JPS6327044B2 - - Google Patents

Info

Publication number
JPS6327044B2
JPS6327044B2 JP56093619A JP9361981A JPS6327044B2 JP S6327044 B2 JPS6327044 B2 JP S6327044B2 JP 56093619 A JP56093619 A JP 56093619A JP 9361981 A JP9361981 A JP 9361981A JP S6327044 B2 JPS6327044 B2 JP S6327044B2
Authority
JP
Japan
Prior art keywords
hollow
chamber
precision
housing
hollow fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56093619A
Other languages
Japanese (ja)
Other versions
JPS57207517A (en
Inventor
Michio Inoe
Atsushi Kawai
Hisao Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP56093619A priority Critical patent/JPS57207517A/en
Publication of JPS57207517A publication Critical patent/JPS57207517A/en
Publication of JPS6327044B2 publication Critical patent/JPS6327044B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/10Cellulose; Modified cellulose

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は水、水溶液、有機液体、空気、ガス等
の精密過装置に関し、特に医療用、食品工業
用、精密電子工業用、理化学実験用等の分野にお
いて使用される無菌水や発熱性物質(パイロジエ
ン)を含有しない水、あるいはコロイド状の微粒
物を含有しない水等を得るための精密過装置に
関する。その目的とするところは装置自体の信頼
性が高く、且つ構造が簡単で実用的な精密過装
置を提供することにある。例えば無菌水を得る装
置としては従来から蒸留法、煮沸減菌法、限外
過法、紫外線殺菌法等があるが、エネルギー費や
該備費が高かつたり、あるいは減菌除菌が不充分
であつたり、また、細菌類は除去出来ても、パイ
ロジエンの除去は出来ない等の欠点を有する。ま
た比較的最近良く用いられている逆浸透膜法にお
いても設備費が高く騒音が大きい等の欠点があ
る。 すなわち、いづれの装置も一長一短を有し、特
に装置自体の信頼性及び設備費運転コスト等の面
からの改良が強く望まれているのが現状である。
この様な現状から本発明者等は装置自体の信頼性
が高く、且つ、構造が簡単で、設備費運転コスト
等の安価な精密過装置を提供することを目的に
種々検当した結果、本発明に到達した。すなわ
ち、本発明は中空開口部が閉塞された多孔質中空
糸からなる過材が、少なくとも2ケ所以上の流
体の出入口を有するハウジング内に収納されてな
る精密過装置において、中空糸はそれを束ね
て、固定し、且つ、ハウジング内を2室A,Bに
分画する隔離板によつてハウジング内に固定され
ており、該隔離板を通過して、2室A,B内に存
在せしめた中空糸の膜面積比を一方を1に対して
他方を1〜3としてなる精密過装置に関するも
のである。以下に本発明の精密過装置について
の作製法、構造、使用方法、特徴などを図面にし
たがつて更に詳細に説明する。 第1図は本発明の実施例を示す概略図であり、
まず1の中空開口部が閉塞された多孔質中空糸よ
りなる過材としての該中空糸は例えばセルロー
ス・アセテート等の再生繊維あるいはポリエステ
ル,ポリアミド,ポリアクリロニトリル,ポリス
ルホン,ポリオレフイン,ポリビニルアルコール
その他の合成繊維からなる多孔質中空糸を用いる
ことが出来るが、特にポリオレフイン系合成繊維
であるポリプロピレン,ポリエチレン等からなる
多孔質中空糸は、耐水性,耐バクテリア性,耐薬
品性に優れている点から好ましい過材と言え
る。そして、該中空糸の多孔質壁膜部の微小細孔
経は水銀ポロシメーター法での平均孔径測定値が
0.05〜0.6μ、特に0.1〜0.3μ程度のものが過流
量、過精度の面から好ましい。中空糸内径の大
きさは100〜400μ、特に150〜300μ程度のものが
圧力損失の面から好ましい。但し、本発明におい
ては上述の値を特に限定するものではなく、実際
には使用目的に応じて適宜選んで用いることが出
来る。次に該中空糸の中空開口部を塞閉する手段
としては中空糸の先端部分を溶剤で溶解すること
によつて、閉塞する方法、あるいは接着剤を用い
て接着することによつて閉塞する方法、あるいは
熱溶融する中空糸の場合には融着によつて、閉塞
する方法等が適宜用いられる。第1図では中空糸
はそのほぼ中央部2で束ねられているが、中空糸
を束ねる手段としては例えばポリウレタン系樹
脂,シリコン系樹脂等を用いて、接着固化して束
ねることが出来る。また3のハウジングは耐圧性
のプラスチツクや金属等からなる剛体が使用さ
れ、流体の出入口4,5等を少なくとも2ケ所以
上有するものであり、ハウジング内を2室A,B
に分画するための隔離板6を有する構造であれば
良く、この隔離板も、プラスチツクや金属等を使
用することが出来る。そしてこの隔離板はハウジ
ングを2室に分画すると共に過材としての、中
空糸の束1を隔離板を通過せしめて、ハウジング
内のA,B2室に存在せしめた状態で液密に又は
気密に固定する役割を果す。さらに、A,B2室
のハウジング内に該中空糸の膜面積比を一方を1
に対して他方が1〜3となる様に収納することに
よつて、本発明の精密過装置が作製される。本
発明の精密過装置は上述の如く構造となつてい
るため、例えば、ハウジング3の流体入口4から
流入した流体は一旦、ハウジング内のA室に充満
された後A室内の多孔質中空糸の多孔質壁膜部で
一旦、過され、中空糸中空部を通じてB室内の
該中空糸の中空糸中空部に至り中空糸中空部の内
部から再び多孔質外壁膜方向に流れこの過程で再
び過されてB室内の出口5の部分から目的とす
る、過流体を得ることが出来る。すなわち、二
段過が行なわれるために精密過装置としての
信頼性が高いのである。例えば、A室内に存在す
る該中空糸の多孔質壁膜部に若し、予期しない欠
陥部が存在し、目的物の捕捉が不十分であつても
B室内に存在する該中空糸の多孔質壁膜部におい
て捕捉することが可能であり、信頼性の高い精密
過装置と言えるのである。 なおA室内における多孔質中空糸の多孔質壁膜
部が過の過程における経時変化により、いわゆ
る目詰りを起し、流量が低下した時点においては
一旦運転を中止して、ハウジングのB室の5部分
を流体の入口とし、4部分を流出口に変更して使
用することによりA室内の該中空糸の多孔質壁膜
部に付着した微粒物質を除去することが出来る。
すなわち、逆圧を加える逆洗滌により、膜機能の
回復を計る場合にも操作が簡単であると言う特徴
を有する。 また、本発明の精密過装置は過材としての
多孔質中空糸の中空開口部が閉塞されているため
に、次の様な利点を有する。例えば無菌水の製造
に本装置を使用する様な場合において、特に装置
の休転中に採水口からの細菌の逆浸入による過
材自体の再汚染が防止される。 すなわち中空開口部が閉塞されていない場合に
は逆浸入した細菌が中空開口部から中空糸内部に
浸入する恐れがあり、好ましくないのである。次
に本発明の精密過装置はハウジングのA室、B
室内に存在する該中空糸の膜面積比を一方を1に
対して他方を1〜3とする必要があり、通常は運
転時における流体の入口側のA室内に存在する該
中空糸の膜面積の方が流体の出口側のB室に存在
する該中空糸の膜面積と等しいかあるいは大きく
なるように設定するのが本装置を効率よく運転す
る点から好ましい。 即ち本発明者等の検討によれば入口側A室の該
中空糸の膜面積が出口側B室の膜面積より大きく
なるにしたがい同等圧力下における流量は低下す
る傾向にある。したがつて流量確保の面からBが
1に対してAを3以上にすることは好ましくな
い。しかしBが1に対してAを1以下にすると一
次過側の該中空糸の膜面積が小さくなりすぎ
て、いわゆる目詰りに至る時間が短かくなり過
流量が低下するので好ましくない。このような検
討結果により、A室の膜面積とB室のそれにくら
べ1〜3倍大きくすることが本装置では必要であ
る。またA室と被過流体の入口を有する室と
し、B室と過流体の出口を有する室とするのが
好ましい。実際には過する流体中に含まれる微
粒物質の多寡や粘度等を考慮して上述の膜面積比
を変更したものを用いるのであるが、通常は上述
の膜面積比が1:1又は1:2程度のものが良く
用いられる。なお、第1図では流体の出入口は2
つしか示されていないがA室に被過流体の出口
をさらに設けても良い。また以上の説明は水の
過を主体としたものであるが、ガスや空気、有機
液体の精密過も本発明の装置で十分可能であ
る。次に実施例によつて本発明を更に詳細に説明
する。なお、実施例で使用した細菌およびパイロ
ジエンの検出測定法は以下の通りである。 水中の細菌測定法 滅菌ペトリー皿中に普通寒天培地を入れ、オー
トクレーブ中で120℃で蒸気滅菌後、この寒天培
地上に検水1mlを加え、37℃の孵卵器中で24時間
培養した後、細菌の集落数(co―long)を計測
した。 パイロジエン検出法 パイロジエンの検出法はLimulns lysatetest
(カブトガニ血球溶解ゲル化試験)にしたがつた
検出試薬は帝国臓器製薬KK製のプレゲル試薬
(商品名)を用いた。 検出原理はカブトガニの血リンパ液中の血球が
極微量のパイロジエンと反応し、ゲル化すること
を利用したものである。プレゲルは凍結乾燥され
た上記の血球成分がアンプル中に密封された試薬
であり、このアンプル中に検液を添加し、37℃で
1時間孵卵器中で培養した後、5分間室温に保
ち、アンプルを45゜に傾けて、ゲル化の程度を判
定する方法にしたがつた判定基準は次の通りであ
る。 (++):固いゲルを形成し、アンプルを傾け
ても、ゲルの形が崩れない。 (+):ゲルを形成しているがアンプルを傾け
ると塊りのまま動く。 (±):粗い顕粒状ゲルの形成および粘度の著
しい増大 (−):液状のままで変化なし なお、本法によるパイロジエンの検出限界は
10-3μg/mlである。 実施例 1 カルロエルバ社製水銀ポロシメーター221型を
用いて測定した微小空孔の平均孔径が0.23μ空孔
率が60Vol%膜厚60μ、中空糸内径280μのポリエ
チレンからなる多孔質中空糸の中空開口部を熱融
着により閉塞した。 次にこの中空糸を束ね中空糸束のほぼ中央部を
ポリウレタン樹脂を用いて接着し、第1図に示す
如きハウジング内をA,B2室に分画する隔離板
にとりつけて精密過装置を作製した。なお、液
体入口側のA室内に存在する該中空糸の膜面積は
1.2m2であり、出口側B室内の該中空糸の膜面積
は1m2とした。この精密過装置を井戸水の導管
に圧力調整器を介して接続し背圧2.5Kg/cm2で1
日2時間の通水を12ケ月継続した結果および途中
経過を第1表に併せて示す。
The present invention relates to precision filtration equipment for water, aqueous solutions, organic liquids, air, gases, etc., and particularly for sterile water and pyrogenic substances ( The present invention relates to a precision filtration device for obtaining water that does not contain (pyrogene) or water that does not contain colloidal particles. The purpose is to provide a precision device that is highly reliable, has a simple structure, and is practical. For example, conventional methods for obtaining sterile water include distillation, boiling sterilization, ultrafiltration, and ultraviolet sterilization, but energy costs and equipment costs are high, or sterilization and sterilization are insufficient. It has drawbacks such as heat, and although it can remove bacteria, it cannot remove pyrogen. Further, even the reverse osmosis membrane method, which has been used relatively recently, has drawbacks such as high equipment cost and large noise. That is, each device has its advantages and disadvantages, and the current situation is that there is a strong desire to improve the reliability of the device itself and the equipment and operating costs.
Under these circumstances, the inventors of the present invention have conducted various tests with the aim of providing a precision device with high reliability, simple structure, and low equipment and operating costs. The invention has been achieved. That is, the present invention provides a precision filtration device in which a filtration material made of porous hollow fibers with closed hollow openings is housed in a housing having at least two fluid entrances and exits. and is fixed in the housing by a separator that divides the inside of the housing into two chambers A and B, and the liquid passes through the separator and is present in the two chambers A and B. This invention relates to a precision filtering device in which the membrane area ratio of the hollow fibers is 1 on one side and 1 to 3 on the other. Hereinafter, the manufacturing method, structure, usage method, characteristics, etc. of the precision device of the present invention will be explained in more detail with reference to the drawings. FIG. 1 is a schematic diagram showing an embodiment of the present invention,
First, the hollow fibers as the overfill material are made of porous hollow fibers whose hollow openings are closed, for example, recycled fibers such as cellulose acetate, or synthetic fibers such as polyester, polyamide, polyacrylonitrile, polysulfone, polyolefin, polyvinyl alcohol, etc. However, porous hollow fibers made of polyolefin synthetic fibers such as polypropylene, polyethylene, etc. are particularly preferred because they have excellent water resistance, bacteria resistance, and chemical resistance. It can be said to be a material. The micropore diameter of the porous wall membrane of the hollow fiber is determined by the average pore diameter measured using the mercury porosimeter method.
A diameter of about 0.05 to 0.6 μ, particularly about 0.1 to 0.3 μ is preferable from the viewpoint of overflow and overaccuracy. The inner diameter of the hollow fibers is preferably about 100 to 400 μm, particularly about 150 to 300 μm from the viewpoint of pressure loss. However, in the present invention, the above-mentioned values are not particularly limited, and can be appropriately selected and used depending on the purpose of use. Next, the hollow openings of the hollow fibers can be closed by dissolving the tips of the hollow fibers with a solvent, or by gluing them with an adhesive. Alternatively, in the case of heat-melting hollow fibers, a method of closing the fibers by fusion may be used as appropriate. In FIG. 1, the hollow fibers are bundled at approximately the center portion 2, but the hollow fibers can be bound by adhesion and solidification using, for example, polyurethane resin, silicone resin, or the like. The housing 3 is made of a rigid body made of pressure-resistant plastic or metal, and has at least two fluid inlets and outlets 4, 5, etc., and the housing is divided into two chambers A and B.
Any structure may be used as long as it has a separator plate 6 for fractionating into two parts, and this separator plate can also be made of plastic, metal, or the like. This separator divides the housing into two chambers, and allows a bundle of hollow fibers 1, which serves as a surcharge material, to pass through the separator to be present in chambers A and B in the housing in a liquid-tight or air-tight manner. It plays the role of fixing it in place. Furthermore, the membrane area ratio of the hollow fibers is set to 1 in the housing of the A and B2 chambers.
The precision device of the present invention is manufactured by storing the number of parts so that one number is 1 to 3 while the other number is 1 to 3. Since the precision filtration device of the present invention has the structure as described above, for example, the fluid flowing in from the fluid inlet 4 of the housing 3 once fills the A chamber in the housing, and then flows through the porous hollow fibers in the A chamber. Once passed through the porous wall membrane part, it reaches the hollow fiber hollow part of the hollow fiber in chamber B through the hollow fiber hollow part, flows from the inside of the hollow fiber hollow part again toward the porous outer wall membrane, and is passed again in this process. Thus, the desired superfluid can be obtained from the outlet 5 in the B chamber. In other words, since a two-stage pass is performed, the reliability as a precision pass is high. For example, even if there is an unexpected defect in the porous wall membrane of the hollow fiber in chamber A and the target object is insufficiently captured, the porous wall of the hollow fiber in chamber B It can be captured in the wall membrane, making it a highly reliable precision device. Note that when the porous wall membrane of the porous hollow fiber in chamber A becomes clogged due to changes over time during the aging process, and the flow rate decreases, the operation must be temporarily stopped and the By using the section as a fluid inlet and the fourth section as an outlet, it is possible to remove particulate matter adhering to the porous wall membrane of the hollow fiber in chamber A.
That is, it has the feature that it is easy to operate when attempting to restore membrane function by backwashing that applies reverse pressure. Further, the precision filtration device of the present invention has the following advantages because the hollow openings of the porous hollow fibers serving as the filtration material are closed. For example, when this device is used to produce sterile water, recontamination of the overfill material itself due to back infiltration of bacteria from the water sampling port is prevented, especially when the device is not in operation. In other words, if the hollow openings are not closed, there is a risk that bacteria that have infiltrated back into the hollow fibers may enter the interior of the hollow fibers through the hollow openings, which is not preferable. Next, the precision precision device of the present invention is
It is necessary to set the membrane area ratio of the hollow fibers existing in the chamber to 1 on one side and 1 to 3 on the other, and usually the membrane area of the hollow fibers present in the A chamber on the fluid inlet side during operation. It is preferable to set the membrane area so that it is equal to or larger than the membrane area of the hollow fiber existing in chamber B on the fluid outlet side from the viewpoint of efficiently operating the apparatus. That is, according to studies by the present inventors, as the membrane area of the hollow fibers in chamber A on the inlet side becomes larger than the membrane area in chamber B on the outlet side, the flow rate under the same pressure tends to decrease. Therefore, from the viewpoint of securing the flow rate, it is not preferable that B be 1 and A be 3 or more. However, if B is 1 and A is 1 or less, the membrane area of the hollow fibers on the primary flow side becomes too small, which shortens the time until so-called clogging and reduces the flow rate, which is not preferable. Based on these study results, it is necessary to increase the membrane area of chamber A by 1 to 3 times that of chamber B in this device. Further, it is preferable that the chamber has an A chamber and an inlet for the overflow fluid, and a B chamber and an outlet for the overflow fluid. In reality, the above-mentioned membrane area ratio is changed in consideration of the amount of particulate matter contained in the passing fluid, viscosity, etc., but usually the membrane area ratio is 1:1 or 1:1. 2 or so is often used. In addition, in Figure 1, there are 2 fluid inlets and outlets.
Although only one is shown, the A chamber may be further provided with an outlet for the permeated fluid. Furthermore, although the above explanation has mainly focused on the filtration of water, it is also possible to precisely filtrate gases, air, and organic liquids using the apparatus of the present invention. Next, the present invention will be explained in more detail with reference to Examples. The detection and measurement methods for bacteria and pyrogen used in the Examples are as follows. Bacteria measurement method in water Place an ordinary agar medium in a sterile Petri dish, steam sterilize it at 120℃ in an autoclave, add 1 ml of sample water onto the agar medium, and culture it in an incubator at 37℃ for 24 hours. The number of bacterial colonies (co-long) was measured. Pyrogen detection method Pyrogen detection method is Limulns lysatetest
The detection reagent used in accordance with the (Least Crab Hemocyte Lysis and Gelation Test) was Pregel Reagent (trade name) manufactured by Teikoku Zoki Seiyaku KK. The detection principle is based on the fact that blood cells in the hemolymph of horseshoe crabs react with extremely small amounts of pyrodiene and form a gel. Pregel is a reagent in which the above-mentioned freeze-dried blood cell components are sealed in an ampoule.A test solution is added to this ampoule, and after culturing in an incubator at 37°C for 1 hour, it is kept at room temperature for 5 minutes. The criteria for determining the degree of gelation by tilting the ampoule at 45° are as follows. (++): Forms a hard gel and does not lose its shape even if the ampoule is tilted. (+): A gel is formed, but when the ampoule is tilted, it moves as a lump. (±): Formation of coarse granular gel and significant increase in viscosity (-): Remains liquid and no change The detection limit of pyrodiene by this method is
10 -3 μg/ml. Example 1 Hollow opening of a porous hollow fiber made of polyethylene with an average micropore diameter of 0.23μ and a porosity of 60Vol% as measured using a mercury porosimeter model 221 manufactured by Carlo Erba, with a film thickness of 60μ and a hollow fiber inner diameter of 280μ. was closed by heat fusion. Next, the hollow fibers are bundled, the center of the hollow fiber bundle is glued using polyurethane resin, and the inside of the housing is attached to a separator that divides the inside of the housing into two chambers, A and B, to create a precision filter device. did. In addition, the membrane area of the hollow fiber existing in chamber A on the liquid inlet side is
1.2 m 2 , and the membrane area of the hollow fibers in chamber B on the outlet side was 1 m 2 . This precision filtering device was connected to the well water conduit via a pressure regulator, and the back pressure was 2.5Kg/ cm2 .
Table 1 shows the results and interim progress of water flowing for 2 hours a day for 12 months.

【表】 第1表に示す通り12ケ月間消毒など全く行わな
かつたにもかかわらず、常に無菌のパイロジエン
フリー水が得られることがわかつた。 実施例 2 本発明の精密過装置の信頼性を確めるため
に、次の如き、モデル実験を試みた。 まず実施例1と全く同様の装置を作製した後、
流体入口側A室に存在する中空糸束のうちの1本
の中空糸の側面1ケ所を針で突きさして、故意に
ピンホールを生成せしめた。すなわち、A室内の
中空糸に故意に欠陥部分を生じせしめ、この装置
を用いて、実施例1と同様条件で1日2時間の通
水を12ケ月継続した結果および途中経過を第2表
に併せて示す。
[Table] As shown in Table 1, it was found that sterile, pyrogen-free water was always obtained even though no disinfection was performed for 12 months. Example 2 In order to confirm the reliability of the precision device of the present invention, the following model experiment was attempted. First, after producing a device exactly the same as in Example 1,
A pinhole was intentionally created by poking a side surface of one of the hollow fiber bundles in chamber A on the fluid inlet side with a needle. That is, a defect was intentionally created in the hollow fiber in room A, and using this device, water was passed for 2 hours a day under the same conditions as in Example 1 for 12 months. The results and progress are shown in Table 2. Also shown.

【表】 第2表に示す通り10ケ月后においても無菌のパ
イロジエンフリー水が得られ、流体入口側A室に
存在する中空糸に欠陥があつた場合でもB室内の
該中空糸による二段過が行われるために過効
率に優れ、信頼性の高い精密過装置であること
がわかつた。 (比較例) 実施例1の場合と同様の多孔質中空糸を用い
て、第2図に示す如き精密過装置を作製した。
第2図に於て、1は中空糸であり、2は中空糸束
を樹脂で固めて切断し中空糸を開口させた部分で
あり、ハウジング3の出口5に液密に接続されて
いる。この装置では被過流体がハウジングの入
口4から入り、中空糸で過され、過された流
体が中空糸の中空部と通り出口5よりとり出され
る。 中空糸の有効過面積を2.2m2とし、この装置
を用いて実施例1と同様条件で1日2時間の通水
を12ケ月継続した結果及び途中経過を第3表に併
せて示す。
[Table] As shown in Table 2, sterile, pyrogen-free water can be obtained even after 10 months, and even if there is a defect in the hollow fibers in chamber A on the fluid inlet side, the hollow fibers in chamber B can provide two-stage water. It was found that this device has excellent overefficiency and is a highly reliable precision overpass device. (Comparative Example) Using the same porous hollow fiber as in Example 1, a precision filtering device as shown in FIG. 2 was manufactured.
In FIG. 2, reference numeral 1 indicates a hollow fiber, and reference numeral 2 indicates a portion obtained by solidifying a hollow fiber bundle with resin and cutting it to open the hollow fiber, which is fluid-tightly connected to an outlet 5 of a housing 3. In this device, fluid to be permeated enters the housing through an inlet 4, passes through a hollow fiber, and the filtered fluid passes through the hollow portion of the hollow fiber and is taken out through an outlet 5. The effective area of the hollow fiber was set to 2.2 m 2 , and using this device, water was passed for 2 hours a day for 12 months under the same conditions as in Example 1. The results and intermediate progress are also shown in Table 3.

【表】 第3表に示す通り、この装置においても充分な
除菌及びパイロジエン除去効果を示すが、10ケ月
経過後においてリムルステストによるパイロジエ
ンが(±)の結果を示し、実施例1の本発明の精
密過装置の方がより信頼性が高いことがわかつ
た。 以上説明した通り、本発明による精密過装置
は信頼性に優れ、構造が簡単で設備費、運転コス
ト共に安価な精密過装置であり、実用的価値は
極めて高いと考えられる。
[Table] As shown in Table 3, this device also shows sufficient sterilization and pyrogen removal effects, but after 10 months, the pyrogen test in the Limulus test showed a result of (±). Precision instruments were found to be more reliable. As explained above, the precision measuring device according to the present invention is highly reliable, has a simple structure, and is low in equipment cost and operating cost, and is considered to have extremely high practical value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の精密過装置を示す概略図で
あり、第2図は本発明以外の過装置の概略図で
ある。 1……中空糸、2……中空糸束固定部、3……
ハウジング、4,5……流体出入口、6……隔離
板。
FIG. 1 is a schematic diagram showing a precision scanning device of the present invention, and FIG. 2 is a schematic diagram of a precision scanning device other than the present invention. 1...Hollow fiber, 2...Hollow fiber bundle fixing part, 3...
Housing, 4, 5...Fluid inlet/outlet, 6... Separation plate.

Claims (1)

【特許請求の範囲】 1 中空開口部が閉塞された多孔質中空糸よりな
る過材が、少なくとも2ケ所以上の流体の出入
口を有するハウジング内に収納されてなる精密
過装置において、中空糸はそれを束ねて、固定
し、且つハウジング内を2室A,Bに分画する隔
離板によつてハウジング内に固定されており、該
隔離板を通過して2室A,B内に存在せしめた中
空糸の膜面積比を一方を1に対して他方を1〜3
としてなる精密過装置。 2 被過流体の入口を有する室Aの膜面積を、
過流体の出口を有する室Bの膜面積より大きく
したことを特徴とする特許請求の範囲第1項記載
の精密過装置。
[Claims] 1. In a precision filtration device in which a filtration material made of porous hollow fibers with closed hollow openings is housed in a housing having at least two fluid inlets and outlets, the hollow fibers are are bundled and fixed in the housing by a separator that divides the inside of the housing into two chambers A and B, and the liquid passes through the separator and is made to exist in the two chambers A and B. The membrane area ratio of the hollow fiber is 1 for one side and 1 to 3 for the other side.
Precision equipment. 2 The membrane area of chamber A with the inlet of the permeated fluid is
2. The precision filtration device according to claim 1, wherein the membrane area is larger than that of chamber B having an outlet for excess fluid.
JP56093619A 1981-06-17 1981-06-17 Precise filtering device Granted JPS57207517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56093619A JPS57207517A (en) 1981-06-17 1981-06-17 Precise filtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56093619A JPS57207517A (en) 1981-06-17 1981-06-17 Precise filtering device

Publications (2)

Publication Number Publication Date
JPS57207517A JPS57207517A (en) 1982-12-20
JPS6327044B2 true JPS6327044B2 (en) 1988-06-01

Family

ID=14087329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56093619A Granted JPS57207517A (en) 1981-06-17 1981-06-17 Precise filtering device

Country Status (1)

Country Link
JP (1) JPS57207517A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105999821A (en) * 2016-07-21 2016-10-12 江苏展宏环保科技有限公司 Detachable mud bucket

Also Published As

Publication number Publication date
JPS57207517A (en) 1982-12-20

Similar Documents

Publication Publication Date Title
US4547289A (en) Filtration apparatus using hollow fiber membrane
JP3924926B2 (en) Hollow fiber membrane filtration membrane module
US5531848A (en) Method of manufacturing of hollow fiber cartridge with porous ring
Eykamp Microfiltration and ultrafiltration
US4707268A (en) Hollow fiber potted microfilter
JPH11501866A (en) Filtration cassette and filter with this laminated
JPH055532B2 (en)
CS226188B2 (en) Dialysing diaphragm in the form of flat foil,tubular foil or hollow filament made of cellulose regenerated by using cuoxam process
GB2232612A (en) Cross-flow filter
JPS6352524B2 (en)
JPS58163490A (en) Method and apparatus for purification of water
GB2298953A (en) Process for separating sodium from aqueous effluents resulting from the reprocessing of spent nuclear fuel elements
WO1984001522A1 (en) Filter
JPH0212130B2 (en)
US3698560A (en) Hollow fiber, artificial kidney with disposable dialyzing cartridge
JPS6327044B2 (en)
JPH049117B2 (en)
JP2000271457A (en) Operation of spiral type membrane element and spiral type membrane module and spiral type membrane module
JPH09253632A (en) Water treatment apparatus
JPS6397203A (en) Cartridge for filtration
JP3317753B2 (en) Membrane separation device and membrane module
JPS6219175A (en) Blood ultrafiltration apparatus
JP2000079329A (en) Filter membrane module
JPS5827685A (en) Sterilized water-making unit
JPH07506496A (en) Rectifier dialysis equipment, bioreactors and membranes