JPS63270792A - Coal liquefaction method - Google Patents

Coal liquefaction method

Info

Publication number
JPS63270792A
JPS63270792A JP10483287A JP10483287A JPS63270792A JP S63270792 A JPS63270792 A JP S63270792A JP 10483287 A JP10483287 A JP 10483287A JP 10483287 A JP10483287 A JP 10483287A JP S63270792 A JPS63270792 A JP S63270792A
Authority
JP
Japan
Prior art keywords
coal
residue
properties
liquefied
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10483287A
Other languages
Japanese (ja)
Inventor
Keiichi Hayakawa
早川 恵一
Takuo Kano
狩野 拓夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP10483287A priority Critical patent/JPS63270792A/en
Publication of JPS63270792A publication Critical patent/JPS63270792A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To perform coal liquefaction, in which various types of coals are employed, without trouble in a vacuum distillation column, by regulating the ash content and solvent-extractable content of coal liquefaction residue so as to be in particular ranges on the basis of the test data of the properties of each type of coal previously obtd. using simple experimental apparatuses. CONSTITUTION:The properties of coal liquefaction residue when each type of coal is used are previously tested using simple experimental apparatuses, such as an autoclave. Based on the test data, the mixing ratio of different types of coals is selected so as to cause the ash content to be 0.4 or less and cause the content of toluene solubles, out of solvent extractable components, to be 0.3 or more.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、蒸留塔よりの液化残漬の抜き出し性の安定
を計ることによって、石炭液化プロセスの安定操業を確
立する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for establishing stable operation of a coal liquefaction process by stabilizing the ability to extract liquefied residue from a distillation column.

(従来の技術) 一般的な石炭液化法では、粉砕された単一炭種の石炭を
溶剤とともにスラリーとし、予熱器で400〜450℃
程度まで昇温し、液化反応塔において100〜300気
圧で水素化して石炭を液化し、高温高圧分離塔でガス、
軽質油と溶剤留分、固形分とに分離し、さらに低圧分離
塔で減圧して液化生成物は固液分離工程で溶剤、液化油
と灰分、未反応炭等の固形分(以下r残渣Jと称する)
とに分離する。ここで、固液分離工程としては以後の用
途に応じ、蒸留、遠心分離等によって液体分と固体分と
に分離する方法があるが、工業化の容易さから通常減圧
蒸留塔が採用されている。
(Prior art) In the general coal liquefaction method, pulverized coal of a single coal type is made into a slurry with a solvent and heated to 400 to 450°C in a preheater.
The coal is liquefied by hydrogenation at 100 to 300 atmospheres in a liquefaction reaction tower, and gas,
Light oil, solvent fraction, and solid content are separated, and the pressure is further reduced in a low-pressure separation tower, and the liquefied product is separated into solid content such as solvent, liquefied oil, ash, and unreacted carbon (hereinafter referred to as r residue J) in a solid-liquid separation process. )
Separate into two parts. Here, as the solid-liquid separation step, there are methods of separating a liquid component and a solid component by distillation, centrifugation, etc. depending on the subsequent use, but a vacuum distillation column is usually adopted for ease of industrialization.

この減圧蒸留塔は周知のごとく、減圧下で蒸留を行うこ
とにより高沸点留分を分解温度以下の温度において蒸留
、精製する装置であり、特に石炭系1石油系燃料の積装
回収には必須のものである。
As is well known, this vacuum distillation column is a device that distills and refines high-boiling fractions at a temperature below the decomposition temperature by distilling under reduced pressure, and is especially essential for loading and recovering coal-based and petroleum-based fuels. belongs to.

石炭液化法にこの減圧蒸留等を採用する場合、液化生成
物および触媒、灰分がスラリー状で蒸留塔に挿入され、
塔底より残漬を抜き出す。この残渣中には未反応石炭や
相当量の灰分が含有されており、また、熱的変質も起こ
るために塔底からの残漬の抜き出し性の良否が液化油の
収率に大きく影響を与える。
When this vacuum distillation is used in the coal liquefaction method, the liquefied product, catalyst, and ash are inserted into a distillation column in the form of a slurry.
Remove the remaining pickle from the bottom of the tower. This residue contains unreacted coal and a considerable amount of ash, and thermal alteration also occurs, so the ability to extract the residue from the bottom of the column has a large effect on the yield of liquefied oil. .

ここで、減圧蒸留塔の残渣の抜き出し性は残漬の粘度で
決定される。通常、50ボイズ以上の粘度では工業的に
使用可能なポンプがないために、それ以下の粘度になる
ように塔底の温度を適正範囲に保って操業する必要があ
る。このように残漬の抜き出し性の良否には残漬の粘度
が深く関与しているが、残漬の粘度は温度および残漬の
性状(ヘプタン可溶分(H3)、トルエン可溶分(TS
)、キノリン可溶分(QS)、灰分含有量等)によって
大きく変化する。そのうち、温度依存性については粘度
の対数と温度(絶対温度)の逆数か直線関係にあること
は知られているが、残漬性状が異なるとその傾きや切片
が異なるため、個々の残漬について温度を変化させて粘
度を測定しなければならない不便さがあり、炭種によっ
ては高沸点留分を残漬中に残すことによって残渣の粘度
を低くして抜き出しを図る必要があった。
Here, the ability to extract the residue from the vacuum distillation column is determined by the viscosity of the residue. Normally, there are no pumps that can be used industrially for viscosity of 50 boids or more, so it is necessary to maintain the temperature at the bottom of the column within an appropriate range in order to maintain the viscosity below that value. In this way, the viscosity of the residue is deeply involved in the quality of the extractability of the residue, and the viscosity of the residue is determined by temperature and properties of the residue (heptane soluble content (H3), toluene soluble content (TS).
), quinoline soluble content (QS), ash content, etc.). Regarding temperature dependence, it is known that there is a linear relationship between the logarithm of viscosity and the reciprocal of temperature (absolute temperature). There is the inconvenience of having to measure the viscosity while changing the temperature, and depending on the type of coal, it is necessary to leave the high-boiling fraction in the residue to lower the viscosity of the residue and extract it.

(解決しようとする問題点) この発明の目的は、減圧蒸留塔の最高負荷条件(常圧換
算538℃カット)で液化残漬の抜き出し性を可能にす
るために、比較的簡単な装置を用いて予め、各原料炭種
の液化残渣の性状を評価し、残渣粘度を低くするように
残渣性状の改善を図る方法を提供することである。
(Problems to be Solved) The purpose of this invention is to use a relatively simple device to enable extraction of liquefied residue under the maximum load condition of the vacuum distillation column (538°C cut in terms of normal pressure). It is an object of the present invention to provide a method for evaluating the properties of the liquefied residue of each type of raw coal in advance and improving the properties of the residue so as to lower the viscosity of the residue.

(問題点を解決するための手段) 本発明者らはかかる目的を達成するために種々の検討を
行った。先ず、液化残渣の性状を簡単に調査することが
可能かどうかを検討するために、通常の石炭液化連続装
置(大型)における各種液化残渣の抜き出し性の評価と
なる粘度と温度の逆数との関係図中に、疑似溶剤を用い
て実験したオートクレーブ装置実験データおよび小型連
続装置データをプロットしたところ、第1図に示すよう
にほぼ同一直線上に載ることが判明した。すなわち、液
化残渣の性状を調査する場合にはオートクレーブ装置の
ような比較的簡単な装置で液化実験を実施し、その蒸留
残渣を用いて粘度一温度相関図を作成すれば、液化プラ
ントの蒸留残渣の粘度を推定することが可能なことを見
いだした。
(Means for Solving the Problems) The present inventors have conducted various studies in order to achieve the above object. First, in order to examine whether it is possible to easily investigate the properties of liquefaction residue, we investigated the relationship between viscosity and the reciprocal of temperature, which is used to evaluate the ability to extract various liquefaction residues in a conventional continuous coal liquefaction unit (large size). When the experimental data of an autoclave apparatus and the data of a small continuous apparatus using a pseudo-solvent were plotted in the figure, it was found that they lie almost on the same straight line as shown in FIG. In other words, if you want to investigate the properties of liquefied residue, you can conduct a liquefaction experiment using a relatively simple device such as an autoclave, and use the distillation residue to create a viscosity-temperature correlation diagram. We found that it is possible to estimate the viscosity of

従って、オートクレーブ装置を用いて各石炭種の蒸留残
渣の性状を調査すれば、液化プラントの残渣の粘度が推
測でき、それぞれの炭種の抜き出し性が評価できると判
断された。そこで、各炭種(A−C)について液化残渣
の性状を調査した結果を第2図に示す。第2図は横軸に
残漬の軟化点を示し、縦軸に残漬の流動点を示している
が、炭種Cについては減圧蒸留塔の最高負荷条件では流
動点がなく、粘度測定が不可能な状況に達した。
Therefore, it was determined that by investigating the properties of the distillation residue of each coal type using an autoclave device, it would be possible to estimate the viscosity of the residue from the liquefaction plant and evaluate the extractability of each coal type. Therefore, the results of investigating the properties of the liquefied residue for each coal type (A-C) are shown in FIG. In Figure 2, the horizontal axis shows the softening point of the residue, and the vertical axis shows the pour point of the residue, but for coal type C, there is no pour point under the maximum load condition of the vacuum distillation column, and viscosity measurement is difficult. An impossible situation has been reached.

従って、このような石炭については減圧蒸留塔の負荷を
下げて粘度を低下させる必要がある。
Therefore, it is necessary to reduce the viscosity of such coal by lowering the load on the vacuum distillation column.

今、炭種Cについて残渣の性状を:J4査したところ、
高灰分、低TSであり、灰分およびTSが残漬の粘度に
大きく影響することが判明した。
I just conducted a J4 survey on the properties of the residue for coal type C.
It was found that the ash content and TS greatly affected the viscosity of the residue.

そこで、炭種Cについて脱灰処理を行い、各柿灰分量の
石炭を作成してオートクレーブ装置で液化実験を実施し
て蒸留残渣の軟化点、流動点を測定したところ、液化残
漬の灰分が40%を越えると軟化点は存在するが、流動
点が存在しなくなることがわかった。これは灰分が40
%以上になると、液化残渣の均一性がなくなり、粘土質
分を測定し、流動点が異常に高温になったためと判断さ
れた。
Therefore, we performed deashing treatment on coal type C, created coals with various persimmon ash contents, and conducted liquefaction experiments in an autoclave apparatus to measure the softening point and pour point of the distillation residue, and found that the ash content of the liquefied residue was It was found that when it exceeds 40%, a softening point exists, but a pour point no longer exists. This has an ash content of 40
% or more, the liquefaction residue lost its uniformity, and the clay content was measured and it was determined that this was due to an abnormally high pour point.

一方、灰分を従来炭並に脱灰した石炭(B及びC)の液
化残漬を用いて粘度一温度の関係を調査したところ第3
図に示すような結果を得、炭種B及び炭種Cはほぼ同一
灰分にもかかわらす炭種Cの粘度は高目にm移し、灰分
のみでは残渣の抜き出し性を評価できないことが判明し
た。そこで、上記サンプルの性状を調査した結果、従来
炭の残渣に比べてTS分が低いことがわかった。従って
、液化残渣の抜き出し性の改善を図るためには灰分子連
だけでなく、残漬中のTS留分も考慮する必要がある。
On the other hand, when we investigated the relationship between viscosity and temperature using the liquefied residue of coal (B and C) whose ash content was deashed to the same level as conventional coal, we found that
The results shown in the figure were obtained, and although coal types B and C had almost the same ash content, the viscosity of coal type C was higher than m, and it was found that the extractability of the residue could not be evaluated based on the ash content alone. . Therefore, as a result of investigating the properties of the above sample, it was found that the TS content was lower than that of conventional charcoal residue. Therefore, in order to improve the extractability of the liquefied residue, it is necessary to consider not only the ash molecular chain but also the TS fraction in the residue.

即ち、qt独炭種Bで液化実験を行った際、比較的低粘
度であるBR種とc4種との混合を図ったところ、第4
図に示すようにTS分の増加をもたらし、C炭種の流動
点を下げることが可能なことを見いだした。
That is, when we conducted a liquefaction experiment with qt German coal type B, we attempted to mix BR type, which has a relatively low viscosity, with c4 type, and found that
As shown in the figure, it has been found that it is possible to increase the TS content and lower the pour point of C coal type.

一般に、蒸留塔塔底温度は液化残渣の急激な熱変質の発
生および蒸留塔の最高負荷の観点から350℃以下の温
度が適当であると言われていることを考慮に入れて、液
化残漬の最高流動点は面述の第3図のポンプ抜き出し可
能粘度から230 ”C付近と想定される。従って、第
4図の残渣性状と流動点の関係から残渣中のTSは30
%以上が要求される。
In general, the temperature at the bottom of the distillation column is said to be 350°C or less from the viewpoint of rapid thermal deterioration of the liquefied residue and the maximum load of the distillation column. The highest pour point of the residue is assumed to be around 230"C based on the viscosity that can be extracted from the pump in Figure 3. Therefore, from the relationship between the properties of the residue and the pour point in Figure 4, the TS in the residue is 30".
% or more is required.

以上、記述したごとく減圧蒸留塔の負荷を最高に維持し
、液化残渣の抜き出し性の改善を図るには混合炭の採用
が良好な手段であり、その配合則としては次式(1)及
び(2)を満足するように配合すれば良いことがわかっ
た。
As described above, in order to maintain the maximum load on the vacuum distillation column and improve the ability to extract the liquefied residue, the use of mixed charcoal is a good means. It was found that it is sufficient to mix the ingredients so as to satisfy 2).

ASH=(Σxi ASH,φ1)/(ΣX、φi)≦
0.4−−−−− (1)Ts= (r、x、 ”rs
t <61 )/ (ΣXtφ1゛)≧0.3−−−−
(2)ここで、xl :各炭種の残渣収率(−)TS、
:各炭種の残漬中のTS留分(%)ASH,:各炭種の
残漬中の灰分率(%)φ1 :炭種の混合率(−) 即ち、本発明の要旨は、各石炭種単味を使用した際の石
炭液化残渣の性状を、予め簡単な実験装置(例えばオー
トクレーブ等)で評価し、灰分および適当な溶剤による
抽出分が制限範囲内に入るように、石炭種の配合を調整
することを特徴とする石炭液化法である。
ASH=(Σxi ASH, φ1)/(ΣX, φi)≦
0.4---- (1) Ts= (r, x, ``rs
t<61)/(ΣXtφ1゛)≧0.3---
(2) Here, xl: residue yield of each coal type (-)TS,
: TS fraction in the residue of each coal type (%) ASH, : Ash content in the residue of each coal type (%) φ1 : Mixing ratio of coal types (-) In other words, the gist of the present invention is that each The properties of the coal liquefaction residue when using a single coal type are evaluated in advance using a simple experimental device (such as an autoclave), and the coal type is adjusted so that the ash content and the amount extracted by an appropriate solvent are within the limit range. This is a coal liquefaction method characterized by adjusting the blend.

次に本発明を実施例によって具体的に説明する。Next, the present invention will be specifically explained with reference to Examples.

(実施例1) 石炭処理量40kg/dの石炭液化設備を用いて、第1
表に示す石炭種AとBの各炭種について液化反応温度4
50℃、反応圧力170気圧の条件下で液化し、液化後
の生成物を減圧蒸留塔最高負荷(常圧換算538℃カッ
ト)で蒸留した結果の液化残渣の性状を第2表に示す。
(Example 1) Using coal liquefaction equipment with a coal throughput of 40 kg/d, the first
Liquefaction reaction temperature 4 for each coal type A and B shown in the table
Table 2 shows the properties of the liquefied residue obtained by liquefying the product under the conditions of 50° C. and 170 atm reaction pressure, and distilling the liquefied product at the maximum load of the vacuum distillation column (538° C. cut in terms of normal pressure).

この結果、炭種A、Bについては十分蒸留塔底部より抜
き出し可能であフだ。
As a result, coal types A and B can be sufficiently extracted from the bottom of the distillation column.

(実施例2) 石炭処理量1 t/dの石炭液化設備を用いて第3表に
示す石炭種Cについて液化反応温度450℃、反応圧力
170気圧の条件下で液化し、液化後の生成物を減圧蒸
留塔最高負荷近く(常圧換算500℃カット)で操業し
た結果、蒸留塔底部のポンプが作動不良となり、液化残
漬の抜き出しが不可能となった。その後、蒸留塔の負荷
を下げて抜き出し、運転終了直面にて再度蒸留塔最高負
荷近くで操業し、蒸留塔内蓄積物について性状調査を行
った結果を第4表に示す。
(Example 2) Using coal liquefaction equipment with a coal throughput of 1 t/d, coal type C shown in Table 3 was liquefied under conditions of a liquefaction reaction temperature of 450°C and a reaction pressure of 170 atm, and the product after liquefaction was As a result of operating the vacuum distillation column near its maximum load (500°C cut in terms of normal pressure), the pump at the bottom of the distillation column malfunctioned, making it impossible to extract the liquefied residue. Thereafter, the load on the distillation column was lowered and the distillation was taken out, and when the operation was about to end, the distillation column was operated again near the maximum load. Table 4 shows the results of investigating the properties of the products accumulated in the distillation column.

(実施例3) 石炭処理量40 k g/dの石炭液化設備を用いて第
1表および第3表に示す石炭種BとCとをそれぞれ50
%配合して液化反応温度450 ”C1反応圧力170
気圧の条件下で液化し、液化後の生成物を減圧蒸留塔最
高負荷近く(常圧換算538℃カット)で蒸留した結果
の液化残漬の性状を第5表に示す。この結果、B炭種を
配合することにより、蒸留塔最高負荷状態下でC炭種の
抜き出しが可能となった。
(Example 3) Using a coal liquefaction facility with a coal throughput of 40 kg/d, 50 kg of coal types B and C shown in Tables 1 and 3 were each used.
% and liquefaction reaction temperature 450" C1 reaction pressure 170
Table 5 shows the properties of the liquefied residue obtained by liquefying the product under atmospheric pressure and distilling the liquefied product near the maximum load of the vacuum distillation column (538° C. cut in terms of normal pressure). As a result, by blending B coal type, it became possible to extract C coal type under the highest load condition of the distillation column.

第5表 また、オートクレーブ装置による各炭種m味の残渣収率
および残渣中の性状は第6表のようであり、(1)、(
2)式から計算される炭種B+CのASHIおよびT 
S rdは32%、35%となり、第5表の実施例とほ
ぼ一致した。
Table 5 In addition, the residue yield and properties of the residue for each coal type m taste by the autoclave device are as shown in Table 6, (1), (
2) ASHI and T of coal type B+C calculated from the formula
Srd was 32% and 35%, which were almost the same as the examples shown in Table 5.

(発明の効果) 本発明によれば、あらかじめ簡単な装置を使用して各原
料炭種からの液化残漬の性状を調査することによって、
減圧蒸留塔でのトラブルを完全に防止でき、効率的な石
炭液化を達成できる。
(Effects of the Invention) According to the present invention, by investigating the properties of liquefied residue from each type of coking coal in advance using a simple device,
Trouble in the vacuum distillation column can be completely prevented and efficient coal liquefaction can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、液化装置を変えた場合に得られる、液化残漬
の粘度一温度相関図。第2図は、炭種A−Cについての
、液化残漬の軟化点と流動点の相関図。第3図は、灰分
を従来炭並に31整した炭神B及びCについての、液化
残渣の粘度一温度相関図。第4図は、炭種Bと炭種Cの
配合炭における液化残渣の流動点の低下状況を示す図。
FIG. 1 is a viscosity-temperature correlation diagram of liquefied residual material obtained when changing the liquefaction device. FIG. 2 is a correlation diagram of the softening point and pour point of liquefied residue for coal types A to C. FIG. 3 is a viscosity-temperature correlation diagram of liquefied residues for Sumigami B and C whose ash content was adjusted to 31% to the same level as conventional coal. FIG. 4 is a diagram showing how the pour points of liquefied residues in blended coals of coal types B and C are lowered.

Claims (2)

【特許請求の範囲】[Claims] (1)各石炭種単味を使用した際の石炭液化残渣の性状
を、予め簡単な実験装置(例えばオートクレーブ等)で
評価し、灰分および適当な溶剤による抽出分が制限範囲
内に入るように、石炭種の配合を調整することを特徴と
する石炭液化法。
(1) Evaluate the properties of coal liquefaction residue when using each type of coal in advance using a simple experimental device (such as an autoclave), and make sure that the ash content and extractables with an appropriate solvent are within the limits. , a coal liquefaction method characterized by adjusting the blend of coal types.
(2)残渣中の灰分率≦0.4、トルエン可溶分≧0.
3になるように石炭種の配合を調整する特許請求の範囲
(1)記載の石炭液化法。
(2) Ash content in the residue ≦0.4, toluene soluble content ≧0.
3. The coal liquefaction method according to claim (1), wherein the blend of coal types is adjusted so that the amount of coal is liquefied.
JP10483287A 1987-04-30 1987-04-30 Coal liquefaction method Pending JPS63270792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10483287A JPS63270792A (en) 1987-04-30 1987-04-30 Coal liquefaction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10483287A JPS63270792A (en) 1987-04-30 1987-04-30 Coal liquefaction method

Publications (1)

Publication Number Publication Date
JPS63270792A true JPS63270792A (en) 1988-11-08

Family

ID=14391346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10483287A Pending JPS63270792A (en) 1987-04-30 1987-04-30 Coal liquefaction method

Country Status (1)

Country Link
JP (1) JPS63270792A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03217492A (en) * 1990-01-24 1991-09-25 Idemitsu Kosan Co Ltd Coal liquefaction method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52145409A (en) * 1976-05-28 1977-12-03 Kobe Steel Ltd Liquefaction of low grade coals
JPS57170985A (en) * 1981-04-16 1982-10-21 Agency Of Ind Science & Technol Relief of rise in viscosity of coal paste
JPS58185684A (en) * 1982-04-23 1983-10-29 Agency Of Ind Science & Technol Mixed coal liquefaction
JPS59102983A (en) * 1982-11-19 1984-06-14 コ−ル・インダストリイ(パテンツ)リミテツド Method of watching state of hydrogen supplier solvent in coal extraction process
JPS59191795A (en) * 1983-04-14 1984-10-30 Kawasaki Steel Corp Operation of coal liquefier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52145409A (en) * 1976-05-28 1977-12-03 Kobe Steel Ltd Liquefaction of low grade coals
JPS57170985A (en) * 1981-04-16 1982-10-21 Agency Of Ind Science & Technol Relief of rise in viscosity of coal paste
JPS58185684A (en) * 1982-04-23 1983-10-29 Agency Of Ind Science & Technol Mixed coal liquefaction
JPS59102983A (en) * 1982-11-19 1984-06-14 コ−ル・インダストリイ(パテンツ)リミテツド Method of watching state of hydrogen supplier solvent in coal extraction process
JPS59191795A (en) * 1983-04-14 1984-10-30 Kawasaki Steel Corp Operation of coal liquefier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03217492A (en) * 1990-01-24 1991-09-25 Idemitsu Kosan Co Ltd Coal liquefaction method

Similar Documents

Publication Publication Date Title
AU2007307596B2 (en) Method for production of ashless coal
Morga Chemical structure of semifusinite and fusinite of steam and coking coal from the Upper Silesian Coal Basin (Poland) and its changes during heating as inferred from micro-FTIR analysis
CA1142120A (en) Process for the preparation of gas oil
US6866772B2 (en) Extraction of aromatics from hydrocarbon oil using furfural-co-solvent extraction process
CA1148889A (en) Upgrading heavy oils by non-catalytic treatment with hydrogen and hydrogen transfer solvent
US2683107A (en) Manufacture of pitch
US4806228A (en) Process for producing pitch raw materials
GB1498657A (en) Carbonaceous material
JPS63270792A (en) Coal liquefaction method
US3974073A (en) Coal liquefaction
JP2008120972A (en) Low-temperature flowable fuel oil composition
US3781196A (en) Stabilizing a hydrocracked lube oil by solvent extraction
EP2336267B1 (en) Process for producing needle coke for graphite electrode and stock oil composition for use in the process
Wallace et al. Characterization of petroleum feedstocks for coal-oil co-processing
JPS5843433B2 (en) coal liquefaction method
SU1604162A3 (en) Method of producing light products and fuel oil
US4303498A (en) Process for manufacture of solvent for coal liquefaction
US4040957A (en) Separation of insoluble material from coal liquefaction product by use of a diluent
JP2008297443A (en) Method for cracking hydrocarbon oil
US2809153A (en) Process for producing low-sediment fuel
Rincón et al. Co-processing of some Colombian coals using petroleum heavy oil as hydrogen donor and anthracene oil as co-solvent
JP5378657B2 (en) Decomposition method of hydrocarbon oil
Vucelic et al. Thermoanalytical characterization of Aleksinac (Yugoslavia) oil shale kerogen
CA1055250A (en) Process for the production of ashless liquid fuels
US4326946A (en) Process for manufacture of solvent for coal liquefaction