JPS63270066A - Radiation therapy apparatus - Google Patents

Radiation therapy apparatus

Info

Publication number
JPS63270066A
JPS63270066A JP10525187A JP10525187A JPS63270066A JP S63270066 A JPS63270066 A JP S63270066A JP 10525187 A JP10525187 A JP 10525187A JP 10525187 A JP10525187 A JP 10525187A JP S63270066 A JPS63270066 A JP S63270066A
Authority
JP
Japan
Prior art keywords
electron beam
energy electron
electromagnet
energy
therapy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10525187A
Other languages
Japanese (ja)
Inventor
Toshinobu Suzuki
鈴木 敏允
Yahei Takase
高瀬 弥平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10525187A priority Critical patent/JPS63270066A/en
Publication of JPS63270066A publication Critical patent/JPS63270066A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation-Therapy Devices (AREA)

Abstract

PURPOSE:To obtain linac graphy facilitating the electron beam therapy of the superficial affected part and having good contrast, by mounting an apparatus capable of generating low energy electron beam apart from an apparatus generating high energy electron beam. CONSTITUTION:The electron generated from the second electron gun 13 is guided to a low energy acceleration tube 14. The low energy electron beam taken out from the second acceleration tube 14 is turned to the second deflecting electromagnet 19 by a distributing electromagnet 18 and deflected by said electromagnet 19 to be guided to the same track as high energy electron beam 2. In low energy electron beam therapy, no high energy electron beam 2 is generated and only the low energy electron beam is used. In this case, an X-ray target 9 and a flattening filter 11 are removed. Since the low energy electron beam is short in a flight distance within a human body and can be concentrated to the affected part whose therapy region is superficial, the exposure thereof to normal tissue can be avoided. Since the same geometrical condition as high energy X-ray therapy can be set in linac graphy, therapy can be performed with good accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は放射線治療装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a radiation therapy device.

〔従来の技術〕[Conventional technology]

第4図は従来の放射線治療装置の構成図である。 FIG. 4 is a configuration diagram of a conventional radiation therapy apparatus.

(1)はE匡子吠、(2)は成子線、(3)は加速骨、
(4)はマイクロ波源、(5)はサーキュレータ、(6
)は導波管、(7)は真空ダクト、(8)は偏向電磁石
、(9)はターゲット、四ばX、d、uηはフラットニ
ングフィルタ、四はコリメータブロックである。
(1) is E-kaji-bo, (2) is Nariko line, (3) is acceleration bone,
(4) is a microwave source, (5) is a circulator, (6
) is a waveguide, (7) is a vacuum duct, (8) is a bending electromagnet, (9) is a target, 4 is a flattening filter, and 4 is a collimator block.

電子鏡(1)で艶生した成子機(2)はマイクロ波源(
4)で宛生しサーキュレータ(5)及び4e−#t(6
)を経て加速管(3)に供給されたマイクロ波によって
加速WL3)内に、み起された電磁界によって、刀[1
達される。刀U速されたば子m (2)は真空ダクト(
7)を経て偏回am石(8)で偏向され、X線ターゲッ
ト(9)に辱かれる。
The Nariko machine (2), which has been polished with an electronic mirror (1), is heated by a microwave source (
4) and send it to the circulator (5) and 4e-#t (6
) The sword [1
be reached. Sword U-speeded Bakoko m (2) is a vacuum duct (
After passing through 7), it is deflected by a deflecting am stone (8) and is humiliated by an X-ray target (9).

X線ターゲットに導かれた電子線はX線四にf換される
。発生したx#m<toはフラットニングフィルタαυ
で平坦化され、コリメータブロックQ′4によって必要
な照射野に絞られ、X線治療に供される。
The electron beam guided to the X-ray target is converted into X-rays. The generated x#m<to is a flattening filter αυ
The beam is flattened by the collimator block Q'4, narrowed down to a necessary irradiation field, and subjected to X-ray therapy.

1に子線治療の場合は、X線ターゲット(9)及びフラ
ットニングフィルタ0υが電子ビームの軌道から取り除
かれ、l直接患部に′電子線が照射される。
1. In the case of child beam therapy, the X-ray target (9) and flattening filter 0υ are removed from the trajectory of the electron beam, and the affected area is directly irradiated with the electron beam.

また、上記x#+1治療に先立って1.低部の立イと照
射野の形状を確認するためのライナックグラフィーは、
上記X線治療と同様の状態で写A熾影を行っている。
In addition, prior to the above x#+1 treatment, 1. Linac photography is used to confirm the shape of the lower beam and the irradiation field.
Photograph A was performed under the same conditions as the X-ray treatment described above.

[清明が解決しようとする問題点] 従来の装置は以上のように411!成されているので、
1台の装置で各種の放射線治療の組合せが内紐でめった
。例えば、d子線治療の場合、・エネルギーを大福に低
下できないため、表在性の患部の治療が困難であった。
[Problems that Seimei tries to solve] The conventional device has 411! Since it has been done,
Combinations of various radiotherapy treatments were successfully performed using one device. For example, in the case of d-ray therapy, it was difficult to treat superficially affected areas because the energy could not be lowered to the maximum level.

また、X線のエネルギーを大幅に低下できないため、ラ
イナックグラフィーのコントラストが豊<、照射野形状
と患部の関係の決定及び主要臓器の確認に難があった。
Furthermore, since the energy of the X-rays cannot be significantly reduced, the contrast of linac photography is poor, making it difficult to determine the relationship between the shape of the irradiation field and the affected area, and to identify major organs.

この発明は、上記の問題点を解決するためになされたも
のであり、比較的低いエネルギーの電子線を発生できる
装置を別に偏え、表在性患部の電子線治療を容易にする
とともに、低エネルギーのXdを発生し、コントラスト
の良いライナックグラフィーを得ることを目的とする。
This invention was made in order to solve the above-mentioned problems, and it separates a device that can generate relatively low-energy electron beams, facilitates electron beam treatment of superficially affected areas, and makes it possible to The purpose is to generate energy Xd and obtain linac photography with good contrast.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、電子銃と低エネルギー用の加速管及び低エ
ネルギー用偏向電磁石を設け、低エネルギー゛覗子線を
高エネルギー用電子線と同一の軌導に導くようKしたも
のである。
This invention is equipped with an electron gun, a low-energy accelerating tube, and a low-energy bending electromagnet, and is designed to guide the low-energy beam into the same trajectory as the high-energy electron beam.

〔作用〕[Effect]

この発明による低エネルギーX#Aは、ライナックグラ
フィーにおいて、人体による吸収の¥1j合が多くなり
、フィルム面に鮮明な投影像が形成される。低エネルギ
ー電子線は人体中の飛程が短くなり、治療領域が表面に
集中する。
The low energy X#A according to the present invention increases absorption by the human body in linac photography, and forms a clear projected image on the film surface. The low-energy electron beam has a short range through the human body, and the treatment area is concentrated on the surface.

〔発明の実施例〕[Embodiments of the invention]

第1図はこの発明に係る放射線治療装置の一実施例を示
す構成図である。(2)は第2の電子銃、Q4は加速空
洞数が少なく、従って加速v(3)に比し低エネルギー
の電子ビームを発生する低エネルギー用加速管、Qlは
低エネルギー電子線を偏向して、Xiメタ−ット(9)
の位置において、高エネルギーの電子#!+21と同一
軌道に導く第2の偏向゛電磁石、α5di2のマイクロ
波源、αeは第2のサーキューレータ、αのは第2の導
波管、C1119は振分電磁石である0 第2の電子銃(至)で発生した電子は、低エネルギー用
加速管へ徨に導かれる。低エネルギー用刀口速管α→で
は、第2のマイクロ波源Qf9で発生したマイクロ波が
第2のサーキュレータQ!、 !@ 2の導波管Q′り
を経て供給されたマイクロ波の電磁界により低エネルギ
ーの電子線を発生する。第2の加速・go41から*V
出された低エネルギー電子線は振分電磁石(ト)により
、A2の偏自電磁石四に向けられ、ここで偏向され、篩
エネルギー電子線(2)と同一軌道に等かれる。
FIG. 1 is a configuration diagram showing an embodiment of a radiation therapy apparatus according to the present invention. (2) is the second electron gun, Q4 is a low-energy accelerator tube that has a small number of acceleration cavities and therefore generates an electron beam with lower energy than the acceleration v (3), and Ql is a tube that deflects the low-energy electron beam. Te, Xi Meta (9)
At the position of the high energy electron #! A second deflection electromagnet that leads to the same orbit as +21, a microwave source of α5di2, αe is a second circulator, α is a second waveguide, and C1119 is a distribution electromagnet0 Second electron gun The electrons generated at (to) are guided to the low-energy accelerator tube. In the low-energy pipe α→, the microwave generated by the second microwave source Qf9 is transmitted to the second circulator Q! , ! A low-energy electron beam is generated by the electromagnetic field of the microwave supplied through the waveguide Q' of @2. 2nd acceleration・from go41 *V
The emitted low-energy electron beam is directed by the distribution electromagnet (g) to the polarizing electromagnet 4 of A2, where it is deflected and placed on the same trajectory as the sieve energy electron beam (2).

低エネルギー電子線治療(表在性患部を対象)において
は、高エネルギー電子線(2)は発生させず、低エネル
ギー電子線たけを使用する。この場合、X@メタ−ット
(9)及びフラットニングフィルタaυは除かれる。低
エネルギー電子線は人体中における飛程が短いので、治
療丁自域が表存性の患部に集中できるので、正常組織へ
の被曝を回避できる。
In low-energy electron beam therapy (targeting superficial affected areas), a high-energy electron beam (2) is not generated, but a low-energy electron beam is used. In this case, X@metert (9) and the flattening filter aυ are removed. Since the low-energy electron beam has a short range in the human body, the treatment area can be concentrated on superficially affected areas, thereby avoiding exposure of normal tissues.

ライナックグラフィーでは、X線ターゲット(9)が高
エネルギーX線治療と同一の位置に設定され且つ第2の
フラットニングフィルタ(イ)が高エネルギーxm用の
第1のフラットニングフィルタと置き替り、平坦化され
たxmが得られ、ライナックグラフィーが行われる。高
エネルギーX線治療と同一の幾何学条件に設定できるた
め、積度の艮い治療かできる。
In linac photography, the X-ray target (9) is set at the same position as for high-energy X-ray treatment, and the second flattening filter (A) replaces the first flattening filter for high-energy The converted xm is obtained and linacgraphy is performed. Since it can be set to the same geometrical conditions as high-energy X-ray therapy, it can be used to treat the effects of accumulation.

上記では、各加速管に対して別々にマイクロ波源を設け
たが、第2図のように、方向性結合器+217を用いて
、一つのマイクロ波1M(4)から高エネルギー用加速
管(2)と低エネルギー用加連−#(ロ)の両方に加速
用マイクロ波を供給することもできる。こうするとマイ
クロ波源が一つで済むので安価に製造することができる
In the above, a separate microwave source was provided for each acceleration tube, but as shown in Figure 2, a directional coupler +217 is used to connect one microwave 1M (4) to a high energy acceleration tube (2 It is also possible to supply accelerating microwaves to both the ) and the low-energy coupling unit -# (b). In this case, since only one microwave source is required, manufacturing is possible at low cost.

第1図の実施例では、振分電磁石(至)と偏向電磁石(
8)とで第1の磁石系を、振分を磁石と第2の偏向電磁
石頭とで第2の磁石系を、夫々構成しているが、振分戒
、玉石は必ずしも必要ではない。
In the embodiment shown in Fig. 1, the distributing electromagnet (to) and the bending electromagnet (
8) constitutes the first magnet system, and the distribution magnet and the second bending electromagnet head constitute the second magnet system, respectively, but the distribution guide and the boulder are not necessarily necessary.

第3図は振分電磁石なしで3個の偏向電磁石で高エネル
ギー゛這子線と低エネルギー電子線の両方を偏向する実
施例である。図示の部分以外は男1図と同様なので省略
している。3個の偵向′1匡磁石(イ)、 I:I4.
(2)のうち高エネルギー電子線(実線)に対しては、
偏向電磁石脅、(ハ)を励磁して所定の軌道に導く第1
の偏向系を構成し、低エネルギー電子線(破線ンに対し
ては偏向電磁石に)、(至)を励磁して高エネルギー電
子線と同一軌道に辱く第2の偏向系を構成している。
FIG. 3 shows an embodiment in which both a high-energy electron beam and a low-energy electron beam are deflected using three deflection electromagnets without a distribution electromagnet. The parts other than those shown are omitted because they are the same as those in Figure 1. 3 reconnaissance '1 square magnets (a), I:I4.
For the high-energy electron beam (solid line) in (2),
The first one that excites the deflecting electromagnet (c) and guides it to a predetermined orbit.
A second deflection system is constructed that excites the low-energy electron beam (for the broken line, use a deflection electromagnet) and (to) to bring it into the same orbit as the high-energy electron beam. .

また、上記実施例では高エネルギー電子凛と低エネルギ
ー4子線は160°異なる正反対の方向に生ずるよう、
第1の加速管(3)と42の加速管α41を一直線上に
配置しているが、−1,f、線上でない配置も可能であ
る。これにより、装置配置上の融通性が増す。第4図は
その一例で、第2の偏向電磁石Q’Jの1!5i!置を
調整することにより、男2の加速管α徨で発生した低エ
ネルギー4子線を高エネルギー電子線と同一軌道に導り
ている。要するに、低エネルギー4子線がどの方向に発
生しようが、それを蔦エネルギー電子線と同一軌道に導
くよう、偏向′−電磁石位置や強さを調整すれば良いの
である。
In addition, in the above embodiment, the high-energy electron beam and the low-energy quadrupole beam are generated in opposite directions that differ by 160 degrees.
Although the first acceleration tube (3) and the second acceleration tube α41 are arranged on a straight line, it is also possible to arrange them not on the -1,f line. This increases flexibility in device placement. Figure 4 shows an example of this, with the second bending electromagnet Q'J 1!5i! By adjusting the position, the low-energy quadrupole beam generated in the accelerator tube α of Man 2 is guided into the same orbit as the high-energy electron beam. In short, no matter in which direction the low-energy tetragonal beam is generated, the position and strength of the deflecting electromagnet can be adjusted so as to guide it into the same orbit as the ivy-energy electron beam.

また、上記実施例では電子線を電磁石で偏向しているが
、必要な偏向が得られれば永久磁石を使用しても良いの
であって必ずしも電磁石に限る必★はない。
Further, in the above embodiment, the electron beam is deflected by an electromagnet, but a permanent magnet may be used as long as the necessary deflection can be obtained, and the deflection is not necessarily limited to an electromagnet.

低エネルギー電子線の用途としては、上述の衣在性患部
の電子線治療と低エネルギーX61によるライナックグ
ラフィーの他に、低エネルギー)IMによる治療も考え
られる。即ち、高エネルギーX線と低エネルギーX線と
を併用し、広範囲のエネルギーの放射線治療が出来る効
果もある。
In addition to the above-mentioned electron beam treatment of endogenous affected areas and linac photography using low-energy X61, low-energy electron beams can also be used for low-energy IM treatment. That is, by using high-energy X-rays and low-energy X-rays in combination, it is possible to perform radiotherapy with a wide range of energies.

上記第1図ないし第4図の放射線治療装置によれば、(
1) QエネルギーX線による放射線治療、(2)低エ
ネルギー電子線による電子線治療、(3)低エネルギー
x#!によるライナックグラフィー、(4)高エネルギ
ーX線と低エネルギーX線を併用した放射線治療、のい
づれもが1台の装置dで可能になる。
According to the radiation therapy apparatus shown in FIGS. 1 to 4 above, (
1) Radiotherapy using Q-energy X-rays, (2) Electron beam therapy using low-energy electron beams, (3) Low-energy x#! (4) Radiation therapy using a combination of high-energy and low-energy X-rays can both be performed with one device d.

しかも同一の幾何学的条件で上記(1)〜(4)が実現
できる。
Moreover, the above (1) to (4) can be realized under the same geometrical conditions.

〔全問の効果〕[Effect of all questions]

この発明は比較的低いエネルギーの電子線を発生させ、
これを比較的高いエネルギーの電子線と同一軌道上に導
くようにしたので、1台の装置で各種放射線治療が実現
できる効果がめる0
This invention generates a relatively low energy electron beam,
Since this is guided into the same orbit as the relatively high-energy electron beam, it is possible to achieve various radiation treatments with one device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る放射線始M装置の一実施例を示
す構成図、第2図はこの発明の放射線治療装置の他の一
実施例を示す構成図、第3図はこの発明の放射線治療装
置に使用する偏向手段の一例を示す構成図、第4図はこ
の発明の放射線治療装置の加a管の位置を変えた一実施
例の構成図、第5図は従来の放射線治療袋itの構成図
である0図において、(1) 、 <13は電子鏡、(
2)は篭子城、+3)。 Q荀は加速管、(4)、GQはマイクロ波源、+87 
、 (+1 、IA。 鱒、G5は偏向電磁石、(9)はX線ターゲッ)、GO
はX線、 (11) 、 GQはフラットニングフィル
タ、(2)はコリメータブロック、α呻は振分′1磁石
である。 各図中の同一符号は同−又は相当部分を示す。
FIG. 1 is a block diagram showing one embodiment of the radiation initiation device according to the present invention, FIG. 2 is a block diagram showing another embodiment of the radiation therapy device of the present invention, and FIG. Fig. 4 is a block diagram showing an example of the deflection means used in the treatment device; Fig. 4 is a block diagram of an embodiment in which the position of the a tube of the radiation therapy device of the present invention is changed; Fig. 5 is a block diagram showing a conventional radiation therapy bag IT. In Figure 0, which is a configuration diagram of , (1) , <13 is an electronic mirror, (
2) is Koshijo, +3). Q Xun is the accelerator tube, (4), GQ is the microwave source, +87
, (+1, IA. Trout, G5 is a bending electromagnet, (9) is an X-ray target), GO
is an X-ray, (11), GQ is a flattening filter, (2) is a collimator block, and α is a distribution '1 magnet. The same reference numerals in each figure indicate the same or corresponding parts.

Claims (5)

【特許請求の範囲】[Claims] (1)マイクロ波を加速管に導き電子を加速する第1の
加速器と、この第1の加速器の出力電子線を偏向して所
定の軌道に導く第1の磁石系と、マイクロ波を加速管に
導き電子を加速し、前記第1の加速器より低いエネルギ
ーの出力電子機を得る第2の加速器と、この第2の加速
器の出力電子線を偏向して前記所定の軌道に導く第2の
磁石系とを備えた放射線治療装置。
(1) A first accelerator that guides microwaves to an acceleration tube and accelerates electrons, a first magnet system that deflects the output electron beam of the first accelerator and guides it to a predetermined trajectory, and a first magnet system that directs microwaves to an acceleration tube. a second accelerator that accelerates electrons and obtains an output electron beam with lower energy than the first accelerator; and a second magnet that deflects the output electron beam of the second accelerator and guides it to the predetermined trajectory. A radiation therapy device equipped with a system.
(2)第1の加速器と第2の加速器に対し同一のマイク
ロ波源からマイクロ波を供給することを特徴とする特許
請求の範囲第1項に記載の放射線治療装置。
(2) The radiation therapy apparatus according to claim 1, wherein microwaves are supplied from the same microwave source to the first accelerator and the second accelerator.
(3)第1の磁石系と第2の磁石系が共通の電磁石と夫
々別々の偏向電磁石を有することを特徴とする特許請求
の範囲第1項に記載の放射線治療装置。
(3) The radiation therapy apparatus according to claim 1, wherein the first magnet system and the second magnet system have a common electromagnet and separate deflection electromagnets.
(4)共通の電磁石が振分電磁石であることを特徴とす
る特許請求の範囲第3項に記載の放射線治療装置。
(4) The radiation therapy apparatus according to claim 3, wherein the common electromagnet is a distribution electromagnet.
(5)共通の電磁石が偏向電磁石であることを特徴とす
る特許請求の範囲第3項に記載の放射線治療装置。
(5) The radiation therapy apparatus according to claim 3, wherein the common electromagnet is a bending electromagnet.
JP10525187A 1987-04-27 1987-04-27 Radiation therapy apparatus Pending JPS63270066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10525187A JPS63270066A (en) 1987-04-27 1987-04-27 Radiation therapy apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10525187A JPS63270066A (en) 1987-04-27 1987-04-27 Radiation therapy apparatus

Publications (1)

Publication Number Publication Date
JPS63270066A true JPS63270066A (en) 1988-11-08

Family

ID=14402434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10525187A Pending JPS63270066A (en) 1987-04-27 1987-04-27 Radiation therapy apparatus

Country Status (1)

Country Link
JP (1) JPS63270066A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010035650A1 (en) * 2010-08-27 2012-03-01 Siemens Aktiengesellschaft therapy device
WO2023022951A1 (en) * 2021-08-17 2023-02-23 Varian Medical Systems, Inc. Movable/replaceable high intensity target and multiple accelerator systems and methods
US12036420B2 (en) 2021-08-17 2024-07-16 Varian Medical Systems, Inc. Movable/replaceable high intensity target and multiple accelerator systems and methods

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010035650A1 (en) * 2010-08-27 2012-03-01 Siemens Aktiengesellschaft therapy device
WO2023022951A1 (en) * 2021-08-17 2023-02-23 Varian Medical Systems, Inc. Movable/replaceable high intensity target and multiple accelerator systems and methods
US12036420B2 (en) 2021-08-17 2024-07-16 Varian Medical Systems, Inc. Movable/replaceable high intensity target and multiple accelerator systems and methods

Similar Documents

Publication Publication Date Title
US3360647A (en) Electron accelerator with specific deflecting magnet structure and x-ray target
US4726046A (en) X-ray and electron radiotherapy clinical treatment machine
US8841866B2 (en) Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system
RU2331163C1 (en) Extractor of x-rays of high and/or low energy
JPH08206103A (en) Radioactive ray medical treatment device with low dose stereostatic and x-ray source for portal imaging
WO2015169011A1 (en) Extra high energy electron beam or photon beam radiotherapy robot system
US10076675B2 (en) Beam delivery system for proton therapy for laser-accelerated protons
CN105636331B (en) Electron linear accelerator
RU2610530C2 (en) Proton irradiation using scanning spot
JP2833602B2 (en) Charged particle emission method and charged particle emission device
CN107789749A (en) Charged particle beam deflection device and treatment system
WO2019205924A1 (en) Radiation therapy head and radiation therapy apparatus
JP2014146606A (en) Charged particle beam extraction method and apparatus used in conjunction with charged particle beam cancer therapy system
CA1104728A (en) Charged particle beam scanning apparatus
JP5178978B2 (en) Electron accelerator, method of using electron accelerator, method of operating electron accelerator, and radiation therapy apparatus
EP3765152A1 (en) Particle beam guiding system and method and related radiotherapy system
CN105555007B (en) A kind of homologous dual intensity accelerator and accelerator therapy device
JPS63270066A (en) Radiation therapy apparatus
JP6266092B2 (en) Particle beam therapy system
US20200047004A1 (en) Beam Delivery System For Proton Therapy For Laser-Accelerated Protons
WO2020001375A1 (en) Radiotherapy apparatus
JP2910431B2 (en) Charged particle accelerator
EP3810267B1 (en) Beam transport line for radiotherapy systems and radiotherapy system with beam transport line
JPH02228973A (en) Radiation treatment apparatus
JPS63315072A (en) Radiotherapy apparatus