JPS63268709A - Production of stereoregular polystyrene - Google Patents

Production of stereoregular polystyrene

Info

Publication number
JPS63268709A
JPS63268709A JP10178387A JP10178387A JPS63268709A JP S63268709 A JPS63268709 A JP S63268709A JP 10178387 A JP10178387 A JP 10178387A JP 10178387 A JP10178387 A JP 10178387A JP S63268709 A JPS63268709 A JP S63268709A
Authority
JP
Japan
Prior art keywords
polystyrene
formula
cyclopentadienyl
catalyst
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10178387A
Other languages
Japanese (ja)
Inventor
Masanobu Imayoshi
今吉 正暢
Teruo Arai
輝夫 新井
Shigeo Tsuyama
津山 重雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP10178387A priority Critical patent/JPS63268709A/en
Publication of JPS63268709A publication Critical patent/JPS63268709A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/06Hydrocarbons
    • C08F12/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound

Abstract

PURPOSE:To easily produce a syndiotactic polystyrene having high stereo- regularity, by using a catalyst comprising a specific almoxane and a specific Ti compound having cyclopentadienyl group. CONSTITUTION:A stereoregular polystyrene is produced by using a catalyst composed of (A) a Ti compound containing cyclopentadienyl group and expressed by formula Cp2TiX2 (Cp is cyclopentadienyl; X is halogen) [e.g. bis(cyclopentadienyl)titanium dichloride) and (B) one or more almoxanes of formula I and II (R is methyl or ethyl; 1<=n<=40). The almoxane of formula I and II can be produced preferably by slowly hydrolyzing a trialkylaluminum with crystallization water of copper sulfate hydrate, aluminum sulfate hydrate, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は立体規則性ポリスチレンを製造する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing stereoregular polystyrene.

詳しくは、特定のチタン化合物を特定の有機アルミニウ
ム化合物と組合せた触媒を用いることによりスチレンを
重合し、シンジオタクチックポリスチレンを製造する方
法に関する。
Specifically, the present invention relates to a method for producing syndiotactic polystyrene by polymerizing styrene using a catalyst in which a specific titanium compound is combined with a specific organoaluminum compound.

(従来の技術) 立体規則性ポリスチレンには立体構造上アイソタクチッ
クポリスチレンとシンジオタクチックポリスチレンの2
種が考えられる。このうちアイソタクチックポリスチレ
ンについては古<1950年代から知られており、例え
ば三塩化チタン−トリエチルアルミニウムを用いる重合
方法により製造することができる。
(Prior art) Stereoregular polystyrene has two steric structures: isotactic polystyrene and syndiotactic polystyrene.
Species can be considered. Among these, isotactic polystyrene has been known since the 1950s and can be produced, for example, by a polymerization method using titanium trichloride-triethylaluminum.

しかしながら、このアイソタクチックポリスチレンは融
点こそ240℃と高いものの、結晶化速度が極めて遅く
且つもろいものであった。
However, although this isotactic polystyrene has a high melting point of 240° C., its crystallization rate is extremely slow and it is brittle.

一方、シンジオタクチックポリスチレンについては、融
点が高(且つ結晶化速度も速いことが期待される高分子
化合物であったにも拘らず永らくその存在が知られてい
なかったが、石屋らによって1986年に初めて合成に
成功したと報ぜられ、Macroa+o 1ecu l
 es +坦、 2465 (1986)においてその
構造解析が発表され、さらに第35回(1986年)高
分子学会年次大会において結晶化速度も速く工業的に価
値が高いことも報告されている。
On the other hand, although syndiotactic polystyrene is a polymer compound with a high melting point (and is expected to have a fast crystallization rate), its existence was unknown for a long time, but Ishiya et al. It was reported that the first successful synthesis of Macroa+o 1ecu l
Its structural analysis was announced in ES + Tan, 2465 (1986), and it was also reported at the 35th (1986) Annual Conference of the Society of Polymer Science that it has a fast crystallization rate and is of high industrial value.

(発明が解決しようとする問題点) このシンジオタクチックポリスチレンの合成法について
は、Macromolecules+坦、 2465 
(1986)において単にチタン化合物と有機アルミニ
ウム化合物とのみしか開示されておらず詳細は不明であ
る。
(Problems to be Solved by the Invention) Regarding the method for synthesizing this syndiotactic polystyrene, see Macromolecules + Tan, 2465.
(1986) only discloses a titanium compound and an organoaluminum compound, and the details are unclear.

さらにまた、通常のチタン化合物、例えば三塩化チタン
などと通常の有機アルミニウム化合物、例えばトリアル
キルアルミニウムなどとを用いる方法ではシンジオタク
チックポリスチレンはほとんど得られず、結晶化速度が
遅く且つもろいアイソタクチックポリスチレンが主に得
られてしまうという問題点があった。 ″ (問題点を解決するための手段) 本発明者らは上記の問題点を解決すべく鋭意研究を重ね
た結果、シクロペンタジェニル基を有する特定のチタン
化合物ならびに特定のアルモキサンを触媒に用いること
により、高い立体規則性を持つシンジオタクチックポリ
スチレンを得ることを発見し、本発明に到達した。
Furthermore, syndiotactic polystyrene is hardly obtained by a method using a normal titanium compound, such as titanium trichloride, and a normal organoaluminum compound, such as trialkylaluminum, and the crystallization rate is slow and the brittle isotactic polystyrene is not obtained. There was a problem that polystyrene was mainly obtained. ″ (Means for solving the problem) As a result of intensive research in order to solve the above problems, the present inventors have found that a specific titanium compound having a cyclopentadienyl group and a specific alumoxane are used as a catalyst. The inventors have discovered that syndiotactic polystyrene with high stereoregularity can be obtained by this method, and have arrived at the present invention.

すなわち本発明は、 (A)一般式〇p、TiX、(式中、Cpはシクロペン
タジェニル基、Xはハロゲン原子を表わす)で示される
チタン化合物と (式中、Rはメチル基またはエチル基を表わし、1≦n
≦40である)で示されるアルモキサンで表わされるす
くなくとも1種とからなる触媒を用いることを特徴とす
る立体規則性ポリスチレンの製造方法に係わるものであ
る。
That is, the present invention provides a titanium compound represented by (A) the general formula 〇p, TiX, (wherein Cp is a cyclopentadienyl group and X is a halogen atom) and (wherein, R is a methyl group or an ethyl represents a group, 1≦n
The present invention relates to a method for producing stereoregular polystyrene, characterized by using a catalyst comprising at least one type of alumoxane represented by the formula (≦40).

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

(A)に用いられるチタン化合物としては・例えば、ビ
ス(シクロペンタジェニル)チタニウムジクロライド、
ビス(シクロペンタジェニル)チタニウムジクロライド
などが挙げられ、好ましくはビス(シクロペンタジェニ
ル)チタニウムジクロライドが用いられる。このチタン
成分はへキサン等により炭化水素懸濁液として用いる事
もできるが、好ましくはトルエン等により炭化水素溶液
として用いられる。
As the titanium compound used in (A), for example, bis(cyclopentagenyl) titanium dichloride,
Examples include bis(cyclopentagenyl) titanium dichloride, and preferably bis(cyclopentagenyl) titanium dichloride is used. Although this titanium component can be used as a hydrocarbon suspension using hexane or the like, it is preferably used as a hydrocarbon solution using toluene or the like.

次に、(B)に用いられるアルモキサンについて説明す
る。本発明に用いられるアルモキサンは表される環状の
ものであってもよく、その併用でもよい、Rとしてはメ
チル基またはエチル基が挙げられるが特にメチル基が好
ましい、nは1ないし40の範囲から選ばれるが、5以
上であることが好ましい、このアルモキサンを合成する
には公知の方法、例えばトリアルキルアルミニウムに当
量の水を徐々に加えて加水分解する方法、あるいは硫酸
銅水和物、硫酸アルミニウム水和物などの結晶水によっ
てトリアルキルアルミニウムをゆっくりと加水分解する
方法が挙げられ、好ましくは後者の方法が用いられる。
Next, the alumoxane used in (B) will be explained. The alumoxane used in the present invention may be a cyclic one as shown, or a combination thereof may be used. R may be a methyl group or an ethyl group, but a methyl group is particularly preferred. n is in the range of 1 to 40. The alumoxane, which is selected but preferably 5 or more, can be synthesized by known methods, such as a method in which an equivalent amount of water is gradually added to trialkylaluminum and hydrolyzed, or copper sulfate hydrate, aluminum sulfate Examples include a method of slowly hydrolyzing trialkylaluminium with water of crystallization such as hydrate, and preferably the latter method is used.

次に重合に関して説明する。Next, polymerization will be explained.

本発明の触媒を用いる重合方法としては特に制限はなく
、スラリー重合、溶液重合など通常用いられる重合形式
より選べばよい。具体的には例えば触媒を不活性炭化水
素溶媒、例えばヘキサン、ヘプタンのごとき脂肪族炭化
水素、シクロヘキサン、メチルシクロヘキサンのごとき
脂環式炭化水素、ベンゼン、トルエンのごとき芳香族炭
化水素とともに反応器に導入し、不活性ガス雰囲気下に
スチレンを加え、室温ないし90℃の温度条件で重合を
行うことができる。
The polymerization method using the catalyst of the present invention is not particularly limited, and may be selected from commonly used polymerization methods such as slurry polymerization and solution polymerization. Specifically, for example, a catalyst is introduced into a reactor together with an inert hydrocarbon solvent, such as an aliphatic hydrocarbon such as hexane or heptane, an alicyclic hydrocarbon such as cyclohexane or methylcyclohexane, or an aromatic hydrocarbon such as benzene or toluene. Then, styrene is added under an inert gas atmosphere, and polymerization can be carried out at a temperature of room temperature to 90°C.

(発明の効果) 本発明により高度に立体規則性をもつシンジオタクチッ
クポリスチレンを合成することが可能となった。
(Effects of the Invention) The present invention has made it possible to synthesize highly stereoregular syndiotactic polystyrene.

さらにまた、本発明に用いられるビス(シクロペンタジ
ェニル)チタニウムシバライド、およびアルモキサン合
成に用いられるトリアルキルアルモニウム、硫酸銅水和
物などの原料は入手が容易であり工業的利用という見地
からも価値が高い。
Furthermore, the raw materials such as bis(cyclopentagenyl) titanium cybaride used in the present invention, trialkylamonium used in alumoxane synthesis, and copper sulfate hydrate are easily available, and from the viewpoint of industrial use. is also of high value.

(実施例) 以下、本発明の実施例を示すが、本発明はこれらの実施
例によって何ら制限されるものではない。
(Examples) Examples of the present invention will be shown below, but the present invention is not limited to these Examples in any way.

なお、実施例中、メチルエチルケトン不溶部(χ)とは で定義した。In addition, in the examples, what is the methyl ethyl ketone insoluble portion (χ)? Defined by .

(実施例1) (1)アルモキサンの合成 アルモキサンの合成は特開昭58−19309号公報実
施例1に準じて、窒素気流下で次の通り実施した。
(Example 1) (1) Synthesis of alumoxane Alumoxane was synthesized as follows under a nitrogen stream according to Example 1 of JP-A-58-19309.

37、5 g (0,15mol)のCu5O,,5H
zO(0,75molのH2Oに相当する)を250m
1のトルエンに懸濁させ、50m1(0,52+*ol
)のトリメチルアルミニウムを加え、20℃で24時間
反応させた。
37.5 g (0.15 mol) of Cu5O,,5H
zO (corresponding to 0.75 mol H2O) at 250 m
1 of toluene, 50ml (0,52+*ol
) was added, and the mixture was reacted at 20° C. for 24 hours.

反応の間にメタンガスの発生が認められた。反応後に硫
酸銅をろ別し、ろ液からトルエンを除くと、13.0g
(理想値の44%)のメチルアルモキサンが得られた。
Evolution of methane gas was observed during the reaction. After the reaction, copper sulfate was filtered and toluene was removed from the filtrate, resulting in 13.0g
(44% of the ideal value) of methylalumoxane was obtained.

ベンゼンで凝固点降下法によって測定した分子量は64
0、平均オリゴマー化度は11であった。
Molecular weight determined by freezing point depression method in benzene is 64
0, and the average degree of oligomerization was 11.

(2)スチレンの重合 不活性ガスで置換した内容積100m1のガラス製耐圧
ビンに、トルエン40層1と上記(1)で得られたメチ
ルアルモキサンlQmmolおよびビス(シクロペンタ
ジェニル)チタニウムジクロライドO,OO5mmol
を加えた。次にスチレン10m1を加え50℃で6時間
重合反応を行った。反応終了後、反応物を塩酸−メタノ
ールに投入することで反応を停止し、生成ポリマーをろ
別、乾燥した。
(2) Polymerization of styrene In a glass pressure-resistant bottle with an internal volume of 100 m1 and purged with an inert gas, 40 layers of toluene, 1 Q mmol of methylalumoxane obtained in (1) above, and bis(cyclopentadienyl)titanium dichloride O ,OO5mmol
added. Next, 10 ml of styrene was added and a polymerization reaction was carried out at 50° C. for 6 hours. After the reaction was completed, the reaction product was poured into hydrochloric acid-methanol to stop the reaction, and the resulting polymer was filtered and dried.

この結果得られたポリスチレンは0.73gであった。The resulting polystyrene weighed 0.73 g.

このポリスチレンのメチルエチルケトン不溶部(%)は
90%であって、この不溶部の立体規則性は”C−NM
Rスペクトル解析の結果、第1図に示す通り99%以上
シンジオタクチック構造であった。
The methyl ethyl ketone insoluble area (%) of this polystyrene is 90%, and the stereoregularity of this insoluble area is "C-NM
As a result of R spectrum analysis, as shown in FIG. 1, 99% or more had a syndiotactic structure.

(比較例Iン 実施例1 (2)において有機アルミニウム化合物とし
てメチルアルモキサンの代りにトリメチルアルミニウム
10mmolを用いた以外は実施例1(2)と同様にし
て重合反応を行ったが、ポリマーは得られなかった。
(Comparative Example I) A polymerization reaction was carried out in the same manner as in Example 1 (2) except that 10 mmol of trimethylaluminum was used instead of methylalumoxane as the organoaluminum compound in Example 1 (2). I couldn't.

(比較例2) 実施例1 (2)において有機アルミニウム化合物とし
てメチルアルモキサンの代りにトリメチルアルミニウム
2.5 mmoLチタン化合物としてビス(シクロペン
タジェニル)チタニウムジクロライドの代りに三塩化チ
タン250mgを用いた以外は実施例1 (2)と同様
にして重合反応を行った。
(Comparative Example 2) In Example 1 (2), 2.5 mmol of trimethylaluminum was used instead of methylalumoxane as the organoaluminum compound, and 250 mg of titanium trichloride was used instead of bis(cyclopentagenyl)titanium dichloride as the titanium compound. The polymerization reaction was carried out in the same manner as in Example 1 (2) except for this.

この結果得られたポリスチレンは4.5gであった。The resulting polystyrene weighed 4.5 g.

このポリスチレンのメチルエチルケトン不溶部(%)は
83%であったが、この不溶部の立体規則性は”C−N
MRスペクトル解析の結果、第2図に示す通りほぼアイ
ソタクチック構造であった。
The methyl ethyl ketone insoluble area (%) of this polystyrene was 83%, but the stereoregularity of this insoluble area was "C-N
As a result of MR spectrum analysis, as shown in FIG. 2, it was found to have an almost isotactic structure.

(実施例2) 実施例1 (2)においてメチルアルモキサンの量を2
0+molとした以外は、実施例1 (2)と同様にし
て重合反応を行った。この結果得られたポリスチレンは
0.70gであった。
(Example 2) In Example 1 (2), the amount of methylalumoxane was 2
A polymerization reaction was carried out in the same manner as in Example 1 (2) except that the amount was 0+mol. The resulting polystyrene weighed 0.70 g.

このポリスチレンのメチルエチルケトン不溶部(%)は
90%であって、この不溶部の立体規則性は13C−N
MRスペクトル解析の結果、実施例1 (2)と同様で
あった。
The methyl ethyl ketone insoluble area (%) of this polystyrene is 90%, and the stereoregularity of this insoluble area is 13C-N
The results of MR spectrum analysis were the same as in Example 1 (2).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1において、また第2図は比較例2にお
いて得られたポリスチレンのメチルエチルケトン不溶部
ポリマーの13C−NMRスペクトルにおけるベンゼン
環の01炭素のスペクトルである。なお、Makrom
ol 、 Chew、 、 1Ifl、 3051 (
1975)に依れば、第1図のピークはシンジオタクチ
ック構造に、第2図のピークはアイソタクチック構造に
帰属される。 第3図は本発明の態様を示す概略フローシートである。 特許出願人 旭化成工業株式会社 第1図 第2図
FIG. 1 shows the spectrum of the 01 carbon of the benzene ring in the 13C-NMR spectrum of the methyl ethyl ketone insoluble polymer of polystyrene obtained in Example 1 and FIG. 2 in Comparative Example 2. In addition, Makrom
ol, Chew, , 1Ifl, 3051 (
(1975), the peaks in FIG. 1 are assigned to a syndiotactic structure, and the peaks in FIG. 2 are assigned to an isotactic structure. FIG. 3 is a schematic flow sheet illustrating aspects of the present invention. Patent applicant: Asahi Kasei Industries, Ltd. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1)(A)一般式Cp_2TiX_2(式中、Cpはシ
クロペンタジエニル基、Xはハロゲン原子を表わす)で
示されるチタン化合物と (B)一般式▲数式、化学式、表等があります▼および (式中、Rはメチル基またはエチル基を表わし、1≦n
≦40である)で示されるアルモキサンの少なくとも1
種とからなる触媒を用いることを特徴とする立体規則性
ポリスチレンの製造方法。 2)Xが塩素原子である特許請求範囲第1項記載の製造
方法。 3)Rがメチル基である特許請求範囲第1項もしくは第
2項記載の製造方法。
[Claims] 1) (A) a titanium compound represented by the general formula Cp_2TiX_2 (in the formula, Cp represents a cyclopentadienyl group and X represents a halogen atom) and (B) a general formula ▲ mathematical formula, chemical formula, table etc. ▼ and (wherein R represents a methyl group or an ethyl group, and 1≦n
≦40)
A method for producing stereoregular polystyrene, the method comprising using a catalyst comprising seeds. 2) The manufacturing method according to claim 1, wherein X is a chlorine atom. 3) The manufacturing method according to claim 1 or 2, wherein R is a methyl group.
JP10178387A 1987-04-27 1987-04-27 Production of stereoregular polystyrene Pending JPS63268709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10178387A JPS63268709A (en) 1987-04-27 1987-04-27 Production of stereoregular polystyrene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10178387A JPS63268709A (en) 1987-04-27 1987-04-27 Production of stereoregular polystyrene

Publications (1)

Publication Number Publication Date
JPS63268709A true JPS63268709A (en) 1988-11-07

Family

ID=14309786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10178387A Pending JPS63268709A (en) 1987-04-27 1987-04-27 Production of stereoregular polystyrene

Country Status (1)

Country Link
JP (1) JPS63268709A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7005465B2 (en) 2002-08-07 2006-02-28 General Electric Resin composition for wire and cable coverings

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7005465B2 (en) 2002-08-07 2006-02-28 General Electric Resin composition for wire and cable coverings

Similar Documents

Publication Publication Date Title
AU622337B2 (en) Process for the preparation of cycloolefin polymers
US6225425B1 (en) Syndio-isoblock polymer and process for its preparation
JP2597375B2 (en) Vinylcyclohexane-based polymer and method for producing the same
US5631335A (en) Process of polymerizing olefins using diphenylsilyl or dimethyl tin bridged 1-methyl fluorenyl metallocenes
JP3287617B2 (en) Method and catalyst for producing isotactic polyolefin
US5155080A (en) Process and catalyst for producing syndiotactic polyolefins
US5142005A (en) Process for producing crystalline vinyl aromatic polymers having mainly a syndiotactic structure
JPH0693009A (en) Catalyst for polymerization of aromatic vinyl compound
JPH0241305A (en) Syndiotactic polypropylene
US5627247A (en) Organometallic fluorenyl compounds and use thereof in olefin polymerization
BG99690A (en) Highly active ethylene-selective metallocene-containing compounds
US6469114B1 (en) Metallocene compound and polymerization catalyst comprising heterocyclic group
JP2929465B2 (en) Aromatic vinyl compound polymerization catalyst and method for producing aromatic vinyl compound polymer
JP2720207B2 (en) Aluminoxane composition, method for producing the same, and method for producing olefin polymer using the aluminoxane composition
JPH01501487A (en) Catalyst and method for the production of syndiotactic polystyrene
RU2118329C1 (en) Method for production of catalyst, catalytic system for polymerization of olefins, method for polymerization of olefins
JPS63268709A (en) Production of stereoregular polystyrene
JP3193110B2 (en) Method for producing propylene polymer
JP3095754B2 (en) Propylene-isoblock copolymer, method for producing the same, and catalyst used therefor
US5342813A (en) Catalyst for polymerizing aromatic vinyl compound and process for producing polymer of aromatic vinyl compound
EP0838481B1 (en) Process for the production of vinyl-aromatic polymers with a high degree of syndiotacticity
JPS63268710A (en) Production of stereoregular polystyrene
JPS63268711A (en) Stereoregular polystyrene
JP2948642B2 (en) Method for producing polyolefin, catalyst used therefor, and aluminoxane component of the catalyst
US6211106B1 (en) Groups IIA and IIIA based catalyst composition for preparing high-syndiotacticity polystyrene