JPS63268938A - Gas turbine engine - Google Patents

Gas turbine engine

Info

Publication number
JPS63268938A
JPS63268938A JP10505387A JP10505387A JPS63268938A JP S63268938 A JPS63268938 A JP S63268938A JP 10505387 A JP10505387 A JP 10505387A JP 10505387 A JP10505387 A JP 10505387A JP S63268938 A JPS63268938 A JP S63268938A
Authority
JP
Japan
Prior art keywords
intake
exhaust
valve
combustor
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10505387A
Other languages
Japanese (ja)
Inventor
Toshiaki Goto
利昭 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10505387A priority Critical patent/JPS63268938A/en
Publication of JPS63268938A publication Critical patent/JPS63268938A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supercharger (AREA)

Abstract

PURPOSE:To suppress the emission of exhaust NOx through utilizing an optional output from a gas turbine by providing an intake valve on the intake-port side of a combustor for the gas turbine engine, and an exhaust valve on the exhaust-port side thereof respectively, and then providing a means for changing the speed and timing of opening and closing of these intake and exhaust valves. CONSTITUTION:On the intake-port side of a combustor 3 in a gas-turbine engine is provided an intake valve 2 in the rotational structure. While, on the exhaust- port side of the combustor 3 is provided an exhaust valve 4 in the rotational structure. The intake valve 2 and the exhaust valve 3 are subjected to a valve opening-and-closing control in good timing respectively while they are rotating under a rotational speed control through an intake-and-exhaust valve control unit 9. Thereby, the number of explosion per unit time is made independently variable regardless of the rotation of an output shaft, and an optional output can be utilized from a gas turbine. And further, the emission of exhaust NOx can be suppressed to a desired degree.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガスタービンエンジンに関し、特にガスタービ
ンエンジンの燃焼機の吸気口と排気口にそれぞれ回転構
造の弁を設け、これら吸気弁と排気弁の開閉速度とタイ
ミングを制御しつつ燃焼機における燃料の間けつ爆発を
可能としたガスタービンエンジンに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a gas turbine engine, and in particular, a rotary structure valve is provided at an intake port and an exhaust port of a combustor of a gas turbine engine, respectively, and these intake valves and exhaust valves are connected to each other. This invention relates to a gas turbine engine that enables intermittent explosion of fuel in a combustor while controlling the opening/closing speed and timing of the engine.

〔従来の技術〕[Conventional technology]

従来、タービンエンジンは吸排気弁を備えておらず、従
って、圧縮機により連続的に圧縮した空気がそのまま燃
焼室に送られつつ、これに燃料を噴射されて連続燃焼し
て出力タービンを回転している。
Conventionally, turbine engines do not have intake and exhaust valves, so air is continuously compressed by a compressor and sent directly to the combustion chamber, where fuel is injected and continuously burns to rotate the output turbine. ing.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した如く、従来のガスタービンエンジンは、圧縮機
により連続的に圧縮された空気をそのまま燃焼室に送り
込んで、これに噴射する燃料を連続燃焼させている。
As described above, in a conventional gas turbine engine, air that is continuously compressed by a compressor is fed into a combustion chamber as it is, and fuel injected into the combustion chamber is continuously combusted.

連続的に圧縮された空気は燃焼室という出口を有してい
ることとなり、その圧縮比は遠心式圧縮機の場合でたか
だか4〜6程度にしか達せず、ディーゼル内燃機関にく
らべて効率が低下することが避けられないという欠点が
ある。
Continuously compressed air has an outlet called a combustion chamber, and the compression ratio of a centrifugal compressor can only reach about 4 to 6 at most, making it less efficient than a diesel internal combustion engine. The disadvantage is that it is unavoidable.

本発明の目的は上述した欠点を除去し、燃料を間はり的
に爆発・燃焼せしめるという手段を備えることにより、
任意の出力を取り出すことができるとともに、排気ガス
に含まれるNOエ (窒素酸化物)成分の制御を含む最
適燃焼効率の確保ならびに排気弁閉鎖時の圧縮空気の慣
性による高圧力での高能力を得ることができるガスター
ビンエンジンを提供することにある。
The object of the present invention is to eliminate the above-mentioned drawbacks and to provide a means for causing fuel to explode and burn at intervals.
In addition to being able to extract any desired output, it also ensures optimum combustion efficiency, including control of NO (nitrogen oxide) components contained in the exhaust gas, as well as high performance at high pressures due to the inertia of compressed air when the exhaust valve is closed. The objective is to provide a gas turbine engine that can be obtained.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明のガスタービンエンジンは、前記ガスタービンエ
ンジンの燃焼器の吸気口側に設けた回転構造の吸気弁と
、前記燃焼器の排気口側に設けた回転構造の排気弁と、
前記吸気弁と排気弁を前記燃焼機の燃焼に対応せしめつ
つ回転状態で前記燃焼機に対して交互に開閉するととも
に開閉速度とタイミングとを制御する吸排気弁制御部と
を備えて構成される。
The gas turbine engine of the present invention includes an intake valve with a rotating structure provided on the intake port side of the combustor of the gas turbine engine, and an exhaust valve with a rotating structure provided on the exhaust port side of the combustor.
and an intake and exhaust valve control unit that alternately opens and closes the intake valve and exhaust valve with respect to the combustor in a rotating state while corresponding to combustion in the combustor, and controls opening/closing speed and timing. .

〔実施例〕〔Example〕

次に図面を参照して本発明の詳細な説明する。 Next, the present invention will be described in detail with reference to the drawings.

第1図は本発明のガスタービンエンジンの一実施例の側
面図であり、圧縮機1、吸気弁2、燃焼器3、排気弁4
、圧縮機駆動タービン7%出力タービン8および吸排気
弁制御部9を備え、また燃焼器3にはインジェクタ5と
イグナイタ6が設けられている。これら構成品目中1回
転構造の吸気弁2と排気弁4.ならびに吸排気弁制御部
9が本発明に直接かかわる部分である。
FIG. 1 is a side view of one embodiment of the gas turbine engine of the present invention, in which a compressor 1, an intake valve 2, a combustor 3, an exhaust valve 4
, a compressor-driven turbine 7% output turbine 8 and an intake/exhaust valve control section 9, and the combustor 3 is provided with an injector 5 and an igniter 6. Among these components, the intake valve 2 and the exhaust valve 4 have a one-turn structure. In addition, the intake and exhaust valve control section 9 are the parts directly related to the present invention.

圧縮機1で圧縮された空気は、吸気弁2を通して、少な
くとも1個1本実施例の場合は4個の燃焼室を有する4
気筒の燃焼器3に供給される。このとき、排気弁4は閉
じており、次のタイミングで吸気弁2が閉じたのち、イ
ンジェクタ5から燃料が燃焼器3の燃焼室のうち前述し
た閉じた燃焼室に噴射され、このあとイグナイタ6で点
火する。
The air compressed by the compressor 1 is passed through the intake valve 2 into a combustion chamber having at least one combustion chamber, four combustion chambers in this embodiment.
It is supplied to the combustor 3 of the cylinder. At this time, the exhaust valve 4 is closed, and after the intake valve 2 closes at the next timing, fuel is injected from the injector 5 into the aforementioned closed combustion chamber of the combustion chamber of the combustor 3, and then the igniter 6 ignite it.

次K、排気弁4を開くと、燃焼ガスは爆風となって排気
弁4を通って圧縮機駆動タービン7に噴射してこれを回
転させるともに、圧縮機駆動タービン7を通って出力タ
ービン8を回転させる。
Next, when the exhaust valve 4 is opened, the combustion gas becomes a blast and is injected into the compressor drive turbine 7 through the exhaust valve 4 to rotate it, and also passes through the compressor drive turbine 7 to drive the output turbine 8. Rotate.

圧縮機駆動タービン7は圧縮機1を回転させ、。A compressor drive turbine 7 rotates the compressor 1.

出力タービン8の軸が出力軸となる。第1図において、
矢印で示す実線は軸の結合を意味する。
The shaft of the output turbine 8 becomes the output shaft. In Figure 1,
A solid line indicated by an arrow means a connection of axes.

なお、吸気弁2と排気弁4は、吸排気弁制御部9で回転
速度制御を受けながら、回転しつつタイミング良く開閉
節」御を施される。
Note that the intake valve 2 and the exhaust valve 4 are controlled to open and close in a well-timed manner while rotating under rotational speed control by the intake and exhaust valve control section 9.

第2図は第1図の吸気弁2および燃焼器3ならびに排気
弁4の第1の実施例を具体的に示す断面図である。第2
図(3)は吸気弁2の、第2図tb+は燃焼器3の、第
2図(C)は排気弁4のそれぞれ断面図を示し、また第
2(b)図の燃焼器3にはインジェクタ5とイグナイタ
6とを併記して示す。吸気弁2は燃焼器3の吸気側に配
置され、排気弁4は燃焼器3の排気側に接続される。こ
れら吸気弁2と排気弁4はそれぞれ1個の開口を崩し、
また燃焼器3は4気筒に対応する4個の開口を有する。
FIG. 2 is a sectional view specifically showing a first embodiment of the intake valve 2, combustor 3, and exhaust valve 4 shown in FIG. Second
Figure (3) shows a sectional view of the intake valve 2, Figure 2 (tb+) shows a sectional view of the combustor 3, and Figure 2 (C) shows a cross-sectional view of the exhaust valve 4. An injector 5 and an igniter 6 are also shown. The intake valve 2 is arranged on the intake side of the combustor 3, and the exhaust valve 4 is connected to the exhaust side of the combustor 3. These intake valves 2 and exhaust valves 4 each have one opening,
Further, the combustor 3 has four openings corresponding to four cylinders.

吸気弁2と排気弁4とは軸中心に回転可能な構造(図示
せず)を有し、かつ各開口は軸中心に対しほぼ90度の
角度を有する。。
The intake valve 2 and the exhaust valve 4 have a structure (not shown) that is rotatable about the axis, and each opening has an angle of approximately 90 degrees with respect to the axis. .

第3図は第1図の実施例の吸排気弁2,4と燃焼器3の
位置関係を示す説明図であり、吸排気弁2.4が吸排気
弁制御部9により回転しながら吸排気を行う様子を表わ
しており、行程(1)〜(8)それぞれ上から順次、吸
気弁2、燃焼器3、排気弁4を示す。燃焼器3の円周上
にある線分は4個のインジェクタ5%イグナイタ6の位
置を示す。
FIG. 3 is an explanatory diagram showing the positional relationship between the intake and exhaust valves 2 and 4 and the combustor 3 in the embodiment shown in FIG. The figure shows the intake valve 2, combustor 3, and exhaust valve 4 in order from the top for each of strokes (1) to (8). Line segments on the circumference of the combustor 3 indicate the positions of the four injector 5% igniters 6.

第3図の行程(1)においては、燃焼器3の燃焼室A、
 Hは吸入行程にあり、C,Dは排気行程にある。行程
(2)においては、燃焼室Aは完全に密閉され、噴射燃
料をインジェクタ5から受けた後イグナイタ6Vcよっ
て点火され爆発の行程にある。燃焼室B、 Dは完全に
それぞれ吸排気行程にある。
In the stroke (1) of FIG. 3, the combustion chamber A of the combustor 3,
H is in the intake stroke, C and D are in the exhaust stroke. In the stroke (2), the combustion chamber A is completely sealed, and after receiving the injected fuel from the injector 5, it is ignited by the igniter 6Vc and is in the explosion stroke. Combustion chambers B and D are completely in their respective intake and exhaust strokes.

行程(3)では、燃焼器Aの排気とCの吸入が始まる。In step (3), exhaust from combustor A and intake of C begin.

行程(4)においては、燃焼室Aは完全に排気行程、B
は完全に密閉され同様にして、噴射燃料と点火を受は爆
発行程にあり、Cは完全に吸入行程にある。
In stroke (4), the combustion chamber A is completely in the exhaust stroke, B
C is completely sealed and similarly receives the injected fuel and ignition and is in the explosion stroke, while C is completely in the suction stroke.

行程(5)においては、燃焼室Bの排気とDの吸入が始
まっている。行程(6)においては、燃焼室Cは完全に
密閉され同様に噴射燃料と点火を受は爆発行程にあり、
Dは完全に吸入行程にある。行程(力においては、燃焼
室Cの排気と、Aの吸入が始まっている。行程(8)に
おいては、燃焼室りは完全に密閉され同様に噴射燃料と
点火を受は爆発行程にある。燃焼室Aは完全に吸入行程
にある。次に再び(1)の行程にもどりくり返し爆発を
燃焼室A−jDで生じつつその爆風により圧縮機駆動タ
ービン7゜出力タービン8を回転させる。
In stroke (5), exhaustion of combustion chamber B and intake of combustion chamber D have begun. In stroke (6), the combustion chamber C is completely sealed, and the combustion chamber C is also in the explosion stroke, receiving the injected fuel and ignition.
D is completely on the intake stroke. In the stroke (force), the exhaust of combustion chamber C and the intake of A have begun. In stroke (8), the combustion chamber is completely sealed and is also receiving injected fuel and ignition, and is in the explosion stroke. The combustion chamber A is completely in the suction stroke.Next, the stroke (1) is repeated again, and an explosion is generated in the combustion chambers A-jD, and the blast wave rotates the compressor drive turbine 7° and the output turbine 8.

第2および第3図は4気筒の例で燃焼室に対する吸排気
弁の開口が軸中心に対して約90度を占める場合を示し
たが、第4図のように45度以下の開口とすれば、軸を
中心として、180度の位置にある2つの燃焼室を同時
に爆発されることができ、さらに225度以下の開口と
すれば4つの燃焼室を同時に点火出来る。
Figures 2 and 3 show an example of a four-cylinder engine in which the opening of the intake and exhaust valves relative to the combustion chamber occupies approximately 90 degrees with respect to the shaft center. For example, two combustion chambers located at 180 degrees around the axis can be ignited simultaneously, and if the opening is 225 degrees or less, four combustion chambers can be ignited simultaneously.

同様にしてn気筒の燃焼室を同時に爆発させうる前記の
開口角度θは次の式で表わされる。
Similarly, the opening angle θ, which allows the combustion chambers of n cylinders to explode simultaneously, is expressed by the following equation.

n     N 以上の本発明のカスタービンエンジンの行程は、吸気→
爆発→排気→休止(燃焼室は密閉され吸気待の状態)と
なる。なお、上式のNはに桟敷で心り、また本実施では
N=4である。
n N The stroke of the Kasturbine engine of the present invention is as follows: intake →
Explosion → exhaust → rest (combustion chamber is sealed and ready for intake). Note that N in the above equation is taken into consideration, and in this implementation, N=4.

高速度で上記の工程をくり返えすとき、爆発の速度が排
気口の開弁に間にあわなくなるため、開口角度は前記式
で求められる角度以下とすることが好ましい。
When repeating the above steps at high speed, the explosion speed will not be in time for the opening of the exhaust port, so it is preferable that the opening angle be less than or equal to the angle determined by the above formula.

また燃焼室は爆発によるエネルキを効果的に出力タービ
ンに伝えるため軸に対してうす巻き状に配置しても良い
The combustion chamber may also be arranged in a thin spiral around the shaft in order to effectively transmit the energy from the explosion to the output turbine.

第2図、第4図では、軸の断面上に燃焼器3、吸排気弁
2,4の開口を設けたものであるが、第5図のように円
周上に設けても良い。この場合もその開口角は前記の式
で求められる。
In FIGS. 2 and 4, the openings of the combustor 3 and the intake and exhaust valves 2 and 4 are provided on the cross section of the shaft, but they may be provided on the circumference as shown in FIG. 5. In this case as well, the aperture angle is determined by the above formula.

8g1図では圧縮機lから吸気弁2の間にダクトを特に
入れていないが、ダクトを入れることにより、圧縮空気
のもっている慣性により、吸排気弁2.4の閉状態によ
る圧縮空気の圧力は一層強めることができる。
In Figure 8g1, no duct is specifically inserted between the compressor 1 and the intake valve 2, but by inserting the duct, the pressure of the compressed air when the intake and exhaust valves 2.4 are closed is reduced due to the inertia of the compressed air. It can be made even stronger.

前述したように、吸気弁2と排気弁4の開閉速度はその
回転速度で決まるため、これらの弁をサーボモータ等に
より制御する。吸排気弁制御部9はかかるサーボモータ
等を具備し、弁の開閉速度とそのタイミングを制御する
。開閉のタイミングは前述したように、弁の開口と、燃
焼器3の燃焼室の開口角度と配置により決定される。燃
料噴射と点火のタイミングは吸排気弁の回転位置を検出
しインジェクタ5およびイグナイタ6を電子制御すれば
容易に制御でき、これら電子制御回路も吸排気弁制御部
9に内蔵される。
As mentioned above, the opening and closing speeds of the intake valve 2 and the exhaust valve 4 are determined by their rotational speeds, so these valves are controlled by a servo motor or the like. The intake/exhaust valve control section 9 includes such a servo motor, etc., and controls the opening/closing speed and timing of the valve. As described above, the timing of opening and closing is determined by the opening of the valve and the opening angle and arrangement of the combustion chamber of the combustor 3. The timing of fuel injection and ignition can be easily controlled by detecting the rotational position of the intake and exhaust valves and electronically controlling the injector 5 and igniter 6, and these electronic control circuits are also built into the intake and exhaust valve control section 9.

イグナイタ6は、圧縮圧力がジーゼル機関同様極めて高
い場合には起動時のみ作動させ、常時は燃料噴射により
自然点火させれば良い。
If the compression pressure is extremely high as in a diesel engine, the igniter 6 may be operated only at startup, and normally ignited by fuel injection.

こうして、燃焼器3に対して吸気弁2と排気弁4をそれ
ぞれ燃焼器3の吸気側と排気側とに配置し、燃焼器3の
燃料爆発を吸排気弁制御部9の制御のもとに間けつ的に
制御することにより、連続爆発では、たとえば1000
iC程度の燃焼室内温度の場合でもこれを2500tl
’程度の高温状態と、シ、極めて燃焼効率を向上させる
ことができる。
In this way, the intake valve 2 and the exhaust valve 4 are arranged on the intake side and the exhaust side of the combustor 3, respectively, and the fuel explosion in the combustor 3 is controlled by the intake and exhaust valve control section 9. By controlling the explosions intermittently, continuous explosions can be performed, e.g. 1000
Even if the combustion chamber temperature is around iC, this is 2500 tl.
In a high-temperature state of '2', combustion efficiency can be greatly improved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、ガスタービンエンジンに
おいて、吸排気弁の開閉速度とタイミングを変える手段
を備えることKより、単位時間あたりの爆発回数を出力
軸の回転に関係なく独立して可変とし、任意の出力を取
り出せるという効果がある。また従来のタービンエンジ
ン同様、燃料噴射量をも可変とし出力を可変出来るため
、これら2つの要素を制御して排気Noエ を所望の程
度に抑圧すべき最適な制御を行なうことも可能となると
いう効果がある。さらに吸排気弁を有するため、その閉
時の圧縮空気の慣性により燃焼室内に、定常流のときよ
りも高い圧力で密閉され高い効率かえられるという効果
がある。
As explained above, the present invention provides a gas turbine engine with means for changing the opening/closing speed and timing of the intake and exhaust valves, thereby making it possible to independently vary the number of explosions per unit time regardless of the rotation of the output shaft. , it has the effect of allowing arbitrary output to be extracted. In addition, like conventional turbine engines, the amount of fuel injection can be varied and the output can be varied, so by controlling these two elements it is also possible to perform optimal control to suppress exhaust NOE to the desired degree. effective. Furthermore, since it has intake and exhaust valves, the inertia of the compressed air when the valves are closed has the effect of sealing the combustion chamber at a higher pressure than when the flow is steady, resulting in higher efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のガスタービンエンジンの一実施例の側
面図、第2図は第1図の実施例の吸気弁2および燃焼器
3ならびに排気弁4の第1の実施例を具体的に示す断面
図、第3図は第1図の実施例の吸排気弁2.4 と燃焼
器3の位置関係を示す説明図、第4図は第1図の実施例
の吸気弁2および燃焼器3ならびに排気弁4の第2の実
施例を具体的に示す断面図、第5図は第1図の実施例の
吸気弁2および燃焼器3の第3の実施例を具体的に示す
斜視図である。 l・・・・・・圧縮機、2・・・・・・吸気弁、3・・
・・・・燃焼器、4・・・・・・排気弁、5・・・・・
・インジェクタ、6・・・・・・イグナイタ、7・・・
・・・圧縮機駆動タービン、8・・・・・・出力タービ
ン、9・・・・・・吸排気弁制御部。 第 1 図 憂 2 閏 A、 F3.C,D −−−−−一應珪を茅 3  図 茅 5 必
FIG. 1 is a side view of one embodiment of the gas turbine engine of the present invention, and FIG. 2 specifically shows a first embodiment of the intake valve 2, combustor 3, and exhaust valve 4 of the embodiment of FIG. 3 is an explanatory diagram showing the positional relationship between the intake valve 2.4 of the embodiment shown in FIG. 1 and the combustor 3, and FIG. 3 and an exhaust valve 4 according to a second embodiment, and FIG. 5 is a perspective view specifically showing a third embodiment of the intake valve 2 and combustor 3 of the embodiment shown in FIG. It is. l...Compressor, 2...Intake valve, 3...
...Combustor, 4...Exhaust valve, 5...
・Injector, 6...Igniter, 7...
. . . Compressor drive turbine, 8 . . . Output turbine, 9 . . . Intake and exhaust valve control unit. 1st picture 2 Leap A, F3. C, D -------Ichio keji 3 fig 5 must

Claims (1)

【特許請求の範囲】[Claims] ガスタービンエンジンにおいて、前記ガスタービンエン
ジンの燃焼器の吸気口側に設けた回転構造の吸気弁と、
前記燃焼器の排気口側に設けた回転構造の排気弁と、前
記吸気弁と排気弁を前記燃焼機の燃焼に対応せしめつつ
回転状態で前記燃焼機に対して交互に開閉するとともに
開閉速度とタイミングとを制御する吸排気弁制御部とを
備えて成ることを特徴とするガスタービンエンジン。
In a gas turbine engine, an intake valve having a rotating structure provided on an intake port side of a combustor of the gas turbine engine;
An exhaust valve having a rotating structure provided on the exhaust port side of the combustor, and the intake valve and the exhaust valve are configured to alternately open and close with respect to the combustor in a rotating state while corresponding to the combustion of the combustor, and to adjust the opening/closing speed. 1. A gas turbine engine, comprising: an intake and exhaust valve control section that controls timing.
JP10505387A 1987-04-27 1987-04-27 Gas turbine engine Pending JPS63268938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10505387A JPS63268938A (en) 1987-04-27 1987-04-27 Gas turbine engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10505387A JPS63268938A (en) 1987-04-27 1987-04-27 Gas turbine engine

Publications (1)

Publication Number Publication Date
JPS63268938A true JPS63268938A (en) 1988-11-07

Family

ID=14397243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10505387A Pending JPS63268938A (en) 1987-04-27 1987-04-27 Gas turbine engine

Country Status (1)

Country Link
JP (1) JPS63268938A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04101025A (en) * 1990-08-16 1992-04-02 Hiromichi Nakatsu Turbine engine
JP2005520085A (en) * 2002-03-14 2005-07-07 ニュートン・プロパルション・テクノロジーズ・リミテッド Gas turbine engine system
GB2411208A (en) * 2004-02-19 2005-08-24 Japan Aerospace Exploration Pulse detonation engine valves
JP2006083733A (en) * 2004-09-15 2006-03-30 Toho Gas Co Ltd Gas turbine device
US7621116B2 (en) 2003-08-31 2009-11-24 Newton Propulsion Technologies, Ltd. Gas turbine engine system
JP2010281208A (en) * 2007-01-08 2010-12-16 United Technol Corp <Utc> Engine timing input system
JP2011117717A (en) * 2009-11-30 2011-06-16 General Electric Co <Ge> Rotary valve assembly for high temperature and high pressure operation
WO2015159956A1 (en) * 2014-04-18 2015-10-22 大石 光江 Engine jetting out combustion gas as driving force

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04101025A (en) * 1990-08-16 1992-04-02 Hiromichi Nakatsu Turbine engine
JP2005520085A (en) * 2002-03-14 2005-07-07 ニュートン・プロパルション・テクノロジーズ・リミテッド Gas turbine engine system
US8109074B2 (en) 2002-03-14 2012-02-07 Newton Propuslion Technologies Gas turbine engine system
US7621116B2 (en) 2003-08-31 2009-11-24 Newton Propulsion Technologies, Ltd. Gas turbine engine system
FR2866676A1 (en) * 2004-02-19 2005-08-26 Japan Aerospace Exploration ENGINE WITH PULSE OF DETONATION AND VALVE USED IN THIS ENGINE
GB2411208B (en) * 2004-02-19 2006-08-09 Japan Aerospace Exploration Pulse detonation engine and valve
GB2411208A (en) * 2004-02-19 2005-08-24 Japan Aerospace Exploration Pulse detonation engine valves
JP2006083733A (en) * 2004-09-15 2006-03-30 Toho Gas Co Ltd Gas turbine device
JP4497469B2 (en) * 2004-09-15 2010-07-07 東邦瓦斯株式会社 Gas turbine equipment
JP2010281208A (en) * 2007-01-08 2010-12-16 United Technol Corp <Utc> Engine timing input system
US8015792B2 (en) 2007-01-08 2011-09-13 United Technologies Corporation Timing control system for pulse detonation engines
JP2011117717A (en) * 2009-11-30 2011-06-16 General Electric Co <Ge> Rotary valve assembly for high temperature and high pressure operation
WO2015159956A1 (en) * 2014-04-18 2015-10-22 大石 光江 Engine jetting out combustion gas as driving force
JPWO2015159956A1 (en) * 2014-04-18 2017-04-13 アムネクスト・テクノロジ株式会社 Engine that uses combustion gas as driving force
JP2017122578A (en) * 2014-04-18 2017-07-13 アムネクスト・テクノロジ株式会社 Engine ejecting combustion gas as driving force

Similar Documents

Publication Publication Date Title
US9828906B2 (en) Rotary internal combustion engine with variable volumetric compression ratio
US9926842B2 (en) Rotary internal combustion engine with exhaust purge
US7044102B2 (en) Planetary rotary internal combustion engine
US8671907B2 (en) Split cycle variable capacity rotary spark ignition engine
US7958862B2 (en) Rotary positive displacement combustor engine
US6347611B1 (en) Rotary engine with a plurality of stationary adjacent combustion chambers
US4086880A (en) Rotary prime mover and compressor and methods of operation thereof
US7434563B2 (en) Rotary engine
JPS6060013B2 (en) double rotary engine
JP2859739B2 (en) Rotary engine
JPS63502203A (en) complex institution
JPS63268938A (en) Gas turbine engine
JPH04232333A (en) Method to process working gas in gas turbine device
US4614173A (en) Intake system for rotary piston engine
JPH10509493A (en) Internal combustion engine
US4008693A (en) Rotary engine
US4562804A (en) Intake system for rotary piston engine
GB1221954A (en) Improvements in two-phase gas turbine engines
US3447513A (en) Rotary internal combustion engine
GB2262569A (en) Oscillatory rotating engine.
US6014953A (en) Rotary spark ignited internal combustion engine
GB2144489A (en) Rotary internal-combustion engine
JPS63255530A (en) Internal combustion engine
GB1592279A (en) Internal combustion rotary engines
US20220381145A1 (en) Modular rotary engine