. By closing one or several adjacent valves among a large number of valves and opening the other valves, the pulverized coal particles are localized near the closed valve. By shifting these closed valves one by one to instantaneous valves, it is possible to equalize the temporal average value of the concentration near the inlet of each fuel pipe.

先に述べたように、現状の技術では、ダイレクトシステ
ムで使用している固−気比(微粉炭頁蓋/−次空気重i
)では粉体流量は検出できず、このため各燃料管に検出
端及び操作端を設置して微粉炭’a、量を各燃料管個々
にフィードバック制御することは不可能である。そこで
本発明では、均等分配の前記必要条件■である燃料管の
抵抗を揃えることは第2図に於て各燃Rf8に空気のみ
を流しその配管抵抗が同じになるようダンパ7で調整す
ることで代表きせることとした。しかし固−気二相流を
流したときの配管抵抗が同じになら匁いのが現実である
。故に、本発明では、分配器の工夫により、前述のよう
に各燃料管入口の微粉炭濃度を等しくする方法を考えた
。しかし、今後、粉体流量計が開発されれば、第16図
に示す均等分配方法が可能になる。すなわち分配器4に
は例えばM16図のごとき装置を用いる。ミル2で粉砕
した石炭を一次空気40によって気流搬送する。谷燃料
管8を流れる微粉炭は粉体流量計38によって検出され
る。各々の微粉炭流蓋の信号は、データ処理装[41に
入力される。データ処理装置は微粉炭流量の少ない燃料
管の入口の微粉炭濃度の平均値が増加するように開閉弁
37をフィート゛バック制御する。この方法によれば、
配管抵抗の差も加味した精密な均等分配制御が出来る。
As mentioned earlier, with the current technology, the solid-air ratio (pulverized coal page cover / next air weight i) used in the direct system is
), it is impossible to detect the powder flow rate, and therefore it is impossible to install a detection end and an operation end in each fuel pipe to feedback control the amount of pulverized coal for each fuel pipe individually. Therefore, in the present invention, in order to equalize the resistance of the fuel pipes, which is the above-mentioned necessary condition (2) for equal distribution, as shown in FIG. I decided to represent him. However, the reality is that if the piping resistance is the same when a solid-gas two-phase flow flows, the resistance will be higher. Therefore, in the present invention, a method was devised to equalize the pulverized coal concentration at each fuel pipe inlet as described above by devising a distributor. However, if powder flowmeters are developed in the future, the uniform distribution method shown in FIG. 16 will become possible. That is, for the distributor 4, for example, a device as shown in Fig. M16 is used. The coal pulverized by the mill 2 is air-flow conveyed by the primary air 40. Pulverized coal flowing through the valley fuel pipe 8 is detected by a powder flow meter 38. The signal of each pulverized coal flow cap is input to the data processing device [41]. The data processing device performs feedback control on the on-off valve 37 so that the average value of the pulverized coal concentration at the inlet of the fuel pipe where the pulverized coal flow rate is low increases. According to this method,
Precise, even distribution control that also takes into account differences in piping resistance is possible.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、微粉炭焚きボイラの微粉炭供給ダイレ
クトシステムに於て、コンパクトで負荷変動に対応可能
であり、しかも均一な固−気比を以て微粉炭を各バーナ
への各燃料管に均等に分配できる分配方法および装置が
得られる。
According to the present invention, in a pulverized coal direct supply system for a pulverized coal-fired boiler, it is compact and can respond to load fluctuations, and in addition, pulverized coal is uniformly distributed to each fuel pipe to each burner with a uniform solid-air ratio. A dispensing method and apparatus are obtained that allow dispensing.

よって各微粉炭バーナが要求する固−気比の微粉炭と空
気を提供し、火力プラントの未燃分、NOx・の減少を
実現することが出来る。
Therefore, each pulverized coal burner can provide pulverized coal and air with the required solid-air ratio, and it is possible to reduce unburned content and NOx in a thermal power plant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る分配器の構造を示す図
、第2図は微粉炭焚きボイラにおける石炭供給ダイレク
トシステムの概要図、第3図はミルの構造図、第4図は
ミルの機能説明図、第5図は現状の分配器内の濃度分布
の平面図、第6図は現状の分配器内の濃度分布の側面図
、第7図は現状の分配器の各燃料管人口の微粉炭濃度の
確率密度分布、第8図は濃度分布パターン変更手段の一
例の説明図、第9図は第8図における変更前の微粉炭濃
度分布パターン、第1O図は第8図における変更後の微
粉炭濃度分布パターン、第11図は微粉炭濃度分布パタ
ーンを任意に変更する説明図、第12図は各燃料管入口
の微粉炭濃度の時間的平均値を等しくするように濃度分
布パターンを変更したときの各燃料管入口の微粉炭濃度
の確率密度分布の図、第13図は第1図の案内羽根取り
付は部を示す図、第14図は本発明の他の実施例の説明
図、第15図は更に他の実施例の説明図、第16図はそ
の他の実施例の説明図である。 符号の説明 2・・・ミル      4・・・分配器5・・・微粉
炭バーナ  6・・・微粉炭ボイラ7・・・ダンパ  
    8・・・燃料管9・・・給炭管    28・
・・微粉炭濃度(薄)29・・・微粉炭濃度(中)30
・・・微粉炭濃度(#)32.36・・・条内羽根。 鵬1区 第3図 兜4図 地5図     第7図 第11 図 □ 第12図 姑1δ図 第14図 第16図
Fig. 1 is a diagram showing the structure of a distributor according to an embodiment of the present invention, Fig. 2 is a schematic diagram of a direct coal supply system in a pulverized coal-fired boiler, Fig. 3 is a structural diagram of the mill, and Fig. 4 is a diagram showing the structure of a distributor according to an embodiment of the present invention. A functional explanatory diagram of the mill. Figure 5 is a plan view of the concentration distribution in the current distributor, Figure 6 is a side view of the concentration distribution in the current distributor, and Figure 7 is a diagram of each fuel pipe in the current distributor. Figure 8 is an explanatory diagram of an example of the concentration distribution pattern changing means, Figure 9 is the pulverized coal concentration distribution pattern before the change in Figure 8, Figure 1O is the probability density distribution of the pulverized coal concentration in the population, and Figure 1O is the probability density distribution in Figure 8. The pulverized coal concentration distribution pattern after the change, Fig. 11 is an explanatory diagram for arbitrarily changing the pulverized coal concentration distribution pattern, and Fig. 12 shows the concentration distribution so that the temporal average value of the pulverized coal concentration at each fuel pipe inlet is equalized. A diagram of the probability density distribution of the pulverized coal concentration at the inlet of each fuel pipe when the pattern is changed, FIG. 13 is a diagram showing the guide vane attachment part of FIG. 1, and FIG. 14 is another embodiment of the present invention. FIG. 15 is an explanatory diagram of still another embodiment, and FIG. 16 is an explanatory diagram of another embodiment. Explanation of symbols 2... Mill 4... Distributor 5... Pulverized coal burner 6... Pulverized coal boiler 7... Damper
8... Fuel pipe 9... Coal feed pipe 28.
...Pulverized coal concentration (light) 29...Pulverized coal concentration (medium) 30
...Pulverized coal concentration (#) 32.36...Intra-row blade. Peng 1 District Figure 3 Helmet 4 Figure Map 5 Figure 7 Figure 11 Figure □ Figure 12 Mother-in-law 1δ Figure 14 Figure 16

Claims (1)

【特許請求の範囲】 1、ミルで粉砕した微粉炭を空気によって気流搬送し、
分配器を介して複数の燃料管に分配し、微粉炭焚きボイ
ラの複数のバーナに供給する微粉炭供給ダイレクトシス
テムに於て、各燃料管入口付近の微粉炭濃度の時間的平
均値が総て等しくなるように分配器内の微粉炭濃度分布
のパターンを経時的に変化させることを特徴とする、ミ
ルで粉砕した微粉炭を複数のバーナに均等分配する方法
。 2、ミルで粉砕した微粉体を空気によって気流搬送し、
分配器を介して複数の燃料管に分配し、微粉炭焚きボイ
ラの複数のバーナに供給する微粉炭供給ダイレクトシス
テムに於て、分配器内の微粉炭濃度分布のパターンを変
更するための駆動可能な案内羽根を分配器内に備えたこ
とを特徴とする、ミルで粉砕した微粉炭を複数のバーナ
に均等分配するための装置。 3、ミルで粉砕した微粉炭を空気によって気流搬送し、
分配器を介して複数の燃料管に分配し、微粉炭焚きボイ
ラの複数のバーナに供給する微粉炭供給ダイレクトシス
テムに於て、分配器内の微粉炭濃度分布のパターンを変
更するための空気を分配器の周囲の複数箇所から吹き込
む手段と、各々の該空気吹き込み箇所に設けた空気流量
調節弁または開閉弁とを備えたことを特徴とする、ミル
で粉砕した微粉炭を複数のバーナに均等分配するための
装置。
[Claims] 1. Pulverized coal pulverized in a mill is transported by air,
In a pulverized coal supply direct system that distributes fuel to multiple fuel pipes via a distributor and supplies it to multiple burners of a pulverized coal-fired boiler, the temporal average value of the pulverized coal concentration near the entrance of each fuel pipe is A method for evenly distributing pulverized coal pulverized in a mill to a plurality of burners, characterized by changing the pattern of pulverized coal concentration distribution in a distributor over time so that the pulverized coal becomes equal. 2. The fine powder pulverized in a mill is transported by air,
In a pulverized coal supply direct system that distributes fuel to multiple fuel pipes via a distributor and supplies it to multiple burners of a pulverized coal-fired boiler, it can be driven to change the pattern of pulverized coal concentration distribution in the distributor. A device for evenly distributing pulverized coal pulverized in a mill to a plurality of burners, characterized by having a guide vane inside the distributor. 3. Pulverized coal pulverized in a mill is transported by air,
In a pulverized coal supply direct system that distributes air to multiple fuel pipes via a distributor and supplies it to multiple burners of a pulverized coal-fired boiler, air is used to change the pattern of pulverized coal concentration distribution in the distributor. The device is characterized in that it is equipped with means for blowing in air from multiple locations around the distributor, and an air flow control valve or an on-off valve provided at each of the air blowing locations. Device for dispensing.
JP10360587A 1987-04-27 1987-04-27 Method and device for uniformly distributing coal pulverized in mill to a plurality of burners Granted JPS63271019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10360587A JPS63271019A (en) 1987-04-27 1987-04-27 Method and device for uniformly distributing coal pulverized in mill to a plurality of burners

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10360587A JPS63271019A (en) 1987-04-27 1987-04-27 Method and device for uniformly distributing coal pulverized in mill to a plurality of burners

Publications (2)

Publication Number Publication Date
JPS63271019A true JPS63271019A (en) 1988-11-08
JPH0526093B2 JPH0526093B2 (en) 1993-04-15

Family

ID=14358404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10360587A Granted JPS63271019A (en) 1987-04-27 1987-04-27 Method and device for uniformly distributing coal pulverized in mill to a plurality of burners

Country Status (1)

Country Link
JP (1) JPS63271019A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006520457A (en) * 2003-03-05 2006-09-07 ヴァツキー,ジョエル Balanced damper
JP2008241081A (en) * 2007-03-26 2008-10-09 Mitsubishi Heavy Ind Ltd Pulverized coal concentration adjusting device
JP2012177536A (en) * 2011-01-20 2012-09-13 Babcock Power Services Inc Coal flow balancing device
WO2013106727A1 (en) * 2012-01-13 2013-07-18 Babcock Power Services, Inc. Adjustable division plate for classifier coal flow control
JP2013544343A (en) * 2010-09-09 2013-12-12 アルストム テクノロジー リミテッド Fossil fuel distribution assembly
CN104215492A (en) * 2014-10-08 2014-12-17 朱天一 Upwards-dialing and cutting type coal sample division device and division methods
US9657944B2 (en) 2010-09-09 2017-05-23 General Electric Technology Gmbh Assembly for fossil fuel distribution
WO2017148954A1 (en) * 2016-02-29 2017-09-08 General Electric Technology Gmbh System, method and apparatus for controlling the flow distribution of solid particles
CN110813514A (en) * 2019-11-11 2020-02-21 西安交通大学 Passive self-adjusting gas-solid two-phase distributor

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006520457A (en) * 2003-03-05 2006-09-07 ヴァツキー,ジョエル Balanced damper
JP2008241081A (en) * 2007-03-26 2008-10-09 Mitsubishi Heavy Ind Ltd Pulverized coal concentration adjusting device
WO2008123109A1 (en) * 2007-03-26 2008-10-16 Mitsubishi Heavy Industries, Ltd. Pulverized coal concentration regulator and pulverized coal combustion boiler
US8590464B2 (en) 2007-03-26 2013-11-26 Mitsubishi Heavy Industries, Ltd. Pulverized coal concentration adjustment apparatus and pulverized coal combustion boiler
US9657944B2 (en) 2010-09-09 2017-05-23 General Electric Technology Gmbh Assembly for fossil fuel distribution
JP2013544343A (en) * 2010-09-09 2013-12-12 アルストム テクノロジー リミテッド Fossil fuel distribution assembly
JP2012177536A (en) * 2011-01-20 2012-09-13 Babcock Power Services Inc Coal flow balancing device
WO2013106727A1 (en) * 2012-01-13 2013-07-18 Babcock Power Services, Inc. Adjustable division plate for classifier coal flow control
US9689568B2 (en) 2012-01-13 2017-06-27 Babcock Power Services, Inc. Adjustable division plate for classifier coal flow control
US9982889B2 (en) 2012-01-13 2018-05-29 Babcock Power Services, Inc. Adjustable division plate for classifier coal flow control
CN104215492A (en) * 2014-10-08 2014-12-17 朱天一 Upwards-dialing and cutting type coal sample division device and division methods
WO2017148954A1 (en) * 2016-02-29 2017-09-08 General Electric Technology Gmbh System, method and apparatus for controlling the flow distribution of solid particles
CN108698088A (en) * 2016-02-29 2018-10-23 通用电器技术有限公司 System, method and the equipment of flow distribution for controlling solid particle
US10493463B2 (en) 2016-02-29 2019-12-03 General Electric Technology Gmbh System, method and apparatus for controlling the flow distribution of solid particles
CN108698088B (en) * 2016-02-29 2022-04-26 通用电器技术有限公司 System, method and apparatus for controlling flow distribution of solid particles
CN110813514A (en) * 2019-11-11 2020-02-21 西安交通大学 Passive self-adjusting gas-solid two-phase distributor
CN110813514B (en) * 2019-11-11 2020-09-08 西安交通大学 Passive self-adjusting gas-solid two-phase distributor

Also Published As

Publication number Publication date
JPH0526093B2 (en) 1993-04-15

Similar Documents

Publication Publication Date Title
US4754932A (en) Coal pulverizer inerting and fire extinguishing system
JPS63271019A (en) Method and device for uniformly distributing coal pulverized in mill to a plurality of burners
WO2009093346A1 (en) Roller mill structure
WO2017134856A1 (en) Solid fuel pulverization device and control method for same
CN101300453A (en) On-line adjustable coal flow distributing device
CN103822224A (en) Full automatic coal powder concentration regulator of coal grinder
CN104627684B (en) A kind of method of online anti-station boiler primary air piping plugging
JP2020116536A (en) Solid fuel crushing device and electric power generating plant comprising the same as well as control method for solid fuel crushing device
US6966508B2 (en) On-line control of coal flow
CN103807852A (en) Secondary air distributing device and method of pulverized coal boiler
AU593893B2 (en) Pulverized solid control system
US4489664A (en) Closed loop fuel feed system for multiple direct fired burners
JPS63259316A (en) Pulverized coal distributor of vertical type mill
US6615750B2 (en) Sorbent conditioning and direct feed apparatus for a steam generator and a method for retrofitting a steam generator with same
CN212299048U (en) Powder making system
CN212821149U (en) Novel adjust middlings separator
JP2020041776A (en) Distributor of solid/gas two-phase flow
CN106583018A (en) Selective distributor for primary-air powder from medium-speed coal mill
CA2087376A1 (en) System and method for feeding paste material or slurry into a furnace
JPH0438464B2 (en)
US4754931A (en) Pulverized solid control system
CN203744292U (en) Automatic pulverized coal concentrationadjusting device for coal mill
AU2007294069B2 (en) Mill arrangement with uniform dust distribution and method of operating a mill arrangement
CN220610655U (en) Wind powder on-line measurement and control system for coal mill
JPH0118326B2 (en)