JPS6326852A - Durable optical disk - Google Patents

Durable optical disk

Info

Publication number
JPS6326852A
JPS6326852A JP61170656A JP17065686A JPS6326852A JP S6326852 A JPS6326852 A JP S6326852A JP 61170656 A JP61170656 A JP 61170656A JP 17065686 A JP17065686 A JP 17065686A JP S6326852 A JPS6326852 A JP S6326852A
Authority
JP
Japan
Prior art keywords
substrate
optical
optical disc
recording
recording layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61170656A
Other languages
Japanese (ja)
Inventor
Yoshitaka Takahashi
佳孝 高橋
Katsuyuki Takeda
竹田 克之
Takahiro Matsuzawa
孝浩 松沢
Hiromichi Enomoto
洋道 榎本
Shozo Ishibashi
正三 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP61170656A priority Critical patent/JPS6326852A/en
Publication of JPS6326852A publication Critical patent/JPS6326852A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the deterioration in disk characteristics and to extend the life of the disk by specifying the bending modulus as the property of a substrate of the optical disk provided with a recording layer on a transparent substrate to a specific value or above and specifying the coefft. of linear expansion to a specific value or below. CONSTITUTION:The transparent substrate 1 is formed by using a polycarbonate resin and polymethyl methacrylate resin which are different in the bending modulus and coefft. of linear expansion and providing U-shaped tracking guide grooves thereto. The optical disk is formed by laminating a dielectric layer 22 consisting of nitride, a recording carrier layer 21 consisting of an amorphous film and a protective film 3 consisting of a UV curing resin on the substrate 1. These disks are exposed to specific force deterioration conditions and the change in the C/N thereof is measured after the specific number of date. As a result, the deterioration is hardly admitted with the disks for which the substrate 1 having >=2.4X10<4>kg/cm<2> bending modulus and <=6.5X10<-5>cm/cm.K coefft. of linear expansion is used. The deterioration in the characteristics of the disk is prevented and the life thereof is extended if the properties of the substrate are specified in the above-mentioned values.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明はビデオディスク、コンパクトディスク、オフィ
ス用ファイルメモリディスクとして用いられ更にコンピ
ュータ用メモリディスクとして期待される光ディスクに
関し、単錘型(追記型)、特に消去再録型の光ディスク
に関する。
The present invention relates to an optical disc that is used as a video disc, a compact disc, a file memory disc for office use, and is expected to be used as a memory disc for computers, and more particularly to a single-spindle type (write-once type) optical disc, particularly an erasable and re-recordable type optical disc.

【従来の技術】[Conventional technology]

情報記録の記録媒体として初期的に磁気記録媒体が実用
化され、情報記録が需要が急増する中で記録形態のコン
パクト化、高密度化が促進された。 即ち磁性粉を懸濁させた磁性塗料を塗布した連敗型磁性
層の形式から高密度化の要請に添いうる気相堆積による
堆積型磁性層の形式が登場し、更に前記形式の水平記録
形態から飛讃的に記録高密度化が図られる磁性体を媒体
の厚み方向に磁化させる垂直記録の形態が実用化の段階
に到っている。 また磁気記録に遅れて、より一層の高密度化の要請に対
し記録の大容量、非接届記録、再生の利点に着目されて
光ディスクが開発されその進度を早めている。 光ディスクはコンパクトディスク(CD)のような再生
専用のもの、次いで使用者側に於て記録可能であるが記
録の消去はできないもの、従って唯一回の記録が許され
る追記型(WORM型; Write 0nce Re
ad Many)と称される光ディスクが追加され、更
に記録の消去、再記録の可能な消去再録型の光ディスク
にまで種類を拡げている。 これらの光ディスクは、一般に透明基板に稠密なV字ま
たはU字螺旋溝或は同心円満及び記録層を設け、該記録
層素地に前記溝に沿って物理的な小穴マイクロドツトを
設けたビット型、或は磁化異方性の磁化マイクロドツト
を設けた光磁気型、更に光反射率を異にする反射マイク
ロドツトを設ける相変化型等に区分されるが、情報記録
はいづれもピッチ1.0〜1.2μ鍋範囲の前記螺旋溝
等で形成される稠密なトラックに沿って設けられた前記
各種のマイクロドツト列として収録されている。 これらの形態を有する光ディスクに関しては、その基板
、記録層の素材、記録方式、手段、ディスク作成方法等
多岐に亘り相互に間断した法尻な検討が進められている
。 情報の記録、再生及び消去には精密で確実、迅速なアク
セス及びトラッキングに耐えるサーボ制御系を有しレー
ザビームを1μ−程度の焦点に絞る光学ヘッドが用いら
れ、光学ヘッドのトラックオフに対しては、光ディスク
の形態に応じてブツシュ・プル法、3スポツト法、更に
ウオブリング法、マーク検出法等のサーボ制御法が提案
されている。 前記のような精密なサーボ制御が行われる一方で、基板
の表面■さ、表面うねり、偏心或は吸水、加熱による反
り、変形、寸度安定性、透明性、硬度などの物性及び加
工条件による複屈折、気泡異常將亦成形性、離型性、コ
スト等、光ディスクの円滑な作動の前提となる精度のよ
いまた耐用性の高い基板に関る問題は依然として多い。 即ち光ディスクの使用環境を考えると、■ 高速回転に
より応力を受は歪みが生じる、■ 使用者取扱時に外力
、衝撃が加わることがある、 ■ 温度変化により寸法変化が起こる といった状況の繰返しがあり、そのため数百〜数千人の
薄膜である記録層の剥離を引き起こし寿命の低下を引き
起こす。 (発明の目的] 本発明は耐環境性に優れた基板を用いた耐久性及び耐用
性の高い光ディスクを提供することを目的とする。
Magnetic recording media were initially put into practical use as recording media for information recording, and as the demand for information recording rapidly increased, recording formats became more compact and denser. In other words, the continuous loss type magnetic layer coated with a magnetic paint with magnetic powder suspended in it was replaced by a deposition type magnetic layer by vapor deposition that could meet the demands for higher density, and furthermore, the horizontal recording form of the above-mentioned type was changed. A form of perpendicular recording, in which a magnetic material is magnetized in the thickness direction of the medium, has reached the stage of practical use, and is capable of dramatically increasing recording density. Furthermore, lagging behind magnetic recording, optical disks have been developed and are accelerating their progress in response to the demand for higher densities, with attention paid to their advantages of large recording capacity, non-contact recording, and playback. Optical discs include play-only discs such as compact discs (CDs), discs that are recordable by the user but cannot be erased, and write-once discs that allow only one recording (WORM type). Re
An optical disc called ``ad Many'' has been added, and the variety has also been expanded to include erasing and rewriting type optical discs that allow erasing and rewriting of records. These optical disks are generally of the bit type, in which dense V-shaped or U-shaped spiral grooves or concentric circular grooves are provided on a transparent substrate, and a recording layer is provided, and physical small hole microdots are provided in the recording layer base along the grooves. There are also two types: the magneto-optical type, which has magnetized microdots with magnetization anisotropy, and the phase-change type, which has reflective microdots with different optical reflectances, but information recording is performed at pitches of 1.0 to 1.0. The various microdots are recorded as rows of the various microdots provided along dense tracks formed by the spiral grooves in the 1.2μ pan range. Concerning optical discs having these forms, a wide variety of issues such as their substrates, materials for recording layers, recording methods, means, disc manufacturing methods, etc., are being studied in a variety of ways. For recording, reproducing, and erasing information, an optical head is used that has a servo control system that is precise, reliable, and withstands rapid access and tracking, and focuses the laser beam to a focus of about 1μ, and prevents the optical head from tracking off. Servo control methods such as a bush-pull method, a three-spot method, a wobbling method, and a mark detection method have been proposed depending on the format of the optical disc. While the above-mentioned precise servo control is carried out, there are problems due to physical properties and processing conditions such as surface roughness, surface waviness, eccentricity or water absorption, warping due to heating, deformation, dimensional stability, transparency, and hardness of the substrate. There are still many problems related to highly accurate and durable substrates, which are prerequisites for the smooth operation of optical disks, such as birefringence, bubble abnormality, moldability, mold releasability, and cost. In other words, when considering the environment in which optical disks are used, there are repeated situations such as: ■ High-speed rotation causes stress and distortion; ■ External forces and shocks may be applied when handled by the user; ■ Dimensional changes occur due to temperature changes. This causes the recording layer, which is a thin film of hundreds to thousands of layers, to peel off, resulting in a reduction in the lifespan. (Objective of the Invention) An object of the present invention is to provide an optical disc with high durability and durability using a substrate with excellent environmental resistance.

【発明の構成】[Structure of the invention]

前記の本発明の目的は、透明基板に記録層を設けた光デ
ィスクに於て、前記基板の曲げ弾性率が2.4X 10
”Kg/am2以上であり且っ線L3張係数が6.5X
 10−’c+*/cm・K以下であること3特徴とす
る光ディスクによって達成される。 尚本発明のR様は、光ディスクの記録層が光磁気記録層
であるときに好都合であり、また該光磁気記録層が希土
類遷移金属合金からなる垂直磁化磁性層であることが好
ましい。 更に本発明に係る記録層は該記録層に接する少なくとも
一層の誘電体層を設けた形態であることが好ましい、該
誘電体は同じでも異っていても、更に両面に設けて且つ
両面に於て層数が異っていてもよい。 また透明基板は樹脂であることが好ましい。 また光学ヘッドのトラッキングのためにトラッキング案
内溝を設けることが好ましい。 次に本発明の詳細な説明する。 本発明の光ディスクの透明基板に設けるトラッキング案
内溝はV字溝でもU字溝でもよいが好ましくはU字溝で
ある。該トラッキング案内溝の形成には射出成形法によ
ってもよいし、フォトポリマー法によってもよい。 前記二つの成形方法にはともに超精密成形に適用しうる
スタンパ−が用いられる。 成形する際にはまづ上記精度のよいスタンパーを選ぶこ
とが必須条件であり、更に成形環境を清浄に保ち塵、埃
を排除することが必要である。 また基板用基材の物性及び該物性と使用スタンパ−面と
に関る転写性、離型性を考慮、調整し、また成形条件に
於て内部歪の発生を防止し更に複屈折異常、気泡発生を
排除する等の条件を選定することによって、所定の光デ
イスク基板が得られるが、現技術レベルに於て光ディス
クに要求される要件を満足させるには試行錯誤を重ねて
実験的に好ましい条件を設定する方法が採られる。 具体的には基材に樹脂を用いる場合、射出成形法に於て
は、樹脂量、樹脂温度、樹脂流動性、スタンパ−温度、
型締力等の基準値及び該基準値への到達速度及び環境条
件への復帰速度であり、またフォトポリマー法に於ては
、樹脂量、樹脂粘度、基板圧着圧、電磁波照射強度等の
基準値及び該基準値と環境条件間との移行条件であって
、この試行によって選定された好ましい条件の一連の組
合せとして光デイスク用の基板かえられる。 他の基板用基材を用いる場合にも同様の手続がとられる
。 前記各種の配慮の精粗を問わず光ディスクの耐久性及び
耐用性に潜在的及び叩在的に影響を及すものは基板その
他の素材の物性、化学性であり、特に耐用性に対しては
構成層の集成強度、基板素材の物性である。 本発明に於ては基板素材の物性として、曲げ弾性率が2
.4X 10’Kg/cm2以上及びa膨張係数が6,
5X 10−’am/cm −K以下であることに特定
するが、前記弾性率及び膨張係数の下限及び上限につい
ては実在素材として自ら定る所がある。 本発明に於て光ディスクの基板に用いる素材としては、
スタンパ−による型取時には少くとも可塑性となりうろ
ことが必要であり、ガラス、酸化アルミニウム等のセラ
ミック無機質素材及びPMMA等のアクリル系樹脂、ポ
リカーボネイト系樹脂、エポキシ系樹脂、ポリサルホン
系樹脂、ポリエーテルサルホン系樹脂、或はポリカーボ
ネイト−ポリスチレン共重合体系樹脂等の有機質素材が
用いられる。 前記無機質、有機質素材のうち本発明に於ては成形条件
の調整の便及び得られる光ディスクの特性の面から透明
樹脂素材が好しい0例えば特性としてガラスの代りに透
明樹脂基板を用いれば、作動させるレーザ光の出力を大
幅に減少(約1/4)させることができる。 尚前記樹脂には必要に応じ重合開始剤、粘度調整剤、樹
脂安定剤、帯電防止剤或は潤滑剤等の添加剤を加えても
よい。 前記のようにして作成した光デイスク基板に対して、記
録層及びその他の構成層が、構成層素材の特性に合せて
スパッター法、真空蒸着法等の気相堆積法、メッキ法或
は塗布法、ラミネート法によって形成され、更に該構成
基板を貼合せ両面光ディスクを作成することができる。 本発明に係る記録層の記録素材としては、前記ビット型
にはTe、Bi或はTe−5e系合金(Se、^S。 Sb、In、 Sn、 Pb、 Bi等)、(TeSe
)Pb、Te(TiAg) Se、高分子染料等の均質
素材、更にTe/C,7e/CS2.染料/^1. T
e合金/^l、^U・Pt/ジアゾ1ヒ合物等の複合素
材が用いられ、相変化型にはAsTeGe、 5eTe
Sn。 5elnSn等の合金、T eo x(x# 1.2)
等の酸化物等のアモルファス更に旧Te/5bSe、 
Si/Rh8等の複合素材が用いられる。 更に光磁気型に於ては、カー効果及び/またはファラデ
ィ効果の大きい光磁気記録素材がえらばれ、B15−ε
rGa鉄ガーネット等の単結晶膜、MnAfGe 。 Eu0Fe、 CoCr等の多結晶膜、GdCo、 C
dFe[li、 TbFeC。 等のアモルファス膜が用いられるが、本発明に於て好ま
しく選ぶ光磁気型光ディスクに於ける好しい光磁気記録
素材は、下記一般式に示される希土類遷移金属合金であ
る。 式中REは希土類遷移金属(セリウム族及びイツトリウ
ム族〉を表わし、TMはFe、Co及びN1の三ツ組元
索を表わす0Mは不活性元素(He等)、ハロゲン元素
(C1等)、ランタニド、アクチノイド及び水素を除く
殆どの元素が含まれ、更にそれら元素の酸化物、炭化物
、硼化物、弗化物、硫化物或は燐化物であってもよい。 またx、yについては0.1≦×≦0.4.0≦y≦0
.4の範囲の数値を取りうる。 更にRE、TM及びMは夫々2種以上であってもよく二
元合金よりも多元合金の方が好ましい。 前記合金の磁気光学特性は組成元素及びその組成比によ
って変るので光ディスクの設計仕様によってf&適に選
ぶことができる。 また組成Mは多元スパッタ法等を用いて記録層厚み方向
に含有濃度を変えて特性の調節を行ってもよい。 次に前記一般式に於ける組成元素、RE、TM。 Mの組合せの具体例を挙げるが、x、 y等の組成比は
最適に還ばれる。尚組成Mは、RE、TM 元素の後の
十符号に続いて印した。 DyCoFe、 DyGdCoFe、 DyGclTb
Fe、 DyGdTbCoFe。 DyGdTbCoFe+Ti、 DyTbCo、 Dy
TbFe、 DyTbCoFe。 EuTbFe、 GdNdFe、 GdSmTbFe、
 GdS+++TbCoFe、 GdTbFe、 (:
dTbFeTbFeNiTbFe十Cr、  GdNd
Fe+ C,GdNdFe+Si、 GclTbCoF
e、 GdTbCoFe+Cr、 GdTbFeFe+
(Ni+Cr)、 GdTbCoFe+Si、 [;d
TbCoFeNi、 SmTbC。 Fe、TbCoFe、TbCoFeNi、TbCoFe
Ni、TbCoNi。 TbFe十Cu、 TbFeNi、  TbCoFeN
i等。 尚本発明はこれらに限定されるものではない。 前記光磁気記録素材で構成された記録層に印加される磁
化ドツトは清で形成されるトラックの凹部に設けてもよ
いし凸部であってもよい。 前記したように光磁気記録素材の組成要素数を増すこと
によって光ディスクの性能向上を計ることができるが、
更に記録層の機能を分割し夫々専用に機能分担する記録
書込層及び記録再生層等から成る多層構造としてらよい
。 また反射層を設けて記録層を透過した光を反射させて再
利用する方法を講じてもよい。 更に本発明に於ては、記録層に接して少なくとも一層の
誘電体層を設は記録層の反射率が最小になるようFgJ
厚を規定しエンハンスメントを起させカー効果を増大さ
せることが好ましい。 記録層の反射率をR、カー回転角をθにとすると、C/
Nは C/N工θ?’7( の関係によって少なくとも2倍の程度に向上させること
ができる。 前記誘電体としては八lN、 S’+sN−等の窒化物
、5iOz、 Sin、 Til□等の酸化物、M[l
F2. LaF*、 CaF2等の弗化物及びZnS等
の硫化物が挙げられる。 尚誘電体層は複数層であってもよく各層の誘電体は異っ
ていてもよい、また記録層両側に設けた場合の誘電体層
は同じ誘電体であってもよいし異っていてもよい。 一方希土類遷移金属及び該金属合金は酸化され易いので
記録層形成後早期に保護層を設けてもよい。 保護層の素材としてはSiN、 SiO或は樹脂例えば
紫外線硬化性樹脂の5DI7(大日本インキ製)、非粘
着性ホットメルト剤のPK441(へ〇!ジャパン製)
等が用いられる。尚保護層は前記エンハンスメントに寄
与するように規制してもよい。 前記のようにして構成した本発明の光ディスクを第1図
に示す。 同図(a)は光ディスクの一部を切出した一部破断斜視
図である。1は透明基板、2は記録層、3は保護層であ
る。更に同図(b)はトラッキング案内溝部分の拡大断
面図である。21は記録担持層、22は誘電体層である
。 【実施例] 次に実施例を挙げて本発明を説明する。 実施例−1 下記物性の透明基板を用い、第1図に示した構成の光デ
ィスクを作成し、これに強制劣化を第2図に示すパター
ンの繰返しによって施し、C/Nの変化をみた。 基板+(1,2mm)  曲げ弾性率  線膨張係数(
xlO’Kycw−2)(xlO−’cm−c+s−’
 ・K−’ )Aポリカーボネート 2.5     
6.5Bポリカーボネート 2.1     6.5誘
電体層 ; 八1N 、      800人磁  性
  N  :  TbFeNi、   1,000人有
機作護層 : 5D17(大日本インキ製)、5μm前
記強制劣化条件(900−1,800r、I)、m、 
25−60°C1の24時間周期の回転−温度サイクル
)下に置いた、前記3種の光磁気ディスクのC/Hの変
化を第1表に示す、このC/Nは初めに線速4■/S、
記録周波数IMHzで記録した信号を再生の時のみ再度
線速4III/sで測定した値でそれぞれ最初に記録し
た直後を基準(○dB)とした。 ディスクは直径120mmで24時間ごとに市販のコン
パクトディスクのケースへの収納・取出しを3回ずつ行
なった。 第1表 これより曲げ弾性率、線“膨張係数がともに優れている
Aのディスクが殆んど劣化していないに比べB、Cのデ
ィスクは100日後には6dB以上も劣化してしまい、
長期信頼性が著しく低い。 すなわち曲げ弾性率が十分大きく線1m張係数が十分率
さい基板を用いないと特性の劣化が速く寿命の短いディ
スクしか得られない。
The object of the present invention is to provide an optical disc in which a recording layer is provided on a transparent substrate, wherein the bending elastic modulus of the substrate is 2.4X 10
”Kg/am2 or more and the wire L3 tensile coefficient is 6.5X
This is achieved by an optical disc having three characteristics: 10-'c+*/cm·K or less. Note that R of the present invention is convenient when the recording layer of the optical disk is a magneto-optical recording layer, and it is preferable that the magneto-optical recording layer is a perpendicularly magnetized magnetic layer made of a rare earth transition metal alloy. Further, it is preferable that the recording layer according to the present invention has at least one dielectric layer in contact with the recording layer, and the dielectric layer may be the same or different, and may be provided on both sides. The number of layers may be different. Further, the transparent substrate is preferably made of resin. Further, it is preferable to provide a tracking guide groove for tracking the optical head. Next, the present invention will be explained in detail. The tracking guide groove provided on the transparent substrate of the optical disc of the present invention may be a V-shaped groove or a U-shaped groove, but is preferably a U-shaped groove. The tracking guide groove may be formed by an injection molding method or by a photopolymer method. Both of the above two molding methods use a stamper that can be applied to ultra-precision molding. When molding, it is essential to first select a stamper with high precision as described above, and it is also necessary to keep the molding environment clean and free of dust. In addition, we consider and adjust the physical properties of the base material for the substrate and the transferability and mold releasability related to the physical properties and the surface of the stamper used, and also prevent the occurrence of internal strain under molding conditions. A desired optical disk substrate can be obtained by selecting conditions such as eliminating such occurrence, but in order to satisfy the requirements required for optical disks at the current technological level, it is necessary to experiment with favorable conditions through repeated trial and error. A method is adopted to set the . Specifically, when using resin as the base material, in the injection molding method, resin amount, resin temperature, resin fluidity, stamper temperature,
Standard values such as mold clamping force, the speed at which the standard values are reached, and the speed at which the environmental conditions return The substrate for the optical disk is changed as a series of combinations of the values and the transition conditions between the reference values and the environmental conditions, and the preferable conditions selected through this trial. Similar procedures are followed when using other base materials for substrates. Regardless of the precision or severity of the various considerations mentioned above, the physical and chemical properties of the substrate and other materials have a potential and significant impact on the durability and durability of the optical disc. These are the combined strength of the constituent layers and the physical properties of the substrate material. In the present invention, the physical properties of the substrate material include a bending elastic modulus of 2.
.. 4X 10'Kg/cm2 or more and a expansion coefficient of 6,
Although it is specified that it is 5X 10-'am/cm-K or less, the lower and upper limits of the elastic modulus and expansion coefficient are determined by the actual material. In the present invention, the materials used for the substrate of the optical disc include:
When making a mold with a stamper, it is necessary to have at least plasticity and porosity, and materials such as glass, ceramic inorganic materials such as aluminum oxide, acrylic resins such as PMMA, polycarbonate resins, epoxy resins, polysulfone resins, and polyethersulfone are used. An organic material such as a polycarbonate-polystyrene copolymer resin or a polycarbonate-polystyrene copolymer resin is used. Among the above-mentioned inorganic and organic materials, transparent resin materials are preferred in the present invention from the viewpoint of ease of adjusting molding conditions and the characteristics of the resulting optical disc. For example, if a transparent resin substrate is used instead of glass as a characteristic, the operation The output of the laser beam can be significantly reduced (about 1/4). Additionally, additives such as a polymerization initiator, viscosity modifier, resin stabilizer, antistatic agent, or lubricant may be added to the resin as necessary. The recording layer and other constituent layers are deposited on the optical disk substrate produced as described above using a sputtering method, a vapor deposition method such as a vacuum evaporation method, a plating method, or a coating method depending on the characteristics of the constituent layer materials. It is possible to form a double-sided optical disc by laminating the optical disk, and further bonding the constituent substrates together. The recording material of the recording layer according to the present invention includes Te, Bi, Te-5e alloy (Se, S, Sb, In, Sn, Pb, Bi, etc.), (TeSe, etc.) for the bit type.
) Pb, Te (TiAg) Se, homogeneous materials such as polymer dyes, as well as Te/C, 7e/CS2. Dye/^1. T
Composite materials such as e-alloy/^l and ^U/Pt/diazo-1-hybrid compounds are used, and phase change types include AsTeGe and 5eTe.
Sn. Alloys such as 5elnSn, T eo x (x# 1.2)
Amorphous oxides such as old Te/5bSe,
A composite material such as Si/Rh8 is used. Furthermore, in the magneto-optical type, a magneto-optical recording material with a large Kerr effect and/or Faraday effect is selected, and B15-ε
Single crystal films such as rGa iron garnet, MnAfGe. Polycrystalline films such as Eu0Fe, CoCr, GdCo, C
dFe[li, TbFeC. In the present invention, the preferred magneto-optical recording material in the magneto-optical optical disk is a rare earth transition metal alloy represented by the following general formula. In the formula, RE represents a rare earth transition metal (cerium group and yttrium group), TM represents a triad of Fe, Co, and N1, and 0M represents an inert element (such as He), a halogen element (such as C1), or a lanthanide. , actinides, and most elements other than hydrogen, and may also be oxides, carbides, borides, fluorides, sulfides, or phosphides of these elements. Also, x and y are 0.1≦ ×≦0.4.0≦y≦0
.. It can take values in the range of 4. Furthermore, RE, TM, and M may each be two or more types, and a multi-component alloy is preferable to a binary alloy. Since the magneto-optical properties of the alloy vary depending on the compositional elements and their composition ratios, they can be appropriately selected depending on the design specifications of the optical disk. Further, the characteristics of the composition M may be adjusted by changing the concentration in the thickness direction of the recording layer using a multi-source sputtering method or the like. Next, the compositional elements in the above general formula, RE and TM. A specific example of the combination of M will be given, and the composition ratio of x, y, etc. will be returned to the optimum. The composition M is marked following the 10 sign after the RE and TM elements. DyCoFe, DyGdCoFe, DyGclTb
Fe, DyGdTbCoFe. DyGdTbCoFe+Ti, DyTbCo, Dy
TbFe, DyTbCoFe. EuTbFe, GdNdFe, GdSmTbFe,
GdS+++TbCoFe, GdTbFe, (:
dTbFeTbFeNiTbFe+Cr, GdNd
Fe+C, GdNdFe+Si, GclTbCoF
e, GdTbCoFe+Cr, GdTbFeFe+
(Ni+Cr), GdTbCoFe+Si, [;d
TbCoFeNi, SmTbC. Fe, TbCoFe, TbCoFeNi, TbCoFe
Ni, TbCoNi. TbFeCu, TbFeNi, TbCoFeN
i etc. Note that the present invention is not limited to these. The magnetized dots applied to the recording layer made of the magneto-optical recording material may be provided in concave portions or convex portions of tracks formed of clear material. As mentioned above, it is possible to improve the performance of an optical disk by increasing the number of compositional elements of the magneto-optical recording material.
Furthermore, the function of the recording layer may be divided into a multilayer structure consisting of a recording/writing layer, a recording/reproducing layer, etc. each having its own function. Alternatively, a method may be adopted in which a reflective layer is provided to reflect and reuse the light that has passed through the recording layer. Furthermore, in the present invention, at least one dielectric layer is provided in contact with the recording layer to minimize the reflectance of the recording layer.
It is preferable to define the thickness and cause enhancement to increase the Kerr effect. If the reflectance of the recording layer is R and the Kerr rotation angle is θ, then C/
N is C/N engineering θ? The dielectric material can be improved by at least twice according to the relationship .
F2. Examples include fluorides such as LaF* and CaF2, and sulfides such as ZnS. Note that the dielectric layer may be a plurality of layers, and the dielectric material of each layer may be different, and when provided on both sides of the recording layer, the dielectric layers may be of the same dielectric material or may be different. Good too. On the other hand, since rare earth transition metals and metal alloys are easily oxidized, a protective layer may be provided early after forming the recording layer. Materials for the protective layer include SiN, SiO, or resins such as ultraviolet curable resin 5DI7 (manufactured by Dainippon Ink) and non-adhesive hot melt agent PK441 (manufactured by He〇! Japan).
etc. are used. Note that the protective layer may be regulated so as to contribute to the enhancement. FIG. 1 shows an optical disc of the present invention constructed as described above. Figure (a) is a partially cutaway perspective view of a portion of the optical disc. 1 is a transparent substrate, 2 is a recording layer, and 3 is a protective layer. Further, FIG. 2B is an enlarged sectional view of the tracking guide groove portion. 21 is a recording carrier layer, and 22 is a dielectric layer. [Example] Next, the present invention will be explained with reference to Examples. Example 1 An optical disk having the configuration shown in FIG. 1 was prepared using a transparent substrate having the following physical properties, and forced deterioration was performed on it by repeating the pattern shown in FIG. 2, and the change in C/N was observed. Substrate + (1,2mm) Flexural modulus Linear expansion coefficient (
xlO'Kycw-2) (xlO-'cm-c+s-'
・K-') A polycarbonate 2.5
6.5B Polycarbonate 2.1 6.5 Dielectric layer: 81N, 800N Magnetic N: TbFeNi, 1,000N Organic protective layer: 5D17 (manufactured by Dainippon Ink), 5μm The above forced deterioration conditions (900- 1,800r, I), m,
Table 1 shows the changes in C/H of the three types of magneto-optical disks that were subjected to a 24-hour rotation-temperature cycle of 25-60°C. ■/S,
A signal recorded at a recording frequency of IMHz was measured again at a linear velocity of 4III/s only during reproduction, and the value immediately after the first recording was used as a reference (○ dB). The disc had a diameter of 120 mm, and was stored in and removed from a commercially available compact disc case three times every 24 hours. Table 1 shows that disk A, which has excellent bending modulus and coefficient of linear expansion, shows almost no deterioration, while disks B and C deteriorate by more than 6 dB after 100 days.
Long-term reliability is extremely low. That is, unless a substrate with a sufficiently large flexural modulus and a sufficiently low 1-meter tensile modulus is used, a disk with rapid deterioration of characteristics and a short life will be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図に本発明の光ディスクを示す、同図(a)は一部
切出した一部破断斜視図である。 第2図は強制劣化試験のパターンを示す図である。 出願人 小西六写真工業株式会社 第1図 一一一一一〜〜、 (1)) 第2図 IflJJ4:24hr 湿、t: 60zp−H
FIG. 1 shows an optical disc of the present invention, and FIG. 1(a) is a partially cutaway perspective view. FIG. 2 is a diagram showing a pattern of a forced deterioration test. Applicant Roku Konishi Photo Industry Co., Ltd. Figure 1 1111~ (1)) Figure 2 IflJJ4:24hr Humidity, t: 60zp-H

Claims (6)

【特許請求の範囲】[Claims] (1)透明基板に記録層を設けた光ディスクに於て、前
記基板の曲げ弾性率が2.4×10^4Kg/cm^2
以上であり且つ線膨張係数が6.5×10^−^5cm
/cm・K以下であることを特徴とする光ディスク。
(1) In an optical disc in which a recording layer is provided on a transparent substrate, the bending elastic modulus of the substrate is 2.4×10^4Kg/cm^2
or more, and the coefficient of linear expansion is 6.5 x 10^-^5cm
1. An optical disc characterized in that it is less than /cm·K.
(2)前記光ディスクの記録層が光磁気記録層であるこ
とを特徴とする特許請求の範囲第1項記載の光ディスク
(2) The optical disc according to claim 1, wherein the recording layer of the optical disc is a magneto-optical recording layer.
(3)前記光磁気記録層が希土類遷移金属合金からなる
垂直磁化磁性層であることを特徴とする特許請求の範囲
第2項記載の光ディスク。
(3) The optical disk according to claim 2, wherein the magneto-optical recording layer is a perpendicularly magnetized magnetic layer made of a rare earth transition metal alloy.
(4)前記光ディスクの記録層に接して少くとも一層の
誘電体層を設けたことを特徴とする特許請求の範囲第1
項、第2項もしくは第3項記載の光ディスク。
(4) Claim 1, characterized in that at least one dielectric layer is provided in contact with the recording layer of the optical disc.
2. The optical disc according to item 2, item 3, or item 3.
(5)前記透明基板が樹脂基板であることを特徴とする
特許請求の範囲第1項乃至第4項のいづれかに記載の光
ディスク。
(5) The optical disc according to any one of claims 1 to 4, wherein the transparent substrate is a resin substrate.
(6)前記基板にトラッキング案内溝を設けたことを特
徴とする特許請求の範囲第1項乃至第5項いづれかの項
に記載の光ディスク。
(6) The optical disc according to any one of claims 1 to 5, characterized in that a tracking guide groove is provided on the substrate.
JP61170656A 1986-07-18 1986-07-18 Durable optical disk Pending JPS6326852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61170656A JPS6326852A (en) 1986-07-18 1986-07-18 Durable optical disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61170656A JPS6326852A (en) 1986-07-18 1986-07-18 Durable optical disk

Publications (1)

Publication Number Publication Date
JPS6326852A true JPS6326852A (en) 1988-02-04

Family

ID=15908927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61170656A Pending JPS6326852A (en) 1986-07-18 1986-07-18 Durable optical disk

Country Status (1)

Country Link
JP (1) JPS6326852A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0395369A2 (en) * 1989-04-27 1990-10-31 Canon Inc. Optical recording medium and process for production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0395369A2 (en) * 1989-04-27 1990-10-31 Canon Inc. Optical recording medium and process for production thereof
US5102709A (en) * 1989-04-27 1992-04-07 Canon Kabushiki Kaisha Optical recording medium and process for production thereof

Similar Documents

Publication Publication Date Title
US6221455B1 (en) Multi-layer optical disc and recording/reproducing apparatus
AU608991B2 (en) Optical disc medium
EP1349157B1 (en) Optical recording medium
CN100428334C (en) Magnetic recording medium and method for manufacturing same, and method for recording and reproducing with magnetic recording medium
EP0163810B1 (en) Optical information recording carrier
MXPA01013105A (en) Optical recording medium and use of such optical recording medium.
KR100306352B1 (en) Information recording carrier and its manufacturing method
US20040002018A1 (en) Manufacturing method of optical disc and optical disc thereby
EP1184858A2 (en) Optical information recording medium and method for optical recording, reproducing and erasing information
EP1302940B1 (en) Optical recording medium
EP1148485A2 (en) Optical recording medium
JPS6326852A (en) Durable optical disk
EP1143430B1 (en) Optical recording medium
JPS6326853A (en) Optical disk having good recording sensitivity
JPH0660423A (en) Thin optical recording medium
JPS6325851A (en) Optical disk having tracking guide groove
JPS6325852A (en) Optical disk having tracking guide groove
JPS6325853A (en) Optical disk having tracking guiding groove
JP2006338717A (en) Optical disk
JPS6323245A (en) Optical disk with transparent substrate
JPS60173731A (en) Optical disk
JPH05159373A (en) Optical information recording medium
EP1150288A2 (en) Optical recording medium
Yasufuku Progress in materials application for optical disks in Japan
JPH09115180A (en) Optical recording medium