JPS6327056B2 - - Google Patents

Info

Publication number
JPS6327056B2
JPS6327056B2 JP15555483A JP15555483A JPS6327056B2 JP S6327056 B2 JPS6327056 B2 JP S6327056B2 JP 15555483 A JP15555483 A JP 15555483A JP 15555483 A JP15555483 A JP 15555483A JP S6327056 B2 JPS6327056 B2 JP S6327056B2
Authority
JP
Japan
Prior art keywords
catalyst
chlorosilane
sih
disproportionation
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15555483A
Other languages
Japanese (ja)
Other versions
JPS6048144A (en
Inventor
Masahiko Nakajima
Akira Myai
Masaharu Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP15555483A priority Critical patent/JPS6048144A/en
Publication of JPS6048144A publication Critical patent/JPS6048144A/en
Publication of JPS6327056B2 publication Critical patent/JPS6327056B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、クロルシラン不均化触媒、さらに詳
しくはトリクロルシラン(SiHCl3)、ジクロルシ
ラン(SiH2Cl2)などのクロルシランを不均化す
る混成第3級アミンを主成分とする触媒に関す
る。 最近半導体工業においてはSiH2Cl2やSiH4等の
シラン(水素化珪素化合物)を高純度のシリコン
エピタキシイー、さらには太陽電池のアモルフア
スシリコン原料などいろいろの用途に多量に使用
されるので重要な物質である。 シランは、下記平衡反応に従つて触媒の存在下
にSiHCl3の不均化反応により得られることは公
知である。 (1) 2SiHCl3SiH2Cl2+SiCl4 (2) 2SiH2Cl2SiHCl3+SiH3Cl (3) 2SiH3ClSiH4+SiH2Cl2 全体で(4)4SiHCl3SiH4+3SiCl4 また、クロルシランの不均化触媒については古
くから検討されており、いろいろ提案されてい
る。 例えば(1)ニトリル類を用いる方法
(USP2732282)は反応温度を150℃以上で操作し
なければならず、(2)脂肪族シアナミドを用いる方
法(USP2732280)はルイス酸による前処理が必
要であり、(3)ジメチルフオルムアミドやジメチル
ブチルアミドを用いる方法(USP3222511)は触
媒が劣化しやすく、(4)炭素原子数1〜2のアルキ
ル基からなる炭化水素を含む第3級アミンなどを
用いる方法(USP2834648)は(1)のニトリル類を
触媒とする方法同様に温度が150℃以上で操作す
る他、その装置を耐圧容器を用いなければなら
ず、しかもその平衡転換率(計算値)は温度150
℃の場合は18%であるにも拘らず、実際には10%
程度と低く、所望の生産量を得るには装置を大型
化する必要があるなどの欠点があつた。 本発明者は前記(4)の方法の触媒である第3級ア
ミンについていろいろ研究を行つた。 例えばトリメチルアミンはSiHCl3と1:1の
付加化合物をつくることが知られているが、この
付加化合物N(CH33H+SiCl3 -は白色の固形物で
あるが、これはクロルシランには溶解せず白濁し
てしまうので、これを触媒とする場合、撹拌など
十分行つて均一に分散させても装置内の各部で凝
集を起し運転操作上いろいろトラブルを引き起す
などの欠点があることが分つた。 本発明者はさらに従来からクロルシランの不均
化触媒として知られていない混成第3級アミンを
用いたところ、低温でしかも短時間で転換率の高
いすぐれた触媒であることを知見し本発明に到達
したものである。 本発明はこれらの欠点を解決することを目的と
するもので、クロルシランの不均化触媒として特
定の混成第3級アミンを用いることにより低温に
おいて短時間で不均化反応させることができ、し
かも転換率が高いクロルシランの不均化触媒を提
供しようとするものである。 すなわち、本発明は下記一般式で示される混成
第3級アミンを主成分とするクロルシラン不均化
触媒である。 一般式 (但し、R1,R2,R3は炭素原子数4〜12の炭
化水素基であり、しかもR1,R2,R3のすべてが
同種のものでない飽和炭化水素基を表わす。) 以下さらに本発明を詳しく説明する。 本発明は特定の混成第3級アミンを主成分とす
るクロルシランの不均化触媒である。 本発明において、クロルシランとはSiHCl3
SiH2Cl2およびSiH3Clから選ばれた少くとも1種
又は2種以上のものをいう。 本発明の不均化触媒は下記の一般式で示される
ものを主体とするものである。 一般式 (但し、R1,R2,R3は炭素原子数4〜12の炭
化水素基であり、しかもR1,R2,R3のすべてが
同種のものでない飽和炭化水素基を表わす。) 本発明のクロルシランの不均化触媒を特定の混
成第3級アミンとした理由は次のとおりである。 (1) 混成第3級アミンはクロルシランに完全に溶
解することから反応系内においてクロルシラン
が溶媒となり蒸気圧が低下し約150℃以下の低
温においても不均化反応速度が速く、しかもそ
の転換率が高いからである。 (2) 混成第3級アミンはクロルシランと白色の固
形物の付加化合物を形成するが、これもクロル
シランに完全に溶解するので反応器内に付着し
たりしないので操作が容易であり、バツチ式又
は連続式で不均化反応させることができるから
である。 このような構造の混成第3級アミンの具体例と
しては、オクチルジブチルアミン、ブチルジオク
チルアミン、ジブチルオクチルアミン、ブチルジ
ドデシルアミン、ヘキシルジオクチルアミン、ブ
チルジヘキシルアミン、オクチルジヘキシルアミ
ン、ターシヤリーブチルジオクチルアミン、ブチ
ルジイソペンチルアミンなどがあげられる。 これらはいずれも沸点が150℃以上のものであ
るので、不均化反応生成物と分離が容易である。 不均化触媒のクロルシランに対する添加量は2
〜50モル%好ましくは5〜40モル%である。 不均化反応は常温から150℃好ましくは50〜100
℃で行われるが、触媒の沸点以下で不均化反応さ
せることが好ましい。 さらに説明すると、本発明の触媒を用いてクロ
ルシランを不均化反応させSiH2Cl2,SiH4を製造
するには公知の方法、例えばクロルシランと触媒
とを混合し、不均化反応を行い生成した
SiH2Cl2,SiH4を凝縮分離、及び蒸留、分離する
一連の操作をするか、またはこれらの操作を同時
に行われるようにすればよい。 以上説明したように、本発明のクロルシランの
不均化触媒は、特定の混成第3級アミンを主成分
とするものであるが、本発明の不均化触媒を用い
ることにより次のような効果がある。 (1) 従来の第3級アミン触媒に較べて温度150℃
以下の低温不均化反応が行われ、平衡転換率に
近い転換率が得られる。 (2) 平衡転換率に達する時間が短かく、また不均
化速度が大きいので装置が小型化される。 (3) 原料であるクロルシランに完全に溶解すると
共に、その沸点が150℃以上であるので反応液
の蒸気圧を低下させるので安全性にすぐれてい
る。 (4) SiH2Cl2,SiH4などの生成物の分離が容易で
ある。 (5) 均一液相系であるための撹拌等の操作が不要
であり、触媒の輸送など取扱いが簡単である。 以下実施例をあげ、さらに具体的に説明する。 実施例 1 内容積500c.c.のSUS304製オートクレーブ(ジ
ヤケツト付撹拌機付)に1molのトリクロルシラ
ンと0.1molの触媒を充填し反応温度を変えて不
均化反応させた。触媒の種類及び反応温度を第1
表に示す。密閉状態にてガス相のクロルシラン量
を経時的にガスクロマトグラフイーにて定量し
た。ガス相のトリクロルシラン量の変化は即ち転
換率に相当するが、ここではトリクロルシラン濃
度が一定値になる迄の時間とその時のトリクロル
シランの濃度を第1表に値を示した。第1表にお
いて時間が短い程転換速度が速く、濃度値が低い
もの程転換率が良いことから本発明の触媒がすぐ
れていることが分る。 第1表には計算により求めた平衡トリクロルシ
ラン濃度を参考に示した。 比較例 1 触媒としてトリメチルアミン、トリエチルアミ
ン、ジメチルセチルアミンを用い反応温度を25
℃、50℃、100℃と変えた以外は実施例1と同様
に行つた。 但し、触媒が固形物として存在するので、分散
を良くするため撹拌機を作動し実験を行つた。
The present invention relates to a chlorosilane disproportionation catalyst, and more particularly to a catalyst based on a hybrid tertiary amine that disproportions chlorosilane such as trichlorosilane (SiHCl 3 ) and dichlorosilane (SiH 2 Cl 2 ). Recently, in the semiconductor industry, silanes (silicon hydride compounds) such as SiH 2 Cl 2 and SiH 4 are used in large quantities for various purposes such as high-purity silicon epitaxy and amorphous silicon raw materials for solar cells, so it is important. It is a substance. It is known that silane can be obtained by the disproportionation reaction of SiHCl 3 in the presence of a catalyst according to the equilibrium reaction described below. (1) 2SiHCl 3 SiH 2 Cl 2 +SiCl 4 (2) 2SiH 2 Cl 2 SiHCl 3 +SiH 3 Cl (3) 2SiH 3 ClSiH 4 +SiH 2 Cl 2 In total, (4) 4SiHCl 3 SiH 4 +3SiCl 4 Equalization catalysts have been studied for a long time, and various proposals have been made. For example, (1) the method using nitriles (USP 2732282) requires the reaction temperature to be operated at 150°C or higher, and (2) the method using aliphatic cyanamide (USP 2732280) requires pretreatment with a Lewis acid. (3) Methods using dimethylformamide or dimethylbutyramide (USP3222511) tend to cause catalyst deterioration; (4) Methods using tertiary amines containing hydrocarbons consisting of alkyl groups having 1 to 2 carbon atoms ( USP2834648) is similar to method (1) using nitriles as a catalyst, in addition to operating at a temperature of 150°C or higher, the equipment must be equipped with a pressure-resistant container, and its equilibrium conversion rate (calculated value) is
Although it is 18% in the case of °C, it is actually 10%.
However, there were drawbacks such as the need to increase the size of the equipment in order to obtain the desired production volume. The present inventor conducted various studies on tertiary amines which are catalysts for the method (4) above. For example, trimethylamine is known to form a 1:1 adduct with SiHCl 3 , and this adduct, N(CH 3 ) 3 H + SiCl 3 - , is a white solid, which is different from chlorosilane. It does not dissolve and becomes cloudy, so if this is used as a catalyst, even if sufficient stirring is done to ensure uniform dispersion, it will cause agglomeration in various parts of the device, causing various operational problems. I understood. Furthermore, when the present inventor used a hybrid tertiary amine, which had not been previously known as a disproportionation catalyst for chlorosilane, he discovered that it was an excellent catalyst with a high conversion rate at low temperatures and in a short time. It has been reached. The purpose of the present invention is to solve these drawbacks, and by using a specific hybrid tertiary amine as a disproportionation catalyst for chlorosilane, the disproportionation reaction can be carried out in a short time at a low temperature. The present invention aims to provide a chlorosilane disproportionation catalyst with a high conversion rate. That is, the present invention is a chlorosilane disproportionation catalyst containing as a main component a hybrid tertiary amine represented by the following general formula. general formula (However, R 1 , R 2 , and R 3 are hydrocarbon groups having 4 to 12 carbon atoms, and all of R 1 , R 2 , and R 3 represent saturated hydrocarbon groups that are not of the same type.) The following The present invention will be further explained in detail. The present invention is a chlorosilane disproportionation catalyst containing a specific hybrid tertiary amine as a main component. In the present invention, chlorosilane refers to SiHCl 3 ,
Refers to at least one or two or more selected from SiH 2 Cl 2 and SiH 3 Cl. The disproportionation catalyst of the present invention is mainly represented by the following general formula. general formula (However, R 1 , R 2 , and R 3 are hydrocarbon groups having 4 to 12 carbon atoms, and all of R 1 , R 2 , and R 3 represent saturated hydrocarbon groups that are not of the same type.) The reason why a specific hybrid tertiary amine was selected as the chlorosilane disproportionation catalyst of the invention is as follows. (1) Since the hybrid tertiary amine completely dissolves in chlorosilane, chlorosilane becomes a solvent in the reaction system, lowering the vapor pressure, and the disproportionation reaction rate is high even at low temperatures below about 150°C, and the conversion rate is high. This is because it is high. (2) Mixed tertiary amine forms a white solid addition compound with chlorosilane, which is also completely soluble in chlorosilane and does not adhere to the inside of the reactor, making it easy to operate. This is because the disproportionation reaction can be carried out in a continuous manner. Specific examples of hybrid tertiary amines with such structures include octyldibutylamine, butyldioctylamine, dibutyloctylamine, butyldidodecylamine, hexyldioctylamine, butyldihexylamine, octyldihexylamine, and tert-butyldioctylamine. , butyldiisopentylamine, etc. Since all of these have boiling points of 150°C or higher, they can be easily separated from the disproportionation reaction product. The amount of disproportionation catalyst added to chlorosilane is 2
~50 mol%, preferably 5-40 mol%. The disproportionation reaction is carried out at room temperature to 150℃, preferably 50 to 100℃.
The disproportionation reaction is preferably carried out at a temperature below the boiling point of the catalyst. To explain further, in order to produce SiH 2 Cl 2 and SiH 4 by disproportionation reaction of chlorosilane using the catalyst of the present invention, a known method is used, for example, by mixing chlorosilane and a catalyst, carrying out a disproportionation reaction to produce SiH 2 Cl 2 and SiH 4 . did
A series of operations for condensing and separating, distilling, and separating SiH 2 Cl 2 and SiH 4 may be performed, or these operations may be performed simultaneously. As explained above, the chlorosilane disproportionation catalyst of the present invention has a specific hybrid tertiary amine as its main component, and by using the disproportionation catalyst of the present invention, the following effects can be achieved. There is. (1) Temperature 150℃ compared to conventional tertiary amine catalyst
The following low-temperature disproportionation reaction is performed to obtain a conversion close to the equilibrium conversion. (2) The time required to reach equilibrium conversion is short and the disproportionation rate is high, so the equipment can be made smaller. (3) It completely dissolves in the raw material chlorosilane, and its boiling point is 150°C or higher, which lowers the vapor pressure of the reaction solution, making it highly safe. (4) Products such as SiH 2 Cl 2 and SiH 4 can be easily separated. (5) Since it is a homogeneous liquid phase system, operations such as stirring are not required, and handling such as transporting the catalyst is easy. The present invention will be described in more detail below using examples. Example 1 A SUS304 autoclave (equipped with a jacket and stirrer) having an internal volume of 500 c.c. was filled with 1 mol of trichlorosilane and 0.1 mol of a catalyst, and a disproportionation reaction was carried out by changing the reaction temperature. The type of catalyst and reaction temperature are
Shown in the table. The amount of chlorosilane in the gas phase was determined over time using gas chromatography in a closed state. The change in the amount of trichlorosilane in the gas phase corresponds to the conversion rate, and Table 1 shows the time required for the concentration of trichlorosilane to reach a constant value and the concentration of trichlorosilane at that time. In Table 1, it can be seen that the shorter the time, the faster the conversion rate, and the lower the concentration value, the better the conversion rate, indicating that the catalyst of the present invention is superior. Table 1 shows the equilibrium trichlorosilane concentration determined by calculation for reference. Comparative Example 1 Using trimethylamine, triethylamine, and dimethylcetylamine as catalysts, the reaction temperature was set at 25
The same procedure as in Example 1 was carried out except that the temperatures were changed to 100°C, 50°C, and 100°C. However, since the catalyst was present as a solid substance, the experiment was conducted with a stirrer in order to improve dispersion.

【表】【table】

【表】 実施例 2 実施例1の実験No.1及びNo.2の触媒量を第2表
に示すように変えた以外は実施例1と同様に行つ
た。そのの条件及び結果を第3表に示した。
[Table] Example 2 Experiments were carried out in the same manner as in Example 1 except that the catalyst amounts in Experiment No. 1 and No. 2 of Example 1 were changed as shown in Table 2. The conditions and results are shown in Table 3.

【表】 実施例 3 原料トリクロルシラン1molをジクロルシラン
1molに変更し、ガス相のモノシラン濃度をガス
クロマトグラフイーで定量し、濃度が一定となる
時間とその時の濃度を測定した以外は実施例1と
同様に行つた。 これらの条件及び結果を第3表に示す。なお参
考として計算により求めたモノシランのガス相濃
度を併記した。 比較例 2 触媒、反応温度を第3表に示すようにした以外
は実施例3と同様に行つた。その結果を第3表に
示した。なお比較例1と同様撹拌機を作動させて
実験を行つた。
[Table] Example 3 1 mol of raw material trichlorosilane was added to dichlorosilane
The same procedure as in Example 1 was carried out, except that the monosilane concentration in the gas phase was determined by gas chromatography, and the time at which the concentration became constant and the concentration at that time were measured. These conditions and results are shown in Table 3. For reference, the gas phase concentration of monosilane determined by calculation is also shown. Comparative Example 2 The same procedure as in Example 3 was carried out except that the catalyst and reaction temperature were changed as shown in Table 3. The results are shown in Table 3. Note that, as in Comparative Example 1, the experiment was conducted by operating the stirrer.

【表】【table】

【表】 実施例 4 触媒にブチル・ヘキシル・オクチルアミン、ブ
チルオクチルドデシルアミンを用いた以外は実施
例1と同様に行なつた。その結果を第4表に示し
た。
[Table] Example 4 The same procedure as in Example 1 was carried out except that butyl-hexyl-octylamine and butyloctyldodecylamine were used as the catalyst. The results are shown in Table 4.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 下記一般式で示される混成第3級アミンを主
成分とするクロルシラン不均化触媒。 一般式 (但し、R1,R2,R3は炭素原子数4〜12の炭
化水素基であり、しかもR1,R2,R3のすべてが
同種のものでない飽和炭化水素基を表わす。)
[Scope of Claims] 1. A chlorosilane disproportionation catalyst whose main component is a hybrid tertiary amine represented by the following general formula. general formula (However, R 1 , R 2 , and R 3 are hydrocarbon groups having 4 to 12 carbon atoms, and all of R 1 , R 2 , and R 3 represent saturated hydrocarbon groups that are not of the same type.)
JP15555483A 1983-08-25 1983-08-25 Catalyst for disproportionating chlorosilane Granted JPS6048144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15555483A JPS6048144A (en) 1983-08-25 1983-08-25 Catalyst for disproportionating chlorosilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15555483A JPS6048144A (en) 1983-08-25 1983-08-25 Catalyst for disproportionating chlorosilane

Publications (2)

Publication Number Publication Date
JPS6048144A JPS6048144A (en) 1985-03-15
JPS6327056B2 true JPS6327056B2 (en) 1988-06-01

Family

ID=15608596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15555483A Granted JPS6048144A (en) 1983-08-25 1983-08-25 Catalyst for disproportionating chlorosilane

Country Status (1)

Country Link
JP (1) JPS6048144A (en)

Also Published As

Publication number Publication date
JPS6048144A (en) 1985-03-15

Similar Documents

Publication Publication Date Title
JPS5988492A (en) Continuous manufacture of monomer or oligomer alkoxysilane
US4610858A (en) Chlorosilane disproportionation catalyst and method for producing a silane compound by means of the catalyst
JPS6052760B2 (en) Continuous production method of silane having SiOC group or polysiloxane having SiOC group
CN110799458B (en) Triphenylgermylsilane and trichlorosilyl-trichlorogermane for the production of germanium-silicon layers and method for the production thereof
US4542005A (en) Process for preparing silicon hydrides
US20190337968A1 (en) Method for producing halosilane compounds
CN1027508C (en) Direct method for synlhesis of alkoxy silane
US4958040A (en) Process for the preparation of diorganohalogenosilanes
CN109384233B (en) Method for treating silicon polymers
JPS6327056B2 (en)
JPS6333423B2 (en)
CN109503646B (en) Method for treating high-boiling point polymer as byproduct of polysilicon and organic silicon
JPS6333422B2 (en)
JPH0471008B2 (en)
Gilbert et al. Alkylchlorosilanes. Reduction of Alkylchlorosilenes by Sodium Hydride and Hydrogen-Chlorine Interchange in Chlorosilanes
JPS6327055B2 (en)
US4810482A (en) Process for producing silanes
US4447631A (en) Redistribution of tetramethylsilane/dimethyldichlorosilane into trimethylchlorosilane
JPH0472764B2 (en)
EP0213215B2 (en) Chlorosilane disproportionation catalyst and method for producing a silane compound by means of the catalyst
JP2584775B2 (en) Separation and purification method of trialkoxysilane
CA1254716A (en) Chlorosilane dispropotionation catalyst and method for producing a silane compound by means of the catalyst
JPH052379B2 (en)
JPH01113395A (en) Reduction of olefin content in alkylhalosilane
JPH0797385A (en) Production of trimethylchlorosilane