JPS63270159A - Driving method for electrostatic latent image-forming device - Google Patents

Driving method for electrostatic latent image-forming device

Info

Publication number
JPS63270159A
JPS63270159A JP10658587A JP10658587A JPS63270159A JP S63270159 A JPS63270159 A JP S63270159A JP 10658587 A JP10658587 A JP 10658587A JP 10658587 A JP10658587 A JP 10658587A JP S63270159 A JPS63270159 A JP S63270159A
Authority
JP
Japan
Prior art keywords
electrodes
electrode
power source
latent image
electrostatic latent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10658587A
Other languages
Japanese (ja)
Other versions
JPH0764088B2 (en
Inventor
Yuji Suemitsu
末光 裕治
Koji Masuda
増田 晃二
Kazuo Asano
和夫 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP10658587A priority Critical patent/JPH0764088B2/en
Publication of JPS63270159A publication Critical patent/JPS63270159A/en
Publication of JPH0764088B2 publication Critical patent/JPH0764088B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/385Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective supply of electric current or selective application of magnetism to a printing or impression-transfer material
    • B41J2/39Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective supply of electric current or selective application of magnetism to a printing or impression-transfer material using multi-stylus heads
    • B41J2/40Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective supply of electric current or selective application of magnetism to a printing or impression-transfer material using multi-stylus heads providing current or voltage to the multi-stylus head

Landscapes

  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
  • Dot-Matrix Printers And Others (AREA)

Abstract

PURPOSE:To ensure a high efficiency in utilizing ions and enable stable electric discharge, higher speed and higher density, by providing a switching means and a judging means, and applying an AC voltage to independent electrodes, applying a DC voltage to the electrodes or setting the electrodes into a floating condition according to data inputted. CONSTITUTION:Electrodes 2a-2d are coated with an insulator layer 3, on which a common electrode 4 is provided. Each of the electrodes is switchably connected to a DC power source 9 or to both an AC power source 10 and the DC power source 9 through a switching means Z. The switching means Z comprises switches Sa-Sd, which are controlled by output signals from a data input means X and a judging means Y. Each of the switches Sa-Sd is constituted of a contact G connected to the DC power source, a contact A connected to the AC power source and a contact F in a neutral position, and can be connected to the AC power source with a DC voltage superimposed thereon, connected to the DC power source or set into a neutral so-called floating condition, through the switching means Z. Since electric discharge is performed between the electrodes through the insulator layer, ionic efficiency is favorable, abnormal discharge such as leakage between the electrodes is prevented from occurring, and stable electric discharge is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、イオン流を変調し誘電体上に静電潜像を形成
する静電潜像形成装置の駆動方法に関する。、 〔従来の技術〕 一般に、イオン流を用いた静電記録の原理を第5図によ
り説明すると、静電記録ヘッド11において発生したイ
オンは、回転ドラム12面の記録媒体上に静電潜像13
を形成し、該静電潜像13には現像器14によりトナー
等の現像剤を付着させてトナー像15を形成し、転写部
16においてトナー像15が記録用紙17に転写される
ことにより静電記録が行われる。そして、記録媒体は除
電部18において除電された後、残った現像剤をトナー
除去部19で除去し、次回の記録に備えている。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of driving an electrostatic latent image forming device that modulates ion flow to form an electrostatic latent image on a dielectric material. [Prior Art] In general, the principle of electrostatic recording using an ion flow is explained with reference to FIG. 5. Ions generated in the electrostatic recording head 11 form an electrostatic latent image on the recording medium on the surface of the rotating drum 12. 13
A developing agent such as toner is applied to the electrostatic latent image 13 by a developing device 14 to form a toner image 15, and the toner image 15 is transferred to the recording paper 17 in the transfer section 16, thereby forming an electrostatic latent image. Electronic records are made. After the recording medium is neutralized by the static eliminating section 18, the remaining developer is removed by the toner removing section 19 in preparation for the next recording.

従来、上記静電潜像形成装置におけるイオン流発生方式
としては、ピン状電極を一列に並べ誘電体と接触させ、
誘電体との間で直接放電を起こさせる直接静電記録方式
が知られているが、電極と誘電体間のギャップを高精度
に維持しなければならず、また、放電を安定させること
ができないとか、電極が磨耗するとかの欠点があった。
Conventionally, the ion flow generation method in the electrostatic latent image forming apparatus described above involves arranging pin-shaped electrodes in a row and bringing them into contact with a dielectric material.
A direct electrostatic recording method is known in which a discharge is caused directly between the electrode and the dielectric, but the gap between the electrode and the dielectric must be maintained with high precision, and the discharge cannot be stabilized. However, there were drawbacks such as electrode wear.

上記欠点を除去するために、種々の間接静電記録方式が
知られている0例えば、第6図は特開昭57−1018
63号公報に提案されている方式であり、コロナイオン
発生器11はシールド20内にコロナワイヤ21を内蔵
しており、該イオン発生器11の下部には、絶縁層23
を挟んで共通電極22aと制御電極22bが設けられ、
イオン発生器11において発生したイオンを、共通電極
22aと制御電極22bとの間の電界強度に応じて、イ
オン通過孔24から導出し誘電体25を帯電させるもの
である。
In order to eliminate the above drawbacks, various indirect electrostatic recording methods are known. For example, FIG.
This is a method proposed in Japanese Patent No. 63, in which the corona ion generator 11 has a corona wire 21 built into the shield 20, and an insulating layer 23 is provided at the bottom of the ion generator 11.
A common electrode 22a and a control electrode 22b are provided on both sides,
Ions generated in the ion generator 11 are led out from the ion passage hole 24 to charge the dielectric 25 according to the electric field strength between the common electrode 22a and the control electrode 22b.

また、第7図は特開昭58−132571号公報に提案
されている方式であり、絶縁性基板26の一面に放電電
極27a、27bを対向して配列させると共に、vA縁
性基板26の他面には加速用電極28を設け、放電電極
27a、27b間に極性の異なる電圧パルスを印加する
ことにより、放電を起こさせて正、負のイオンを発生さ
せ、加速用電極28への電圧パルスに応じて、誘電体2
5を正または負のイオンで帯電させるものである。
Further, FIG. 7 shows a method proposed in Japanese Patent Application Laid-Open No. 58-132571, in which discharge electrodes 27a and 27b are arranged facing each other on one surface of an insulating substrate 26, and the other side of the vA edge substrate 26 is An acceleration electrode 28 is provided on the surface, and by applying voltage pulses with different polarities between the discharge electrodes 27a and 27b, a discharge is caused to generate positive and negative ions, and the voltage pulse to the acceleration electrode 28 is applied. Depending on the dielectric 2
5 is charged with positive or negative ions.

また、第8図は米国特許第4,160,257号に提案
されている方式であり、誘電体30を挟んで駆動電極3
1と制御電極32が形成され、さらに、絶縁層33を介
して共通電極34が形成されている。駆動電極31と制
御電極32は互いに方向が異なるようにマトリックス状
に配設され、絶縁層33および共通電極34には、該マ
トリックスに対応して複数の開口35および36が形成
される。そして、複数の駆動電極31と制御電極32間
に選択的に交流電圧を印加することにより、マトリック
スの選択された部分に対応する放電電極32近傍に正、
負のイオンが発生し、放電電極32と共通電極34間の
バイアス電圧の極性に応じた正または負のイオンを、開
口35および36より導出し静電記録が行われる。
FIG. 8 shows a method proposed in U.S. Pat. No. 4,160,257, in which drive electrodes 3
1 and a control electrode 32 are formed, and further a common electrode 34 is formed with an insulating layer 33 interposed therebetween. The drive electrode 31 and the control electrode 32 are arranged in a matrix so that their directions are different from each other, and a plurality of openings 35 and 36 are formed in the insulating layer 33 and the common electrode 34 in correspondence with the matrix. By selectively applying an AC voltage between the plurality of drive electrodes 31 and control electrodes 32, positive and
Negative ions are generated, and electrostatic recording is performed by leading out positive or negative ions from the openings 35 and 36 depending on the polarity of the bias voltage between the discharge electrode 32 and the common electrode 34.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、前述した第6図で示したワイヤにより放
電させる方式においては、コロナ放電により発生したイ
オンが開口域まで遠いために、シールド20に殆ど吸収
されてしまい、アパーチャ電極22a、22bを通過す
るイオン流が少なく、イオンの利用効率が悪いという問
題を有している。
However, in the wire discharge method shown in FIG. 6, the ions generated by corona discharge are far from the aperture area, so most of them are absorbed by the shield 20, and the ions passing through the aperture electrodes 22a and 22b The problem is that the flow is low and the ion utilization efficiency is poor.

また、第7図で示した電極により放電させる方式におい
ては、電極が露出しているためリークし易いと共に、電
極同士の直接放電であるために電極がダメージを受は易
く、また、電極数が多く高密度化或いは配線が困難であ
るという問題を有している。
In addition, in the method of discharging using electrodes as shown in Fig. 7, the electrodes are exposed, so leaks are likely to occur, and since the electrodes are directly discharged, the electrodes are easily damaged, and the number of electrodes is small. Many of them have the problem of high density and difficult wiring.

また、第8図における例においては、比較的前述した問
題は少ないが、マトリックス駆動が不可欠であるため、
1ライン上に潜像を形成する場合にデータの並び変えや
位置合わせが必要であり、また、高速化が困難であり、
その結果、複雑な制御回路を必要とし装置が大型化する
という問題を有している。
In addition, in the example shown in FIG. 8, there are relatively few problems mentioned above, but since matrix driving is essential,
When forming a latent image on one line, it is necessary to rearrange and align the data, and it is difficult to increase the speed.
As a result, there is a problem in that a complicated control circuit is required and the device becomes larger.

本発明は上記した問題を解決するものであって、イオン
の利用効率が高く、安定した放電が可能であり、高速化
および高密度化が可能な静電潜像形成装置の駆動方法を
提供することを目的とする。
The present invention solves the above-mentioned problems, and provides a method for driving an electrostatic latent image forming device that has high ion utilization efficiency, enables stable discharge, and is capable of increasing speed and density. The purpose is to

〔問題点を解決するための手段〕[Means for solving problems]

そのために本発明の静電潜像形成装置の駆動方法は、基
体上に互いに独立して配列された電極群と、該電極群と
絶縁層を挟んで対向させた共通電極とを有している静電
潜像形成装置において、切換手段と判断手段とを有し、
入力されるデータに応じて前記独立電極にAC電圧印加
、DC電圧印加またはフロ7−ト状態のいずれかの状態
を生じさせるようにしたことを特徴とするものである。
To this end, the method for driving an electrostatic latent image forming device of the present invention includes a group of electrodes arranged independently of each other on a substrate, and a common electrode facing the group of electrodes with an insulating layer in between. An electrostatic latent image forming device, comprising a switching means and a determining means,
The present invention is characterized in that the independent electrode is caused to be in any one of an AC voltage application, a DC voltage application, or a float state depending on input data.

〔作用〕[Effect]

本発明においては、例えば第1図に示す電圧印加状態に
おいては、電極2aと電極2bとの間の一放電領域Aに
おいては、交番電界が形成されエアブレークダウンある
いは沿面放電が発生し、イオンが生成され、該生成イオ
ンは、共通電極4と独立した電極群2間に形成された電
界により、放電領域Aから出て共通電極4の開口5より
外へ導出され、導出されたイオンは、共通電極4と誘電
体層7および基層6との間に形成された電界によって加
速され、誘電体JiE17表面に到達し静電潜像を形成
する。これに対して、電極2bと電極20問および電極
2Cと電極2d間には交番電界が存在せず、イオンも生
成されることがなく静電潜像も形成されない。
In the present invention, for example, in the voltage application state shown in FIG. 1, an alternating electric field is formed in one discharge region A between the electrodes 2a and 2b, air breakdown or creeping discharge occurs, and ions are The generated ions are led out of the discharge area A and out of the opening 5 of the common electrode 4 by the electric field formed between the common electrode 4 and the independent electrode group 2, and the led out ions are It is accelerated by the electric field formed between the electrode 4 and the dielectric layer 7 and base layer 6, and reaches the surface of the dielectric JiE 17 to form an electrostatic latent image. On the other hand, no alternating electric field exists between the electrode 2b and the electrode 20 and between the electrode 2C and the electrode 2d, so that no ions are generated and no electrostatic latent image is formed.

〔実施例〕〔Example〕

以下本発明の実施例を図面を参照しつつ説明する。第1
図は本発明が通用される静電潜像形成装置の1実施例を
示す断面図、第2図は第1図における電極部の斜視図、
第3図は本発明の静電潜像形成装置の駆動方法の1実施
例を示すブロック図、第4図は本発明の詳細な説明する
ための図である。
Embodiments of the present invention will be described below with reference to the drawings. 1st
The figure is a cross-sectional view showing one embodiment of an electrostatic latent image forming device to which the present invention is applicable, and FIG. 2 is a perspective view of the electrode section in FIG.
FIG. 3 is a block diagram showing one embodiment of a driving method for an electrostatic latent image forming apparatus according to the present invention, and FIG. 4 is a diagram for explaining the present invention in detail.

図中、lは基体、2は電極群、28〜2dは電極、3は
絶縁層、4は共通電極、5は開口、6は基層、7は誘電
体層、8.9は直流電源、10は交流電源、Xはデータ
人力手段、Yは判断手段、Zは切換手段を示す。
In the figure, l is a base, 2 is an electrode group, 28 to 2d are electrodes, 3 is an insulating layer, 4 is a common electrode, 5 is an opening, 6 is a base layer, 7 is a dielectric layer, 8.9 is a DC power supply, 10 indicates an AC power supply, X indicates a data manual means, Y indicates a judgment means, and Z indicates a switching means.

第1図および第2図において、基体1上には互いに独立
した電極群2を形成する電極2as2bs2C12d、
・・・が並列に配列されており、該電極2a〜2dの各
々には絶縁N3が゛被覆されると共に、該絶縁N3上に
は共通電極4が配設され、また、共通電極4には各電極
2a〜2d間に対向して開口5が形成されている。また
、基層6上には誘電体層7が形成され、該誘電体117
が前記共通電極4に対向して配置されるとともに、前記
基層6は接地されている。一方、共通電極4には直流電
源8によりバイアス電圧が印加されると共に、例えば、
電極2aには直流電源9により直流電圧が印加され、電
極2bには直流電圧が重乗された交流電圧が交流電源1
0により印加され、電極2C12dは電圧が印加されて
いないフロート状態にある。
In FIGS. 1 and 2, electrodes 2as2bs2C12d forming a mutually independent electrode group 2 on the base 1,
... are arranged in parallel, each of the electrodes 2a to 2d is coated with an insulation N3, and a common electrode 4 is disposed on the insulation N3. Openings 5 are formed facing each other between the electrodes 2a to 2d. Further, a dielectric layer 7 is formed on the base layer 6, and the dielectric layer 117
is arranged facing the common electrode 4, and the base layer 6 is grounded. On the other hand, a bias voltage is applied to the common electrode 4 by a DC power supply 8, and for example,
A DC voltage is applied to the electrode 2a by a DC power supply 9, and an AC voltage multiplied by the DC voltage is applied to the electrode 2b from the AC power supply 1.
0, and the electrode 2C12d is in a floating state with no voltage applied.

次に、上記構成からなる本発明の動作について説明する
と、第1図に示す電圧印加状態においては、電極2aと
電極2bとの間の放電領域Aにおいては、交番電界が形
成されエアブレークダウンあるいは沿面放電が発生し、
イオンが生成される。
Next, the operation of the present invention having the above configuration will be explained. In the voltage application state shown in FIG. Creeping discharge occurs,
ions are generated.

該生成イオンは、共通電極4と独立した電極群2間に形
成された電界により、放電領域Aから出て共通電極4の
開口5より外へ導出され、導出されたイオンは、共通電
極4と誘電体層7および基層6との間に形成された電界
によって加速され、誘電体層7表面に到達し静電潜像を
形成する。これに対して、電極2bと電極20問および
電極2Cと電極2d間には交番電界が存在せず、イオン
も生成されることがなく静ii?a像も形成されない。
The generated ions are led out of the discharge area A and out of the opening 5 of the common electrode 4 by the electric field formed between the common electrode 4 and the independent electrode group 2, and the led out ions are drawn out from the common electrode 4 and outside the opening 5 of the common electrode 4. It is accelerated by the electric field formed between the dielectric layer 7 and the base layer 6, reaches the surface of the dielectric layer 7, and forms an electrostatic latent image. On the other hand, there is no alternating electric field between the electrode 2b and the electrode 20 and between the electrode 2C and the electrode 2d, and no ions are generated. No image is formed either.

なお、形成する静電潜像の極性つまり取出すイオンの極
性は、電極群2と共通電極4に印加する直流電圧、共通
電極4に印加するバイアス電圧の極性を変えることによ
り、正にも負にも変えることが可能である0例えば、直
流電圧を−5oov、バイアス電圧を一600vに保て
ば、負の潜像が形成できるし、直流電圧を+800V、
バイアス電圧を+600Vに保てば、正の潜像が形成で
きる。また、AC電源の電圧は、電極群2間で放電を開
始する電圧より高くかつ異常放電が起こらない程度に低
く設定する必要があるが、設定値は電極間の距離等によ
り決定される。また、ACの周波数は、放電を起こす範
囲であればいかなる値でも構わないが、数10H2〜数
MHzの範囲に渡って利用可能である。
The polarity of the electrostatic latent image to be formed, that is, the polarity of the ions to be taken out, can be made positive or negative by changing the polarity of the DC voltage applied to the electrode group 2 and the common electrode 4 and the bias voltage applied to the common electrode 4. For example, if you keep the DC voltage at -5oov and the bias voltage at -600V, a negative latent image can be formed, and if you keep the DC voltage at +800V,
If the bias voltage is kept at +600V, a positive latent image can be formed. Further, the voltage of the AC power source needs to be set higher than the voltage at which discharge starts between the electrode group 2 and low enough to prevent abnormal discharge, but the set value is determined by the distance between the electrodes and the like. Further, the frequency of AC may be any value as long as it causes discharge, and can be used in the range of several tens of Hz to several MHz.

第3図は上記電極2a、2b、2c、2dの駆動方法を
示し、各電極は切換手段Zを介して直流電−R9のみか
または交流電源10と直流電R9に切換可能に接続され
、該切換手段ZはスイッチSa s s b 、、 s
 c % S dを有し、データ入力手段Xおよび判断
手段Yの出力信号により各スイッチが制御される。各ス
イッチSa〜Sdは、直流電源に接続されている接点G
と、交流電源に接続されている接点Aと、中立ポジショ
ンの接点Fとから構成され、各電極は切換手段Zを芥し
て直流の重乗された交流電源に接続されているか、直流
電源に接続されているか、或いはどこにも接続されない
中立の所謂フロート状態の内いずれか1つの状態を作り
出すことができるようになっている。
FIG. 3 shows a method of driving the electrodes 2a, 2b, 2c, and 2d. Each electrode is connected to the DC power R9 alone or to the AC power source 10 and the DC power R9 via a switching means Z, and the switching means Z is the switch Sa s s b ,, s
c % S d, and each switch is controlled by the output signals of the data input means X and the judgment means Y. Each switch Sa to Sd has a contact G connected to a DC power supply.
, a contact A connected to an AC power supply, and a contact F in a neutral position, and each electrode is connected to an AC power supply with a DC multiplier by removing the switching means Z, or is connected to a DC power supply. It is possible to create either one of the so-called floating states, which are connected or not connected to anything, which is a neutral state.

その動作の1例を第4図により説明する。An example of the operation will be explained with reference to FIG.

図中、Aは交流印加、Gは直流印加、Fはフロート状態
を示し、oeoは制御されるドツトであり、○は印字さ
れないドツト、・は印字されるドツトを示している。(
a)は全ドツト印字する場合を示し、交流印加、直流印
加を交互に繰り返すことにより達成され、(b)は全ド
ツト印字しない場合を示し、全電極をフロート状態にす
る。 (c) 、(d)は2つ以上印字しないドツトが
続く場合を示し、A、Gの繰り返しの間に(印字しない
ドツト数−1)の電極をフロートにすれば、G−F、F
−A間では電界が形成されないため、イオンが発生せず
印字されないことになる。また、(e)〜(g)は印字
しないドツトが1つ以上続かない場合を示し、印字しな
C)隣同士の電極状態を同一にし、それ以降の印字ドツ
トの繰り返しをそれ以前の逆にすればよい、すなわち、
印字しないドツトの両電極をA−AまたはG−Gの状態
にすれば、両電極間に交番電界は存在せず印字しない状
態にすることができる。
In the figure, A indicates AC application, G indicates DC application, F indicates a floating state, oeo indicates a controlled dot, ◯ indicates a dot that is not printed, and * indicates a dot that is printed. (
(a) shows a case in which all dots are printed, which is achieved by alternately repeating alternating current application and direct current application; (b) shows a case in which all dots are not printed, with all electrodes in a floating state. (c) and (d) show cases in which there are two or more unprinted dots, and if (number of unprinted dots - 1) electrodes are floated between repetitions of A and G, G-F, F
Since no electric field is formed between -A, no ions are generated and no printing is performed. In addition, (e) to (g) indicate cases where one or more non-printed dots do not continue. All you have to do is,
If both electrodes of a dot that is not to be printed are placed in the A-A or GG state, no alternating electric field exists between the two electrodes, resulting in a non-printing state.

なお、電極の駆動方法は第4図の例に限らず、種々の方
法が考えられる。要するに、印字するドツトの両側の電
極はA−Gの関係となるようにし、印字しない場合には
一方がへの状態のときは他方がAまたはFの関係となる
ようにとし、一方がGの状態のときは他方がGまたはF
の関係となるようにすればよい、上記電極の駆動状態は
、判断手段Yによって入力データに応じた切換を切換手
段Zに命じることにより達成される。具体的には、通信
技術の分野でしばしば用いらるデータ圧縮の方法と類似
した方法、例えば、入力データと予め容易されたROM
テーブルに書かれた順列との比較を行うことにより達成
できるが、熱論該方法に限定されるものではなく種々の
方法を用いることができる。
Note that the electrode driving method is not limited to the example shown in FIG. 4, and various methods can be considered. In short, the electrodes on both sides of the dot to be printed should be in the A-G relationship, and when not printing, the other should be in the A or F relationship when one is in the state, and one is in the G relationship. state, the other is G or F
The driving state of the electrodes is achieved by the determining means Y instructing the switching means Z to perform switching according to the input data. Specifically, a method similar to a data compression method often used in the field of communication technology, for example, input data and a ROM compressed in advance.
This can be achieved by comparing with the permutations written in the table, but the method is not limited to the above method and various methods can be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、基体上に互、いに独立し
て配列された電極群と、該電極群と絶縁層を挟んで対向
させた共通電極とを有している静電潜像形成装置におい
て、切換手段と判断手段とを有し、入力されるデータに
応じて前記独立電極に交流電圧印加、直流電圧印加また
はフロート状態のいずれかの状態を生じさせるようにし
たことにより、下記のような効果が奏される。
As explained above, the present invention provides an electrostatic latent image having a group of electrodes arranged independently of each other on a substrate, and a common electrode facing the electrode group with an insulating layer in between. The forming apparatus includes a switching means and a determining means, and causes the independent electrode to be in any of the following states: AC voltage application, DC voltage application, or floating state, depending on the input data. An effect like this is produced.

(イ)絶縁層を介して電極間で放電させるため、イオン
効率が良いと共に、電極間同士のリーク等異常放電が防
止され、安定した放電を得ることができる。
(a) Since the discharge is caused between the electrodes via the insulating layer, the ion efficiency is high, and abnormal discharge such as leakage between the electrodes is prevented, and stable discharge can be obtained.

(ロ)印字にマトリックスを組む必要がなく、lライン
一括印字ができプリント速度を高速化することができる
(b) There is no need to set up a matrix for printing, and one line can be printed all at once, increasing the printing speed.

(ハ)電極群を並列に配置させるため、製造が簡単であ
り、電極数も少なく配線が容易であり、また、高密度化
が可能となる。
(c) Since the electrode groups are arranged in parallel, manufacturing is simple, the number of electrodes is small, wiring is easy, and high density is possible.

(ニ)直接静電記録方式と比較して、電極と誘電体間の
狭いギャップ維持が不要となり、電極の磨耗も少ない。
(d) Compared to direct electrostatic recording, maintaining a narrow gap between the electrode and the dielectric is not required, and there is less wear on the electrode.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明が適用される静電潜像形成装置の1実施
例を示す断面図、第2図は第1図における電極部の斜視
図、第3図は本発明の静電潜像形成装置の駆動方法の1
実施例を示すブロック図、第4図は本発明の詳細な説明
するための図、第5図は静電潜像形成装置の原理を説明
するための図、第6図、第7図および第8図は従来の静
電潜像形成装置を説明するための図である。 1・・・基体、2・・・電極群、2a〜2d・・・電極
、3・・・絶縁層、4・・・共通電極、5・・・開口、
6・・・基層、7・・・誘電体層、8.9・・・直流電
源、10・・・交流電源、X・・・データ入力手段、Y
・・・判断手段、Z・・・切換手段。 出 願 人   富士ゼロックス株式会社代理人弁理士
  白 井 博 樹(外2名)第1図 A 第2図 第3図 電趣鼾 第4図 (2)  ロOロ釧n@MJOロO囚0田りロ第5図 第6図 第7図 (Q、) (い 第8図
FIG. 1 is a sectional view showing one embodiment of an electrostatic latent image forming apparatus to which the present invention is applied, FIG. 2 is a perspective view of the electrode section in FIG. 1, and FIG. 3 is an electrostatic latent image forming apparatus according to the present invention. Forming device driving method 1
FIG. 4 is a block diagram showing an embodiment, FIG. 4 is a diagram for explaining the present invention in detail, FIG. 5 is a diagram for explaining the principle of the electrostatic latent image forming apparatus, FIGS. FIG. 8 is a diagram for explaining a conventional electrostatic latent image forming apparatus. DESCRIPTION OF SYMBOLS 1... Base body, 2... Electrode group, 2a-2d... Electrode, 3... Insulating layer, 4... Common electrode, 5... Opening,
6... Base layer, 7... Dielectric layer, 8.9... DC power supply, 10... AC power supply, X... Data input means, Y
...judgment means, Z...switching means. Applicant: Fuji Xerox Co., Ltd. Representative Patent Attorney Hiroki Shirai (2 others) Figure 1 A Figure 2 Figure 3 Electronic Snoring Figure 4 (2) RoOro Senn@MJO Roo Prisoner 0 Figure 5, Figure 6, Figure 7 (Q,) (Figure 8)

Claims (1)

【特許請求の範囲】[Claims] (1)基体上に互いに独立して配列された電極群と、該
電極群と絶縁層を挟んで対向させた共通電極とを有して
いる静電潜像形成装置において、切換手段と判断手段と
を有し、入力されるデータに応じて前記独立電極にAC
電圧印加、DC電圧印加またはフロート状態のいずれか
の状態を生じさせるようにしたことを特徴とする静電潜
像形成装置の駆動方法。
(1) In an electrostatic latent image forming device having a group of electrodes arranged independently of each other on a substrate and a common electrode facing the electrode group with an insulating layer interposed therebetween, a switching means and a determining means are provided. and AC to the independent electrode according to input data.
1. A method for driving an electrostatic latent image forming apparatus, characterized in that any one of a voltage application, a DC voltage application, and a float state is caused.
JP10658587A 1987-04-30 1987-04-30 Driving method for electrostatic latent image forming apparatus Expired - Lifetime JPH0764088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10658587A JPH0764088B2 (en) 1987-04-30 1987-04-30 Driving method for electrostatic latent image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10658587A JPH0764088B2 (en) 1987-04-30 1987-04-30 Driving method for electrostatic latent image forming apparatus

Publications (2)

Publication Number Publication Date
JPS63270159A true JPS63270159A (en) 1988-11-08
JPH0764088B2 JPH0764088B2 (en) 1995-07-12

Family

ID=14437279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10658587A Expired - Lifetime JPH0764088B2 (en) 1987-04-30 1987-04-30 Driving method for electrostatic latent image forming apparatus

Country Status (1)

Country Link
JP (1) JPH0764088B2 (en)

Also Published As

Publication number Publication date
JPH0764088B2 (en) 1995-07-12

Similar Documents

Publication Publication Date Title
US6515692B2 (en) Image forming apparatus having writing electrodes as a writing device
JPH01141061A (en) Electrical discharge head
US4803593A (en) Flat solid discharging device
EP1193070B1 (en) Image forming apparatus
JPS63270159A (en) Driving method for electrostatic latent image-forming device
JPH0262862B2 (en)
US5717449A (en) Toner projection printer with improved address electrode structure
EP0373889A2 (en) Multiple source charged particle generation
JPS61174569A (en) Ion generating device
JPS63270155A (en) Electrostatic latent image-forming device
US6239823B1 (en) Electrostatic latent image forming printhead having separate discharge and modulation electrodes
JPH0620614Y2 (en) Electrostatic recording device
JPS60199668A (en) Picture recorder
JPH02196671A (en) Ionography head
JP2001110547A (en) Ion generator and electrostatic recorder equipped with ion generator
JPH0667641B2 (en) Electrostatic recording method
JPH0712706B2 (en) Method for manufacturing electrostatic latent image forming apparatus
JPS62105163A (en) Ion generating device
JPH01276160A (en) Corona ion generating device
JPH04164661A (en) Electrostatic recorder
JPH09300691A (en) Ion flow head
JPS63153162A (en) Electrostatic recording head
JPS63283961A (en) Color recorder
JPH0453763A (en) Ion current control recording device
JPS63268660A (en) Electrostatic latent image-forming device