JPS63268279A - Piezo-electric bimorph element - Google Patents

Piezo-electric bimorph element

Info

Publication number
JPS63268279A
JPS63268279A JP62101568A JP10156887A JPS63268279A JP S63268279 A JPS63268279 A JP S63268279A JP 62101568 A JP62101568 A JP 62101568A JP 10156887 A JP10156887 A JP 10156887A JP S63268279 A JPS63268279 A JP S63268279A
Authority
JP
Japan
Prior art keywords
dielectric constant
electrodes
piezoelectric
piezo
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62101568A
Other languages
Japanese (ja)
Inventor
Mitsuo Tamura
光男 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP62101568A priority Critical patent/JPS63268279A/en
Publication of JPS63268279A publication Critical patent/JPS63268279A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To manufacture a piezo-electric actuator in high reliability due to easy manufacture eliminating the bonding process by a method wherein the polarization levels of two phases are differentiated to make the piezo-electric constant different by two ceramics bordered on a central line having respectively different dielectric constant ratios due to the difference in the dielectric constant of the two ceramic layers. CONSTITUTION:One composition of piezo-electric ceramics is selected from a part high in dielectric constant and high in electromechanical bonding coefficient as well as another part of the same level of dielectric constant or exceeding the same but of a low electromechanical bonding coefficient. A compound laminated layer ceramics sheet can be manufactured by laminating two component sheets of this powder thermal pressure-fixed in specified thickness and size as well as stamping in rectangular shape and firing for several hours. Electrodes are formed on both surfaces of this compound laminated sheet by firing-finish silver paste, etc., and then the space between electrodes is impressed with DC current at specified temperature to be polarization-processed. The piezo-electric ceramics layers 1.2 of different dielectric constant are mutually bonded to form electrodes 3 on upper and lower surfaces as a fundamental structure with one end thereof fixed by fixtures 4, 4 for application. Thus, respective electrodes 3 connected to lead terminals 5 are impressed with specified voltage.

Description

【発明の詳細な説明】 く技術分野の概要〉 本発明は、圧電材料の逆圧電効果で発生する歪みを利用
する圧電バイモルフ素子に関する。
DETAILED DESCRIPTION OF THE INVENTION Overview of the Technical Field The present invention relates to a piezoelectric bimorph element that utilizes strain generated by the inverse piezoelectric effect of a piezoelectric material.

圧電を利用するアクチュエータは、圧電材料が発生する
歪量が絶対的小さいため、圧電材料の単体をそのまま使
用することは少ない。
In actuators that utilize piezoelectricity, since the amount of strain generated by the piezoelectric material is absolutely small, the piezoelectric material itself is rarely used as is.

また現在一般的に用いられているものは、積層型圧電ア
クチュエータとバイモルフ型圧電アクチュエータとの2
つに分類でき、いずれも圧電定数が大きい圧電セラミッ
クス材料が多く用いられている。 前者は縦効果(分極
方向と同じ方向の伸び縮み)を用いるもので、両面に電
極を施し厚み方向に分極処理したセラミックス板を単位
とし、これを複数個厚み方向に積層し、各単位素子は電
気的に並列接続したもので、これに電圧を印加した場合
、各単位素子が発生する歪みは厚み方向に加算されるた
め、単体の圧電セラミックス棒の縦効果で発生する歪量
に比して積層数倍の歪が得られるものである。
Currently, there are two types of piezoelectric actuators commonly used: a laminated piezoelectric actuator and a bimorph piezoelectric actuator.
Piezoelectric ceramic materials with large piezoelectric constants are often used. The former uses the longitudinal effect (expansion and contraction in the same direction as the polarization direction), and the unit is a ceramic plate with electrodes on both sides and polarized in the thickness direction, and multiple pieces are stacked in the thickness direction, and each unit element is When electrically connected in parallel and a voltage is applied, the strain generated by each unit element is added in the thickness direction, so the amount of strain generated by the longitudinal effect of a single piezoelectric ceramic rod is It is possible to obtain a strain that is twice as large as the number of laminated layers.

一方、圧電バイモルフは、圧電セラミックスの横効果(
分極方向と同じ方向の伸び縮み)を用いるもので、両面
に電極を形成して厚み方向に分極処理した2枚の矩形圧
電セラミックス板を中間電極層として、導電性のある薄
片シム板を挟んで2枚貼り合わせ、一端を固定し2枚の
圧電セラミックスのうち、一方には分極と同じ方向の電
圧を印加して長さ方向に縮みを、他方には分極と逆の方
向に電圧を印加して長さ方向に伸びの歪みを夫々発生さ
せて、自由端が大きく屈曲させるものである。
On the other hand, piezoelectric bimorphs are based on the lateral effect (
It uses two rectangular piezoelectric ceramic plates with electrodes formed on both sides and polarized in the thickness direction as the intermediate electrode layer, and a conductive thin shim plate sandwiched between them. Two pieces of piezoelectric ceramic are pasted together, one end is fixed, and a voltage is applied to one of the two piezoelectric ceramics in the same direction as the polarization to cause it to shrink in the length direction, and a voltage is applied to the other in the opposite direction to the polarization. This creates an elongation strain in the length direction, causing the free end to bend significantly.

この構造は、そのものに変位の拡大機構を備えており、
比較的大きな歪みを発生させることができる。
This structure is equipped with a displacement expansion mechanism,
A relatively large distortion can be generated.

積層型圧電アクチュエータは、変位量は少ないが大きな
力を発生させることができる。また、バイモルフをアク
チュエータは、変位量は大ぎいが構造上発生できる力は
少ない。各々特徴に応じて用いられている。
A laminated piezoelectric actuator has a small amount of displacement but can generate a large force. Furthermore, although the bimorph actuator has a large amount of displacement, the force that it can generate due to its structure is small. Each is used according to its characteristics.

〈従来技術の問題点〉 ところで、この種の圧電バイモルフ型アクチュエータは
、基本的には2枚の圧電セラミックス板を接合してなる
構造のため、■接着工程の中間がコストアンプとなる。
<Problems with the Prior Art> Incidentally, this type of piezoelectric bimorph actuator is basically constructed by bonding two piezoelectric ceramic plates, so that the middle part of the bonding process increases the cost.

■接着のばらつきによる性能のばらつきを生ずる。■接
着工程でセラミックスにひび割れを生ずる危険があり信
頼度が低い等の欠点がある。
■Performance variations occur due to variations in adhesion. ■There is a risk of cracks in the ceramic during the bonding process, and there are drawbacks such as low reliability.

〈本発明の目的〉 本発明はかかる点に鑑み、単一の焼成体の両面に電極を
形成し分極処理するとき、中立線を境界にした2つのセ
ラミックス層の誘電率が弧となるため電界強度に差を生
じ、一方の誘電率が高いセラミックス層に加わる電界強
度がその部分を充分分極するには不足し、他方の誘電率
の低いセラミックス層のみ充分な分極電界が印加される
ようにすることにより、分極程度に大鰺な差を生ザしぬ
、結果的に圧電歪み定数に差を持たせた構造であり、電
極間に電圧を印加した場合に圧電歪定数の差を誘電率の
差による電界強度の差によって、一方は歪みを発生する
が他方はほとんど歪みを発生しないことに起因して、一
端を固定したとき他方の自由端を大きく屈曲ならしめる
ことができ、製造が簡便で低価格かつ信頼度の高い圧電
バイモルフ素子を提案することを主たる目的とする。
<Object of the present invention> In view of the above, the present invention provides that when electrodes are formed on both sides of a single fired body and polarization treatment is performed, the electric field is There is a difference in strength, so that the electric field strength applied to one ceramic layer with a high dielectric constant is insufficient to sufficiently polarize that part, and a sufficient polarization electric field is applied only to the other ceramic layer with a low dielectric constant. As a result, the structure has a difference in piezoelectric strain constant without creating a large difference in the degree of polarization, and when a voltage is applied between the electrodes, the difference in piezoelectric strain constant is converted into a dielectric constant. Due to the difference in electric field strength, one side generates distortion while the other does not, so when one end is fixed, the other free end can be bent significantly, making it easy to manufacture. The main purpose is to propose a low-cost and highly reliable piezoelectric bimorph element.

く本発明の実施例〉 以下本発明の一実施例について図面を参照しながら詳細
に説明する。
Embodiment of the present invention> An embodiment of the present invention will be described in detail below with reference to the drawings.

圧電セラミックスは、配合組織によって特性を幅広く調
整し得ることが知られている。第1図及=3− び第2図は圧電セラミックスとしては代表的なPZT系
圧電セラミンクスの一例であるP b(M n、、。
It is known that the properties of piezoelectric ceramics can be adjusted over a wide range by changing the compound structure. Figures 1, 3 and 2 show Pb(Mn,...), which is an example of PZT-based piezoelectric ceramics, which is a typical piezoelectric ceramic.

N b2.、)03P b Z r O3P b T 
+ Ov j1%の三成分系圧電セラミックスの配合組
成と誘電率及び電気機械結合係数との関係を示す三元マ
ツプである。誘電率及び電気機械係合係数の大きい配合
は、PbZ「0.とP b T IO3の配合が等モル
に近い線上に存在する。この部分は圧電的に最も活性で
あり、圧電d定数も最も大きい部分である。また、この
線からいずれかの方向にずれても誘電率、電気機械係合
係数も小さくなり圧電d定数も小さくなっている。
Nb2. , )03P b Z r O3P b T
It is a ternary map showing the relationship between the composition, dielectric constant, and electromechanical coupling coefficient of a ternary piezoelectric ceramic with + Ov j of 1%. A composition with a large dielectric constant and electromechanical coefficient exists on a line where the composition of PbZ'0. This is a large portion.Moreover, even if it deviates from this line in any direction, the dielectric constant and electromechanical engagement coefficient become smaller, and the piezoelectric d constant also becomes smaller.

そこで、一つの組成はこの誘電率が高く、かつ電気機械
結合係数の高い部分から池の誘電率が同じレベルかそれ
以上でかつ電気機械係合係数の低い部分から選定し、こ
の粉末に有機バインダを混ぜて所定の処理をしてスラリ
ー化し、ドクターブレード法等によってシート化した2
組成のシートを熱圧着によって2枚を一定の厚さと大き
さに積層した@矩形に打ち抜き、バインダ類の分解する
4一 温度約600℃で数時間処理した後、1200℃前後の
温度で数時間焼成して複合積層セラミックス板を得るも
のである。
Therefore, one composition is selected from a part with a high dielectric constant and a high electromechanical coupling coefficient, and a part with a permittivity of the pond at the same level or higher and a low electromechanical coupling coefficient, and an organic binder is added to this powder. 2, which was mixed and processed in a specified manner to form a slurry, and then made into a sheet using a doctor blade method, etc.
Two sheets of the composition are laminated to a certain thickness and size by thermo-compression bonding and punched into a rectangular shape, treated for several hours at about 600℃, the temperature at which binders decompose, and then at a temperature of around 1200℃ for several hours. A composite laminated ceramic plate is obtained by firing.

重要な点は、2組成の粉末から成るシートの焼成過程に
おいて収縮率に差を生ぜしめないことであり、この調整
のため若干の添加物とシートの製造条件でグリーンシー
トの密度をコントロールする必要がある。
The important point is that there is no difference in the shrinkage rate during the firing process of the sheet made of powder of two compositions, and to adjust this, it is necessary to control the density of the green sheet with some additives and sheet manufacturing conditions. There is.

この複合積層板は、この両面に銀ペーストの焼き付は又
は蒸着、スパッタリング等で電極を形成した後、一定温
度下で電極間に直流電圧を印加することにより、分極処
理されるものである。
This composite laminate is polarized by forming electrodes on both sides of the plate by baking, vapor deposition, sputtering, etc. with silver paste, and then applying a DC voltage between the electrodes at a constant temperature.

便宜上、以上の製造工程を抜粋すると、■粉末製造(秤
量、仮焼、粉砕)、■シート形成、■熱圧着、■打ち抜
き、■バインダ処理、■焼結、■電極形成、■分極のよ
うになる。
For convenience, the above manufacturing processes are summarized as follows: ■Powder production (weighing, calcination, pulverization), ■Sheet formation, ■Thermocompression bonding, ■Punching, ■Binder treatment, ■Sintering, ■Electrode formation, ■Polarization. Become.

第3図は本発明の基本構造を示す図である。1゜2は誘
電率の異なる圧電セラミックス層を示し、相互に接合さ
れている。そして上下面に電極3が形成され、その−万
端は固定具4,4により固定されて使用される。各電極
3にはリード端子5が接続され、一定の電圧が印加され
ることになる。
FIG. 3 is a diagram showing the basic structure of the present invention. 1.degree.2 indicates piezoelectric ceramic layers having different dielectric constants, which are bonded to each other. Electrodes 3 are formed on the upper and lower surfaces, and the ends thereof are fixed by fixtures 4, 4, when used. A lead terminal 5 is connected to each electrode 3, and a constant voltage is applied thereto.

この2つの組成のセラミックスよりなる層に加わる電界
強度の意味については、第4図を用いて説明する。両電
極間に電圧Vを印加したとき、電極間で電束密度りは不
変であるため(1)式が成り立つ。
The meaning of the electric field strength applied to the layers made of ceramics of these two compositions will be explained using FIG. 4. When a voltage V is applied between both electrodes, the electric flux density remains unchanged between the electrodes, so equation (1) holds true.

D=εIE、=ε2E2・・・・・・(1)(但し、ε
1.ε2は2つのセラミックス層の誘電率、E、、E2
は電界強度) また印加電圧■との関係は(2)式が成り立つ。
D=εIE,=ε2E2...(1) (However, ε
1. ε2 is the dielectric constant of the two ceramic layers, E, , E2
is the electric field strength).For the relationship with the applied voltage ■, formula (2) holds true.

V=EIL1+E2t2・・・・・・(2)(但し、L
l、I2は2つのセラミックス層の厚み) よって、(1)式及び(2)式よ1) El=V/ll+(ε1/ε2)t。
V=EIL1+E2t2...(2) (However, L
l and I2 are the thicknesses of the two ceramic layers) Therefore, according to equations (1) and (2), 1) El=V/ll+(ε1/ε2)t.

E2;=V/(ε1/ε2)J+t、・・・・・・(3
)t+=t2とすると、 E、=V/l・ 1/1+(ε 1/ε2)E 2= 
V /l・1/(ε2/ε1)+1・・・(3′)式(
3′)によれば、ε2/ε1の比が2であればE、/E
2の比も2つになることがわかる。従って、双方の誘電
率の所定の比を選ぶことによって、一方のセラミックス
には分極に充分な電界が与えられ、他方には分極するに
不足の電界となる分極条件が設定できることになる。従
って、所定の温度、電圧によって分極処理した複合セラ
ミックス板は境界層を境にして圧電性を有する部分と圧
電性の無い部分とで構成することがでトる。
E2;=V/(ε1/ε2)J+t,...(3
)t+=t2, E,=V/l・1/1+(ε 1/ε2)E 2=
V /l・1/(ε2/ε1)+1...(3') Formula (
According to 3'), if the ratio of ε2/ε1 is 2, E, /E
It can be seen that the ratio of 2 is also 2. Therefore, by selecting a predetermined ratio of the dielectric constants of both ceramics, it is possible to set polarization conditions such that an electric field sufficient for polarization is applied to one ceramic and an electric field insufficient for polarization is applied to the other. Therefore, a composite ceramic plate polarized at a predetermined temperature and voltage can be composed of a piezoelectric portion and a non-piezoelectric portion with the boundary layer as a boundary.

したがって、構成するセラミックスとしては、誘電率が
ε1、ε2の2相からなるものとなる。ヤング率は等し
くY、、r−とし、一端を固定している矩形板の形状は
5XWX2tの両電極間に電圧■を印加したときの自由
端のたわみδを求めてみる。
Therefore, the constituting ceramic has two phases with dielectric constants ε1 and ε2. The Young's modulus is assumed to be equal to Y, , r-, and the shape of the rectangular plate fixed at one end is 5×W×2t, and when a voltage ■ is applied between both electrodes, the deflection δ of the free end is determined.

ε2〈ε1としてε、側に蓄えられるエネルギU1は、
U、=1/2E、・D、・W (l t=172・WI
27t・ε1/(1+ε1/ε2)2・V2ε1側のセ
ラミックスに蓄えられる機械エネルギUmは、 U拍=3/4に、、2・Ul =374に、、2・1/2W (1/l・ε1/(1+
ε1/ε2)2・ V2 矩形板が反りを発生するエネルギ源はUmである。反り
を生じているときの曲率半径をRとすると、反りの弾性
エネルギUm’は、 Um’ = (l Y Iz/2 R2Um’はUmそ
のものであり、 ffYIz/2R2=374に3.2・W、17/21
ε+7(1+ε1/ε2)2・■2 バイモルフ先端の変位δと曲率Rとの関係は第5図によ
り簡単な幾何学的考察より、 δ=Rcosθ=R(1cosθ) 中R(1(1−θ2/21+・・・・・・))=Rθ2
/’2=R/2・I22/2R=ρ2/2R 従って、 δ=3/4JT−a2/(1+ε1/ε2)・d31V
/12今、ε1=ε。×3000、ε2−ε、X 60
00、d31=250×10−12m/■、(1= 5
0 mm、 t=0.25mm、V=100Vの場合に
は、δ=0.35mmの変位が得られることになる。
As ε2〈ε1, the energy U1 stored on the side ε is,
U, = 1/2E, ・D, ・W (l t=172・WI
27t・ε1/(1+ε1/ε2)2・V2 The mechanical energy Um stored in the ceramic on the ε1 side is as follows: U = 3/4, 2・Ul = 374, 2・1/2W (1/l・ε1/(1+
ε1/ε2)2・V2 The energy source that causes the rectangular plate to warp is Um. If the radius of curvature when warping is occurring is R, then the elastic energy Um' of warping is: Um' = (l Y Iz/2 R2Um' is Um itself, and ffYIz/2R2=374 is 3.2・W , 17/21
ε+7(1+ε1/ε2)2・■2 The relationship between the displacement δ at the tip of the bimorph and the curvature R can be determined from a simple geometrical consideration in Figure 5 as follows: δ=Rcosθ=R(1cosθ) Medium R(1(1−θ2) /21+...))=Rθ2
/'2=R/2・I22/2R=ρ2/2R Therefore, δ=3/4JT−a2/(1+ε1/ε2)・d31V
/12 Now, ε1=ε. ×3000, ε2−ε, X 60
00, d31=250×10-12m/■, (1=5
0 mm, t=0.25 mm, and V=100V, a displacement of δ=0.35 mm will be obtained.

したがって、第3図に示す如と構造の圧電バイモルフの
両電極間に直流電圧を分極と同じ方向に加えると2つの
層とも長さ方向には縮みの歪みが発生するが、一方は大
きく他方は小さいため、結果として、歪みの大とい方に
引かれて自由端は屈曲する電圧を逆に加える場合も同じ
で伸びの歪み量の差によって反対の方向に屈曲すること
になる。
Therefore, when a DC voltage is applied between both electrodes of a piezoelectric bimorph structured as shown in Figure 3 in the same direction as the polarization, shrinkage distortion occurs in both layers in the length direction, but one is large and the other is As a result, the free end is pulled in the direction of the larger strain and bends.Even when a voltage is applied in the opposite direction, the free end bends in the opposite direction due to the difference in the amount of strain in elongation.

そのため、この自由端の動きは従来の圧電バイモルフと
同じく、力・変位の発生源として圧電アクチュエータに
応用することが可能である。
Therefore, the movement of this free end can be applied to a piezoelectric actuator as a force/displacement generation source, just as in conventional piezoelectric bimorphs.

尚、本発明の応用で終る分野としては、圧電ファンの7
クチユエータ、圧電ポンプ、圧電リレー、その他自動販
売機の硬貨の処理等である。
Note that the field to which the present invention is applied is the piezoelectric fan.
Coin processing in vending machines, etc., as well as piezoelectric pumps, piezoelectric relays, etc.

〈本発明の構成及び作用効果〉 以上述べたごとく本発明によれば、誘電率の異なる21
1成の圧電セラミックスの原料粉末に、有機系バインダ
を混入してシート化し、各々を熱圧着した積層体を焼成
してなる複合セラミックス板の両面に、電極を形成して
分極処理をする際、中立線を境界にした2つのセラミッ
クス層の誘電率の相異による夫々の誘電率比を構成して
2つの相の分極程度の差を形成して圧電歪定数に差を持
たせたので、 単一の焼結体の両面に電極形成並びに分極処理を行なう
事で圧電アクチュエータが構成できるため、■製造が簡
単で低価格、■接着のプロセスがないため高信頼度の圧
電アクチュエータが得られる効果を有する。
<Configuration and effects of the present invention> As described above, according to the present invention, 21
When performing polarization treatment by forming electrodes on both sides of a composite ceramic plate, which is made by mixing the raw material powder of a single piezoelectric ceramic with an organic binder to form a sheet, and firing the laminated body by thermocompression bonding, Since the dielectric constant ratio of the two ceramic layers with the neutral line as the boundary is determined by the difference in the dielectric constant of each layer, a difference in the degree of polarization of the two phases is created and a difference is created in the piezoelectric strain constant. A piezoelectric actuator can be constructed by forming electrodes and polarizing both sides of the same sintered body, so it is easy to manufacture and inexpensive, and there is no bonding process, making it highly reliable. have

すなわち本発明による圧電アクチュエータは、発生でき
る変位もしくは発生力は、従来の圧電バイモルフに比較
すると、その性能は1/2以下になるが、製造並びに構
造の単純さから、低価格と高信頼性という有利な利点か
あり、したがって、製造が簡単で信頼度の高く、低価格
の利点を持った圧電アクチュエータの提供が可能になる
In other words, although the piezoelectric actuator according to the present invention can generate displacement or force that is less than half the performance of conventional piezoelectric bimorphs, it has low cost and high reliability due to its simple manufacturing and structure. This has advantageous advantages and thus makes it possible to provide a piezoelectric actuator that is simple to manufacture, reliable and has the advantage of low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は圧電セラミックスの一例たるPZT
系圧主圧電セラミックス合組成と誘電率及び電気機械結
合係数との関係を示す三元マツプ、第3図は本発明方法
により構成したバイモルフ素子め一例を示す構成図、第
4図は本発明の電界強度の説明に供する図、第5図は本
発明バイモルフの反りの説明に供する図である。
Figures 1 and 2 show PZT, which is an example of piezoelectric ceramics.
A ternary map showing the relationship between the system pressure main piezoelectric ceramic composite composition, dielectric constant, and electromechanical coupling coefficient. Fig. 3 is a configuration diagram showing an example of a bimorph element constructed by the method of the present invention. FIG. 5 is a diagram used to explain the electric field strength, and FIG. 5 is a diagram used to explain the warpage of the bimorph of the present invention.

Claims (1)

【特許請求の範囲】[Claims]  誘電率の異なる2組成の圧電セラミックスの原料粉末
に、有機系バインダを混入してシート化し、各々を熱圧
着した積層体を焼成してなる複合セラミックス板の両面
に、電極を形成して分極処理をする際、中立線を境界に
した2つのセラミックス層の誘電率の相異による夫々の
誘電率比を構成して2つの相の分極程度の差を形成して
圧電歪定数に差を持たせたことを特徴とする圧電バイモ
ルフ素子。
Electrodes are formed on both sides of a composite ceramic plate, which is made by mixing raw material powders of piezoelectric ceramics with two compositions with different dielectric constants with an organic binder and forming them into sheets, and then firing the laminated body by thermocompression bonding. Electrodes are formed on both sides of the composite ceramic plate. When doing this, the dielectric constant ratio of the two ceramic layers with the neutral line as the boundary is determined by the difference in the dielectric constants to create a difference in the degree of polarization of the two phases, thereby creating a difference in the piezoelectric strain constant. A piezoelectric bimorph element characterized by:
JP62101568A 1987-04-24 1987-04-24 Piezo-electric bimorph element Pending JPS63268279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62101568A JPS63268279A (en) 1987-04-24 1987-04-24 Piezo-electric bimorph element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62101568A JPS63268279A (en) 1987-04-24 1987-04-24 Piezo-electric bimorph element

Publications (1)

Publication Number Publication Date
JPS63268279A true JPS63268279A (en) 1988-11-04

Family

ID=14304011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62101568A Pending JPS63268279A (en) 1987-04-24 1987-04-24 Piezo-electric bimorph element

Country Status (1)

Country Link
JP (1) JPS63268279A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032158A (en) * 1988-03-02 1991-07-16 E. I. Du Pont De Nemours And Company Method of manufacturing thermal printer head

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5568687A (en) * 1978-11-17 1980-05-23 Matsushita Electric Ind Co Ltd Fabrication of composite piezo-electric ceramics
JPS59121889A (en) * 1982-12-28 1984-07-14 Toshiba Corp Manufacture of piezoelectric bimorph

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5568687A (en) * 1978-11-17 1980-05-23 Matsushita Electric Ind Co Ltd Fabrication of composite piezo-electric ceramics
JPS59121889A (en) * 1982-12-28 1984-07-14 Toshiba Corp Manufacture of piezoelectric bimorph

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032158A (en) * 1988-03-02 1991-07-16 E. I. Du Pont De Nemours And Company Method of manufacturing thermal printer head

Similar Documents

Publication Publication Date Title
JP2842448B2 (en) Piezoelectric / electrostrictive film type actuator
CA2155523A1 (en) Monolithic prestressed ceramic devices and method for making same
JP2518703B2 (en) Laminated composite piezoelectric body and manufacturing method thereof
JP5718910B2 (en) Piezoelectric element
JP5651452B2 (en) Piezoelectric / electrostrictive ceramics sintered body
JP5021452B2 (en) Piezoelectric / electrostrictive porcelain composition and piezoelectric / electrostrictive element
JP5876974B2 (en) Method for producing piezoelectric / electrostrictive porcelain composition
US8375538B2 (en) Method for manufacturing piezoelectric actuator
Uchino Multilayer technologies for piezoceramic materials
JP3313531B2 (en) Piezoelectric / electrostrictive film element and method of manufacturing the same
JP2011032157A (en) Piezo-electric/electrostrictive ceramics sintered body
JP3283386B2 (en) Piezoelectric film type element, its processing method and its driving method
JP2006527486A (en) Piezo actuator
JPS63268279A (en) Piezo-electric bimorph element
JPH053349A (en) Laminated piezo-electric actuator and its manufacture
JPH03101281A (en) Piezoelectric effect element large in displacement amount, and porcelain composition therefor
JPH0621260Y2 (en) Piezoelectric bimorph element
JP3106365B2 (en) Functionally graded piezoelectric
WO2012160910A1 (en) Piezoelectrically actuated element and piezoelectrically actuated device
JP2907153B2 (en) Piezoelectric transformer and method of manufacturing the same
US20070252478A1 (en) Solid-State Actuator, Especially Piezoceramic Actuator
JP3080033B2 (en) Multilayer piezoelectric transformer
JP5651453B2 (en) Piezoelectric / electrostrictive ceramics sintered body
WO2024070626A1 (en) Lead-free piezoelectric composition, and piezoelectric element
JP3729054B2 (en) Piezoelectric resonator