JPS63268001A - Foreknowledge type learning control method - Google Patents

Foreknowledge type learning control method

Info

Publication number
JPS63268001A
JPS63268001A JP10196087A JP10196087A JPS63268001A JP S63268001 A JPS63268001 A JP S63268001A JP 10196087 A JP10196087 A JP 10196087A JP 10196087 A JP10196087 A JP 10196087A JP S63268001 A JPS63268001 A JP S63268001A
Authority
JP
Japan
Prior art keywords
temperature
control
reactor
dynamic characteristic
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10196087A
Other languages
Japanese (ja)
Other versions
JPH0830966B2 (en
Inventor
Katsutomo Hanakuma
花熊 克友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP62101960A priority Critical patent/JPH0830966B2/en
Publication of JPS63268001A publication Critical patent/JPS63268001A/en
Publication of JPH0830966B2 publication Critical patent/JPH0830966B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)
  • Control Of Temperature (AREA)

Abstract

PURPOSE:To automatically perform the optimum control of a process where a set pattern is repeated by estimating a dynamic model formula of the process with the preceding process operation by means of a sequential most-likely estimating method. CONSTITUTION:An arithmetic processing part 10 supplies the temperature within a reactor and the jacket temperature set in a preceding batch operation as the operation data of a time series. Then the temperature change caused in the reactor by the change of the jacket temperature is supposed as an ARX (self-recursive input/output) of a linear differential model and a dynamic characteristic model is estimated for the operation data after a parameter is decided by a sequential most-likely estimating method. Based on this dynamic characteristic model, a jacket temperature pattern is obtained and outputted to a PID controller 11 as the initial value of a batch operation of this time. The controller 11 performs the open/close control of the control valves 5a and 5b based on the output received from the part 10 and also gives the PID control to the difference between an output (dynamic characteristic model) and an actual fact.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、前回のプロセス運転データにもとづいて、今
回のプロセス運転を予見制御するプロセスの予見型学習
制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a process predictive learning control method for predictively controlling current process operation based on previous process operation data.

[従来の技術] 従来、設定パターンにしたかって繰り返し制御を行なう
バッチプロセスの制御、例えば、バッチ反応器における
反応温度制御においては、■昇温時のオーバーシュート
防止、■最短時間ての昇温、■定常時における安定性な
どか、制御上のポイントとなっており、特に、品質の不
均一、異常反応を引き起す昇温時のオーバーシュートは
、どうしても防止しなければならない最−重要ポイント
てあった。
[Prior Art] Conventionally, in the control of batch processes where control is repeatedly performed according to a set pattern, for example, reaction temperature control in a batch reactor, it is necessary to: (1) prevent overshoot during temperature increase; (2) increase temperature in the shortest possible time; ■ Stability during steady state is an important point in control, and in particular, overshoot during temperature rise, which causes uneven quality and abnormal reactions, is the most important point that must be prevented. Ta.

一方、バッチ重合反応器の温度制御は、目標とする昇降
温パターンを指示するプログラム設定器、反応器の内部
温度をマスターコントローラとし、ジャケット温度によ
ってyJ節するカスケード方式のフィードバック制御に
より行なっていた。
On the other hand, the temperature control of a batch polymerization reactor has been carried out using a program setting device that instructs a target temperature increase/decrease pattern, a cascade feedback control system in which the internal temperature of the reactor is used as a master controller, and yJ is controlled depending on the jacket temperature.

すなわち、第°4図に示すように、反応器lの周囲に温
度2g1節用のジャケット2を設けるとともに1反応器
1の内部温度を検出する温度計21を設け、この温度計
21からの検出温度と、設定器22からの設定温度との
差にもとづいた信号を、調節計23から外温調節計25
に設定温度として出力し、さらに、外温調節計25にお
いて、シャケラト2の温度を検出する温度計24からの
検出温度により、上記設定温度を修正し、その修正結果
に応じた制御信号を調節弁26a、26bに出力して、
蒸気と冷却水の量を調節し、これにより、ジャケット温
度を制御することによって内部温度の制御を行なってい
た。
That is, as shown in Fig. 4, a jacket 2 for temperature 2 g and 1 section is provided around the reactor 1, and a thermometer 21 for detecting the internal temperature of each reactor 1 is provided, and the temperature detected from this thermometer 21 is A signal based on the difference between the temperature and the set temperature from the setting device 22 is sent from the controller 23 to the external temperature controller
Furthermore, the external temperature controller 25 corrects the set temperature based on the detected temperature from the thermometer 24 that detects the temperature of the Shakerat 2, and sends a control signal according to the correction result to the control valve. Output to 26a and 26b,
The internal temperature was controlled by adjusting the amount of steam and cooling water, thereby controlling the jacket temperature.

この場合、PID制御たけては十分な制御を行なえない
ことから、重合反応進行にともない加熱から強制冷却へ
の切替か必要となる。そこで、ジャケット2に供給する
、蒸気の調節弁26を聞けて3速に加熱昇温させ、反応
器lの内温か操作出力上限設定値に達した段階、すなわ
ちターニングポイントにおいて調節計23の出力を下げ
てバイアス設定値たけ降温させ、その後PID制御させ
ることによって行なっていた。
In this case, since PID control alone cannot provide sufficient control, it is necessary to switch from heating to forced cooling as the polymerization reaction progresses. Therefore, the control valve 26 of the steam supplied to the jacket 2 is turned on and the temperature is increased to 3rd speed, and the output of the controller 23 is adjusted at the stage when the internal temperature of the reactor 1 reaches the upper limit setting value of the operating output, that is, at the turning point. This was done by lowering the temperature by the bias setting value and then performing PID control.

[解決すべき問題点] 上述した従来の反応器の内部温度制御方法は、ジャケッ
ト温度を変化させて応答するまでに数分以上の時間遅れ
があり、かつフィードバック制御のため行き過ぎ制御と
なりやすかった。そのため、ジャケット温度か犬きく変
動してオーバーシュートや暴走などの現象を生し、反応
器の内部温度が不安定になりやすいといった問題かあっ
た。
[Problems to be Solved] The conventional method for controlling the internal temperature of a reactor described above has a time delay of several minutes or more before responding by changing the jacket temperature, and is prone to over-control due to feedback control. As a result, the jacket temperature fluctuated rapidly, causing phenomena such as overshoot and runaway, and the internal temperature of the reactor tended to become unstable.

そこで、制御にあたっては、オペレータの経験をもとに
、ジャケット温度の変化速度、あるいは加熱から冷却へ
の温度切替のためのターニングポイントの設定時間など
を調節して行なっていた。
Therefore, control has been carried out by adjusting the rate of change in jacket temperature or the setting time of the turning point for switching the temperature from heating to cooling, based on the operator's experience.

この結果、■ターニングポイントを決めるのに長い運転
経験を必要とし、オペレータの熟練度によって制御の良
否に差か出るとともに、未熟練のオペレータの場合には
非常に制御性か悪くなる、■多品種になればなる程、■
の傾向か強くなる、■触媒ロットの違いによる活性低下
、反応器内表面の汚れによる伝熱量の低下等に起因する
プロセス特性の変化に対応できないといった問題点を有
していた。
As a result, long operating experience is required to determine the turning point, the level of skill of the operator determines whether the control is good or bad, and in the case of an unskilled operator, the controllability becomes extremely poor. The more you become, ■
(2) It is not possible to respond to changes in process characteristics caused by a decrease in activity due to differences in catalyst lots, and a decrease in heat transfer due to contamination on the inner surface of the reactor.

本発明は上記の問題点にかんがみてなされたもので、例
えば、バッチ重合反応器等において、長い運転経験を必
要とすることなく自動的にターニングポイントを決める
ことかてきるようにするとともに、プロセスの変化にも
適応てきるようにした予見型学習制御方法の提供を目的
とする。
The present invention has been made in view of the above-mentioned problems. For example, in a batch polymerization reactor, etc., the turning point can be automatically determined without requiring long operating experience, and the process The purpose of this study is to provide a predictive learning control method that can adapt to changes in the environment.

[問題点の解決手段] 本発明の予見型学習制御方法は上記目的を達成するため
に、設定パターンにしたかって繰り返し制御を行なうバ
ッチプロセスにおいて、前回のプロセス運転から、逐次
形最尤推定法によってプロセスの動特性モデル式を推定
し、かつ、この動特性モデル式にもとづいてプロセスの
目標パターンと一致する制御パターンを求め、この制御
パターンを初期値として次回のプロセスの運転を行なう
制御方法しである。
[Means for Solving Problems] In order to achieve the above object, the predictive learning control method of the present invention uses a sequential maximum likelihood estimation method based on the previous process operation in a batch process that repeatedly controls according to a set pattern. This is a control method that estimates the dynamic characteristic model equation of the process, determines a control pattern that matches the target pattern of the process based on this dynamic characteristic model equation, and performs the next process operation using this control pattern as an initial value. be.

[実施例コ 以下、本発明をバッチ重合反応器の制御に適用した実施
例について説明する。
[Example 7] Hereinafter, an example in which the present invention is applied to control a batch polymerization reactor will be described.

本発明の予見型学習制御方法を、ハツチ重合反応器の制
御に適用すると、バッチ重合運転データから、逐次形最
尤推定法によって反応器内部温度と加熱器温度との動特
性モデル式を推定し、かつ、この動特性モデル式にもと
づいて反応器内部温度目標パターンと一致する加熱器温
度パターンを求め、この加熱器温度パターンを初期値と
して次回のハツチ重合反応器の運転を行なう制御方法と
なる。
When the predictive learning control method of the present invention is applied to the control of a hatch polymerization reactor, a dynamic characteristic model equation between the reactor internal temperature and heater temperature is estimated from the batch polymerization operation data using the sequential maximum likelihood estimation method. , and based on this dynamic characteristic model equation, a heater temperature pattern that matches the reactor internal temperature target pattern is determined, and this heater temperature pattern is used as an initial value to perform the next operation of the hatch polymerization reactor. .

次に、第1図ないし第4図にもとづいて実施例方法を詳
細に説明する。
Next, the method of the embodiment will be explained in detail based on FIGS. 1 to 4.

:51図は本実施例方法を実施するための装置構成例を
示す。
Figure 51 shows an example of an apparatus configuration for carrying out the method of this embodiment.

第1図において、lは反応器であり、その周囲には反応
器の内部温度を制御するジャケット2か設けである。3
はジャケット2に供給する加熱または冷却媒体の供給管
て、熱交換器4において加熱蒸気または冷却水と熱交換
か行なわれ温度管理される。5a、5bは加熱蒸気ある
いは冷却水の供給管に設けである温度制御用の流量調節
弁である。6は反応器1の内部温度を検出する温度計、
7はジャケット2の温度を検出する温度計、8は加熱ま
たは冷却媒体の温度を検出する温度計である。
In FIG. 1, l is a reactor, and around it is provided a jacket 2 for controlling the internal temperature of the reactor. 3
is a heating or cooling medium supply pipe that is supplied to the jacket 2, and heat exchange is performed with heated steam or cooling water in a heat exchanger 4 to control the temperature. Reference numerals 5a and 5b are temperature control flow rate regulating valves provided in the heating steam or cooling water supply pipes. 6 is a thermometer for detecting the internal temperature of the reactor 1;
7 is a thermometer for detecting the temperature of the jacket 2, and 8 is a thermometer for detecting the temperature of the heating or cooling medium.

10は演算処理部てあり、前ハツチ運転における反応器
内部温度とジャケット温度の運転データを温度計6.7
を介して入力し、反応器内部温度とジャケット温度との
動特性に関するモデル式を逐次形最尤推定法て推定する
。そして、この動特性モデルにもとづいてジャケット温
度パターンを求め、今回行なうハツチ運転の初期値とし
てPID調節計11に出力する。PID調節計11は、
演算処理部lOからの出力にもとづいて調節弁5a、5
bを開閉して制御を行なうとともに、出力(動特性モデ
ル)と実際との差をもPID制御する。
10 is an arithmetic processing unit which records operating data of the reactor internal temperature and jacket temperature in the previous hatch operation using a thermometer 6.7.
The model equation for the dynamic characteristics between the reactor internal temperature and jacket temperature is estimated using the sequential maximum likelihood estimation method. Then, based on this dynamic characteristic model, a jacket temperature pattern is determined and outputted to the PID controller 11 as an initial value for the hatch operation to be performed this time. The PID controller 11 is
Based on the output from the arithmetic processing unit 1O, the control valves 5a, 5
Control is performed by opening and closing b, and the difference between the output (dynamic characteristic model) and the actual one is also controlled by PID.

次に、第2図のフローチャートと、第3図(a)、(b
)の温度曲線のグラフによりハツチ重合反応器の制御方
法を説明する。
Next, we will discuss the flowchart in Figure 2 and Figures 3 (a) and (b).
) The method of controlling the hatch polymerization reactor will be explained using a graph of the temperature curve.

■ 初回ハツチ運転の、PID制御のみによる反応器内
部温度T7と、ジャケット温度TJの運転データを温度
計6.7を介して演算処理部10に入力し、時系列デー
タ (T R(k )、T J(k ))k −1−1
として保存する(201)。
■ Operational data of the reactor internal temperature T7 and jacket temperature TJ obtained by PID control only during the initial hatch operation are input to the processing unit 10 via the thermometer 6.7, and the time series data (TR(k), T J (k))k -1-1
(201).

このときの運転データを温度曲線グラフとして表わすと
第3図(a)のようなりラフになる。
If the operating data at this time is expressed as a temperature curve graph, it will be rough as shown in FIG. 3(a).

■上記運転データにもとづいて、反応器内部温度とジャ
ケット温度との動特性モデルを求める(202)。
(2) Based on the above operating data, a dynamic characteristic model of the reactor internal temperature and jacket temperature is determined (202).

ジャケット温度TJを変化させたときの反応器内部温度
T8の変化を線形差分モデルのARX(自己回帰入出力
)モデル T、(k+ 1)=aT++(k)+bT、+(k)と
仮定する。
It is assumed that the change in the reactor internal temperature T8 when the jacket temperature TJ is changed is a linear difference model ARX (autoregressive input/output) model T, (k+1)=aT++(k)+bT,+(k).

そして、上記運転データ(T R(k )、T J(k
 ))k = 1−1  のデータを用い、逐次形最尤
推定法て パラメータa、bを決定し、動特性モデルを推定する。
Then, the above operating data (T R (k), T J (k
)) Using the data of k = 1-1, determine the parameters a and b using the sequential maximum likelihood estimation method, and estimate the dynamic characteristic model.

■反応器内部温度T Ll(k+ 1 )か、反応器内
部温度目標パターンTsp(k+1)に一致するための
操作量ジャケット温度T J ”(k )を、k  −
1−ff より求める。
■The manipulated variable jacket temperature T J ” (k) to match the reactor internal temperature T Ll (k+1) or the reactor internal temperature target pattern Tsp (k+1), k −
Obtained from 1-ff.

■このようにして求めた反応器内部目標パターンTJ”
(k)を記憶する(204)。
■Reactor internal target pattern TJ obtained in this way
(k) is stored (204).

■反応器内部温度目標パターンTJ”(k)を、初期値
としてPID調節計11に出力し、今回のバッチ運転を
行なう(205)。目標パターンTJ′(k)と実際の
ずれはPID調節計11によって制御を行なう。
■ Output the reactor internal temperature target pattern TJ'(k) as an initial value to the PID controller 11 and perform the current batch operation (205).The actual deviation from the target pattern TJ'(k) is determined by the PID controller Control is performed by 11.

このときの運転データを温度曲線グラフとして表わすと
、第3図(b)のようなグラフになる。
When the operating data at this time is expressed as a temperature curve graph, it becomes a graph as shown in FIG. 3(b).

■今回のハツチ運転における、反応器内部温度T7とジ
ャケット温度TJの運転データを演算処理部10に入力
し、時系列データ(T R(k )。
■The operational data of the reactor internal temperature T7 and jacket temperature TJ during the current hatch operation are input to the arithmetic processing unit 10, and the time series data (T R (k)) is input.

TJ(k))  k= 1− p  として保存(20
6)し、上記■〜(,6)を繰り返す。
TJ(k)) Save as k= 1− p (20
6), and repeat steps (1) to (6) above.

このようにしてハツチ重合反応器の制御を行なうと、1
〜2回のハツチ運転にもとづいて、適切なターニングポ
イントを決めることか可能となり、昇温時のオーバーシ
ュート防止、最短時間ての昇温および定常時の安定性を
確保てきる。また、これにより多品種のハツチ重合反応
にも容易に対応てきるとともに、プロセス特性の変化に
も自動的に対応できる。
When the hatch polymerization reactor is controlled in this way, 1
It becomes possible to determine an appropriate turning point based on ~2 hatch operations, ensuring overshoot prevention during temperature rise, temperature rise in the shortest time, and stability during steady state. Furthermore, this makes it possible to easily handle a wide variety of different types of hatch polymerization reactions, as well as automatically adapt to changes in process characteristics.

なお、本発明の予見型学習制御方法はハツチ重合反応器
の制御のみならず、設定パターンの繰り返されるプロセ
スの制御系全般、例えば、射出成形機の成形制御等にも
実施てきる。
The predictive learning control method of the present invention can be applied not only to the control of a hatch polymerization reactor, but also to general control systems of processes in which a set pattern is repeated, such as molding control of an injection molding machine.

[発明の効果] 以上のように本発明の方法によれば、設定パターンの縁
り返されるプロセスの制御を、自動的にしかも最適に行
なうことかてきる。
[Effects of the Invention] As described above, according to the method of the present invention, it is possible to automatically and optimally control the process of turning the edges of a set pattern.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の方法を実施する装乙の構成
図、第2図は本実施例方法のフローチャート図、第3図
(a)および(b)は本実施例の方法を採用した場合の
採用前後における運転デー夕を温度曲線グラフとして表
わした図、第4図は従来方法を実施する装置の構成図を
示す。 1:反応器 2・加熱器(ジャケット) 6.7.8:温度計 10:演算処理部 11:PID調節計
Fig. 1 is a block diagram of a device that implements the method of one embodiment of the present invention, Fig. 2 is a flowchart of the method of this embodiment, and Figs. 3 (a) and (b) show the method of this embodiment. FIG. 4 is a diagram showing the operating data before and after the adoption as a temperature curve graph when the conventional method is adopted. 1: Reactor 2/heater (jacket) 6.7.8: Thermometer 10: Arithmetic processing section 11: PID controller

Claims (1)

【特許請求の範囲】[Claims] 設定パターンにしたがって繰り返し制御を行なうバッチ
プロセスにおいて、前回のプロセス運転から、逐次形最
尤推定法によってプロセスの動特性モデル式を推定し、
かつ、この動特性モデル式にもとづいてプロセスの目標
パターンと一致する制御パターンを求め、この制御パタ
ーンを初期値として次回のプロセスの運転を行なうこと
を特徴とした予見型学習制御方法。
In a batch process that is repeatedly controlled according to a set pattern, the dynamic characteristic model equation of the process is estimated using the sequential maximum likelihood estimation method from the previous process operation.
A predictive learning control method is characterized in that a control pattern that matches the target pattern of the process is determined based on this dynamic characteristic model formula, and the next process is operated using this control pattern as an initial value.
JP62101960A 1987-04-27 1987-04-27 Reactor internal temperature control method Expired - Lifetime JPH0830966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62101960A JPH0830966B2 (en) 1987-04-27 1987-04-27 Reactor internal temperature control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62101960A JPH0830966B2 (en) 1987-04-27 1987-04-27 Reactor internal temperature control method

Publications (2)

Publication Number Publication Date
JPS63268001A true JPS63268001A (en) 1988-11-04
JPH0830966B2 JPH0830966B2 (en) 1996-03-27

Family

ID=14314433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62101960A Expired - Lifetime JPH0830966B2 (en) 1987-04-27 1987-04-27 Reactor internal temperature control method

Country Status (1)

Country Link
JP (1) JPH0830966B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03201012A (en) * 1989-12-28 1991-09-02 Tokyo Erekutoron Kyushu Kk Heating device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6242202A (en) * 1985-08-20 1987-02-24 Idemitsu Petrochem Co Ltd Method for controlling internal temperature of reactor
JPS6280704A (en) * 1985-10-04 1987-04-14 Toshiba Corp Adaptive control system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6242202A (en) * 1985-08-20 1987-02-24 Idemitsu Petrochem Co Ltd Method for controlling internal temperature of reactor
JPS6280704A (en) * 1985-10-04 1987-04-14 Toshiba Corp Adaptive control system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03201012A (en) * 1989-12-28 1991-09-02 Tokyo Erekutoron Kyushu Kk Heating device

Also Published As

Publication number Publication date
JPH0830966B2 (en) 1996-03-27

Similar Documents

Publication Publication Date Title
KR100511670B1 (en) Control Device, Temperature Controller, and Heat Treatment Device
ES2197633T3 (en) METHOD AND APPLIANCE FOR PRESSURE CONTROL IN VACUUM PROCESSORS.
KR101103096B1 (en) Thermal processing system, thermal processing method and computer readable storage medium
JP2006113724A (en) Control method, temperature control method, temperature regulator, heat treatment equipment, program and recording medium
JP2000183072A (en) Semiconductor production apparatus and method of controling temperature of the same
US6114825A (en) Method and apparatus for state path generation in a controlled system
JP3776297B2 (en) Control system
JPS63268001A (en) Foreknowledge type learning control method
JPS62135902A (en) Optimum control method for process
JPS6270904A (en) Temperature control method
WO1990013857A1 (en) Method of sliding mode control
JPH10206038A (en) Furnace heating control method using fuzzy logic
JP2001265448A (en) Temperature controller and heat treating device
US5743464A (en) System for controlling work temperature by a programmed controller
JP2517818B2 (en) Method of controlling treatment liquid temperature and control device thereof
JPH03177396A (en) Temperature control device of semiconductor production device
JP3664125B2 (en) Control device, temperature controller and heat treatment device
JPH02201604A (en) Temperature control method for polymerizing reaction tank
KR20220165646A (en) Temperature correction information calculation device, semiconductor manufacturing apparatus, storage medium, and temperature correction information calculation method
JPS62197140A (en) Method for controlling internal temperature of reactor
JPH01282620A (en) Temperature controller for semiconductor processing furnace
JP2819102B2 (en) Temperature control method of programmed temperature controller
JPH0560604B2 (en)
JPH01111203A (en) Process control method
JPH10124104A (en) Control method for semiconductor manufacturing equipment