JPS63267731A - Tablet composition - Google Patents

Tablet composition

Info

Publication number
JPS63267731A
JPS63267731A JP9858687A JP9858687A JPS63267731A JP S63267731 A JPS63267731 A JP S63267731A JP 9858687 A JP9858687 A JP 9858687A JP 9858687 A JP9858687 A JP 9858687A JP S63267731 A JPS63267731 A JP S63267731A
Authority
JP
Japan
Prior art keywords
tablet
average particle
cellulose
particle size
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9858687A
Other languages
Japanese (ja)
Other versions
JPH0538732B2 (en
Inventor
Etsuo Kamata
悦雄 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP9858687A priority Critical patent/JPS63267731A/en
Publication of JPS63267731A publication Critical patent/JPS63267731A/en
Publication of JPH0538732B2 publication Critical patent/JPH0538732B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Medicinal Preparation (AREA)

Abstract

PURPOSE:To obtain a tablet composition containing beta-1,4 glucan powder having specific size and specific surface area. CONSTITUTION:A table composition containing preferably 2-20wt.% beta-1,4 glucan having 30mum at most, preferably 20mum at most average particle diameter and >=1.3ml/g specific surface area. The composition enables tableting of prescription containing a large amount of a medicinal component (main drug) which has not been attained by existing crystalline cellulose and can provide tablets high uniformity of content and low separation and segregation. The above-mentioned fine powder cellulose is obtained by hydrolyzing pulp in 10% hydrochloric acid at 105 deg.C for 20min to give an acid-insoluble residue, which is filtered, dried, pulverized by a high-speed rotary impact grinder or an air flow type grinder. In order to obtain powder having smaller average particle diameter, the ground powder may be optionally classified, if necessary.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は1錠剤組成物に関するものである。さらに詳し
くは、特定された粉体特性を有するβ−1,4グルカン
粉末を含む錠剤組成物であり、結合剤としての結合性が
向上し、錠剤の硬度を高めることKよって、従来の結晶
セルロースでは果たせなかった薬効成分(生薬)多量配
合処方の錠剤化を可能にし、かつ分離偏析の少ない含量
均一性の高い錠剤を得ることのできる錠剤組成物に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a one-tablet composition. More specifically, it is a tablet composition containing β-1,4 glucan powder having specified powder properties, which improves the binding property as a binder and increases the hardness of the tablet. The present invention relates to a tablet composition that enables formulations containing a large amount of medicinal ingredients (herbal medicines) to be made into tablets, which could not be achieved with the conventional methods, and also enables tablets with high content uniformity with little separation and segregation to be obtained.

(従来の技術) 錠剤は主薬、賦形剤、結合剤、崩壊剤およびその他の添
加剤から構成されている。これら主薬以外の成分のうち
で、結合剤としては、結晶セルロース、ヒドロキシプロ
ピルセルロース、リン酸カルシウム等があるが、なかで
も結晶セルロースが最も結合性が高く、広く使用されて
いる。市販されている結晶セルロースの平均粒径は、約
6μm(旭化成工業■製アビセル■PH−MO6)、約
155w5 (同社製アビセル■PH−M15)、約2
5μm(同社製アビセル■PH−M25)、約45μm
(同社製アビセル■PH−101,PH−301)、約
120μ露(同社製アビセル■PH−102,PH−3
02)である。このうちで錠剤の結合剤として用いられ
ているのは、約45μm、約120μ説の結晶セルロー
スである。なお、平均粒径が約6.15.251m1に
の結晶セルロースは、主に化粧品用配合剤として用いら
れている、 従来、かかる平均粒径の結晶セルロースが錠剤の結合剤
として用いられてきた理由は、平均粒径が結合剤の本来
目的とする性質である結合性と、その他の物性との総合
的なバランスによって決められるものであることによる
。一般に、結晶セルロースの平均粒径が大き過ぎても小
さ過ぎても、主薬その他の賦形剤あるいは顆粒との関係
において分離偏析を起こし易くなると言われてきた。
(Prior Art) Tablets are composed of a main drug, an excipient, a binder, a disintegrant, and other additives. Among these ingredients other than the main drug, binders include crystalline cellulose, hydroxypropyl cellulose, calcium phosphate, etc. Among them, crystalline cellulose has the highest binding property and is widely used. The average particle size of commercially available crystalline cellulose is approximately 6 μm (Avicel PH-MO6 manufactured by Asahi Kasei Corporation), approximately 155w5 (Avicel PH-M15 manufactured by Asahi Kasei), and approximately 2 μm.
5 μm (Avicel PH-M25 manufactured by the same company), approximately 45 μm
(Avicel ■PH-101, PH-301 manufactured by the same company), approximately 120μ dew (Avicel ■PH-102, PH-3 manufactured by the same company)
02). Among these, crystalline cellulose with a diameter of approximately 45 μm and approximately 120 μm is used as a binder for tablets. Furthermore, crystalline cellulose with an average particle size of approximately 6.15.251 m1 is mainly used as a compounding agent for cosmetics.The reason why crystalline cellulose with such an average particle size has been used as a binder for tablets in the past. This is because the average particle size is determined by the overall balance between the binding property, which is the intended property of the binder, and other physical properties. Generally, it has been said that if the average particle size of crystalline cellulose is too large or too small, separation and segregation will easily occur in relation to the main drug, other excipients, or granules.

アビセル時報43号(旭化成工業■発行)によると、顆
粒に結晶セルロースその他の添加剤を添加して打錠する
という、いわゆる湿式打錠後床法において、顆粒と結晶
セルロースその他の添加剤との分離偏析が問題になるこ
とがあり、その防止策としては、顆粒の粒径を流動性を
損なわない程度に小さくすること、結晶セルロースその
他の添加剤の粒径を顆粒に近づけ大きくすること、結晶
セルロースその他の添加剤のかさ密度を上げることが挙
げられている。
According to Avicel Jiho No. 43 (published by Asahi Kasei Kogyo), in the so-called wet tableting method, in which crystalline cellulose and other additives are added to granules and then compressed, the granules are separated from the crystalline cellulose and other additives. Segregation can be a problem, and measures to prevent it include reducing the particle size of the granules to an extent that does not impair fluidity, increasing the particle size of crystalline cellulose and other additives closer to the granules, and increasing the particle size of crystalline cellulose and other additives. Increasing the bulk density of other additives is mentioned.

また、特公昭57−14651によると、特定された粉
体特性を有するβ−1,4グルカン粉末、限定された範
囲内の水難溶性主薬、崩壊剤、界面活性剤を配合してな
る製剤組成物を直接打錠すると、錠剤間の主薬含量バラ
ツキが小さく1錠剤強度、崩壊度、生薬の溶出速度が改
善し、直打による錠剤の問題点を全て解決したとしてい
る。しかし、実施例によると、主薬蓋は60係に過ぎず
Furthermore, according to Japanese Patent Publication No. 57-14651, a pharmaceutical composition comprising β-1,4 glucan powder having specified powder characteristics, a poorly water-soluble main ingredient within a limited range, a disintegrant, and a surfactant. When directly compressed into tablets, there is less variation in the active ingredient content between tablets, and single-tablet strength, degree of disintegration, and dissolution rate of herbal medicine are improved, all of the problems associated with directly compressed tablets are solved. However, according to the example, the main pot lid is only 60 pieces.

β−1,4グルカン粉末の添加量も約37重置部と多く
必要としている。また、参考例2.第1表では平均粒径
の範囲が10μ馬から300μ解であるβ−1,4グル
カン粉末を用い、添加量を36.5重量%として、特定
の形状を持つフエナセチン60重量qb1に打錠してい
るが1錠剤強度は2,03、8kfまでしか達していな
い。特に平均粒径が10゜20μ謀のβ−1,4グル力
ン粉未配合処方の錠剤強度は、平均粒径が40.60μ
舅のβ−1゜4グル力ン粉未配合処方より低くなってい
る。主薬含有量バラツキも大差がないと記載されている
The amount of β-1,4 glucan powder added is also as large as about 37 parts. Also, reference example 2. In Table 1, β-1,4 glucan powder with an average particle size ranging from 10 μm to 300 μm was used, the amount added was 36.5% by weight, and phenacetin was tableted into 60 wt qb1 having a specific shape. However, the strength of one tablet has only reached 2,03,8 kf. In particular, the tablet strength of a formulation without β-1,4 glue flour with an average particle size of 10° and 20μ is as follows:
It is lower than my father-in-law's β-1°4 formula that does not contain glutinous flour. It is also stated that there is no significant difference in the content of the active ingredient.

また、特公昭56−38128の実施例5において、平
均粒径20μ諷の試料0が使用されているが、キャッピ
ングを起こしており1錠剤に成形されていない。本発明
との差異については後述する。
Further, in Example 5 of Japanese Patent Publication No. 56-38128, Sample 0 with an average particle size of 20 μm is used, but capping occurs and it is not formed into a single tablet. Differences from the present invention will be described later.

一方、最近の製剤技術の動向として、錠剤は小型化の傾
向にあり、その場合主薬の添加量自体は変わらないこと
が多いので、4.必然的に処方に占める生薬の割合は上
昇する。逆に言えば、生薬以外の成分の添加量が制限さ
れ、したがって、結合剤としての結晶セルロースの添加
量も制限されるために、充分な結合性を発揮できず、実
用に耐える硬度を持つ錠剤が直接打錠法ではできない場
合が多くなった。すなわち1錠剤の小型化を実現するた
めには、できるだけ処方に占める生薬の割合が高い状態
での打錠が可能である必要がある。特公昭56−381
28の実施例5では、アスコルビン酸の直接打錠が行な
われているが、アスコルビン酸の処方に占める割合は8
0係である。アスコルビン酸が80%’i超えた処方で
は、もつと低い錠剤硬度になり、商品価値を失うだろう
ことが推察される。
On the other hand, as a recent trend in formulation technology, tablets are becoming smaller, and in this case, the amount of the active ingredient added remains the same in many cases. Inevitably, the proportion of herbal medicines in prescriptions will increase. Conversely, the amount of ingredients other than crude drugs added is limited, and therefore the amount of crystalline cellulose used as a binder is also limited, making it impossible for tablets to exhibit sufficient binding properties and have hardness that is suitable for practical use. However, there are many cases where this cannot be done using the direct compression method. In other words, in order to reduce the size of a single tablet, it is necessary to be able to compress tablets with as high a proportion of herbal medicine as possible in the prescription. Tokuko Sho 56-381
In Example 5 of 28, ascorbic acid was directly compressed into tablets, but the proportion of ascorbic acid in the prescription was 8.
I am in charge of 0. It is assumed that formulations with ascorbic acid exceeding 80%'i will have low tablet hardness and will lose commercial value.

(発明が解決しようとする問題点) このように従来の結晶セルロースでは、生薬が多い場合
には添加量が制限されるために、充分な結合性ケ発揮で
きず、実用に耐える硬度を持つ錠剤ができない場合があ
った。他方、錠剤の硬度を上げるためには、打錠時の成
形圧を上げればよいわけであるが、そうすると逆にキャ
ッピングやラミネーションが発生して、錠剤が割れたり
、割れなくとも錠剤の硬度が下がったりすることがあっ
た。また、成形圧を上げたことによって打錠機の杵の摩
耗、破損の頻度が高くなることがあった。
(Problems to be solved by the invention) In this way, when using conventional crystalline cellulose, the amount added is limited when a large amount of herbal medicine is added, so it cannot exhibit sufficient binding properties, and tablets with hardness that is suitable for practical use cannot be obtained. There were cases where this was not possible. On the other hand, in order to increase the hardness of a tablet, it is possible to increase the compression pressure during tablet compression, but this may result in capping or lamination, which may cause the tablet to crack, or even if it does not break, the hardness of the tablet decreases. There were times when I did something like that. In addition, increasing the molding pressure resulted in an increased frequency of abrasion and breakage of the punches of the tableting machine.

分離偏析については、特に湿式打錠後床法という予め主
薬を含んだ顆粒を調製した後、結合剤あるいは崩壊剤、
滑沢剤t−添加して打錠する製錠法において、顆粒と後
で添加した成分との分離偏析、すなわち、生薬含量均一
性が問題となることがあった。
Regarding separation and segregation, in particular, after preparing granules containing the active ingredient in advance using the wet tableting and bed method, binders or disintegrants,
In the tableting method in which lubricant t is added and tableted, there have been problems with separation and segregation between the granules and components added later, that is, uniformity of the crude drug content.

(問題点を解決するための手段および作用)本発明の目
的は、これらの問題を解決し、結合剤として特定された
粉体特性を有する、7今までくはなかった7−1,4グ
ルカン粉末を使用した錠剤組成物を提供することにある
。すなわち、従来の知見では使用不可能とされていた、
平均粒径が大きくとも30μ寓であり、BET法により
測定した比表面積が1.34f以上であるβ−1,4グ
ルカン粉末の使用によって錠剤の硬If?高め、従来の
結晶セルロースでは果たせなかった高王薬処方の錠剤化
を可能くし、従来より低い成形圧で打錠することが可能
になり、また1錠剤の主薬金蓋のバラツキを抑えること
が可能となった。
(Means and Effects for Solving the Problems) The object of the present invention is to solve these problems and to provide a 7-1,4-glucan that has the specified powder properties as a binder. An object of the present invention is to provide a tablet composition using powder. In other words, it was considered impossible to use according to conventional knowledge,
By using β-1,4 glucan powder, which has an average particle size of at most 30 μm and a specific surface area of 1.34 f or more as measured by the BET method, the hardness of the tablet If? This makes it possible to form tablets with high-quality pharmaceutical formulations that could not be achieved with conventional crystalline cellulose, making it possible to compress tablets with lower molding pressure than before, and also suppressing variations in the metal cap of the main drug per tablet. It became.

本発明の錠剤組成物における諸効果は1次に述べる特定
されたβ−1,4グルカン粉末金利用した場合に限って
得られる。すなわち1本発明は、平均粒径が大きくとも
30μ隅であり、 BET法により測定した比表面積が
1.3 nV9以上であるβ−1,4グルカン粉末(以
下、微粉セルロースという)を含有する錠剤組成物であ
る。
The various effects of the tablet composition of the present invention can be obtained only when the specified β-1,4 glucan powder gold described below is used. Specifically, the present invention provides a tablet containing β-1,4 glucan powder (hereinafter referred to as fine cellulose) having an average particle diameter of at most 30 μm and a specific surface area of 1.3 nV9 or more as measured by the BET method. It is a composition.

以下、本発明について詳細に説明する。本発明の微粉セ
ルロースは、リンター、パルプなどのセルロース質會酸
加水分解あるいはアルカリ酸化分解あるいは両者を組み
合わせて分解した後、精製し、乾燥後あるいは乾燥中あ
るいは乾燥前に粉砕あるいは磨砕して得られるものであ
って、平均粒径が大きくとも30μ舅、好ましくは大き
くとも20μmであり、BH法により測定した比表面積
が1.3 Jf以上であることが必要である。また、錠
剤組成物に占める微粉セルロースの添加量は、好ましく
は2〜20重量係で置部。
The present invention will be explained in detail below. The finely divided cellulose of the present invention is obtained by decomposing cellulose materials such as linters and pulps by acidic hydrolysis or alkaline oxidative decomposition, or a combination of both, followed by purification and pulverization or grinding after, during, or before drying. It is necessary that the average particle size is at most 30 μm, preferably at most 20 μm, and the specific surface area measured by the BH method is 1.3 Jf or more. The amount of finely divided cellulose added to the tablet composition is preferably 2 to 20 parts by weight.

微粉セルロースの平均粒径が小さいほど、これを用いた
錠剤の硬変は向上するが、平均粒径が30μwrf超え
ると、従来の結晶セルロースを用いた場合と比べて、有
意な錠剤硬度の向上は達成できない。また、平均粒径が
30μ嵩以下であっても、比表面積が1.3 m!/f
未満では、所望の錠剤硬度は得られない。
The smaller the average particle size of finely divided cellulose, the better the hardness of tablets made using it, but when the average particle size exceeds 30 μwrf, there is no significant improvement in tablet hardness compared to when conventional crystalline cellulose is used. Unachievable. Furthermore, even if the average particle size is 30 μm or less, the specific surface area is 1.3 m! /f
If it is less than that, the desired tablet hardness cannot be obtained.

特公昭57−14651の参考例2、第1表に記載の平
均粒径10.20μmのβ−1,4グルカン粉末との関
係について言及する。種々の平均粒径を持つβ−1,4
グルカン粉末の製法は明らかにされていない。しかし、
例えば粉砕処理によって平均粒径を下げようとすると、
粒径の減少のみでなく、粗化容積とか他の粉体物性を大
きく変化させるおそれがあり、このような実験で用いる
のは不適当と考えられるため、種々の平均粒径を持つ/
−1,4グルカン粉末の製法は、m分け。
The relationship with β-1,4 glucan powder having an average particle size of 10.20 μm described in Reference Example 2 and Table 1 of Japanese Patent Publication No. 57-14651 will be mentioned. β-1,4 with various average particle sizes
The manufacturing method for glucan powder has not been disclosed. but,
For example, if you try to reduce the average particle size by pulverization,
It is considered inappropriate to use in such experiments because there is a risk of not only decreasing the particle size but also greatly changing the roughening volume and other powder physical properties.
-The manufacturing method of 1,4 glucan powder is divided into m parts.

風力分級によったと推察される。ところで、市販品の結
晶セルロース、アビセル@PH−101’i風力分級し
て平均粒径20μ票の結晶セルロースを得た(以下、分
級品と言う)。分級品を配合した錠剤を作成し、アビセ
ル■PH−101を配合した錠剤と錠剤硬度を比較する
と、若干高いものの有意差はなかった。一方、本発明の
微粉セルロースを配合した錠剤の硬度は、これらより2
〜3倍高かった。分級品の比表面積は1.1 rre/
?であり、アビセル■PH−101のそれと大差ない。
It is assumed that this was due to wind classification. By the way, a commercially available crystalline cellulose, Avicel@PH-101'i, was air-classified to obtain crystalline cellulose with an average particle size of 20 μm (hereinafter referred to as a classified product). A tablet containing the classified product was prepared and the tablet hardness was compared with that of a tablet containing Avicel PH-101. Although the tablet hardness was slightly higher, there was no significant difference. On the other hand, the hardness of the tablet containing the finely divided cellulose of the present invention is 2
It was ~3 times higher. The specific surface area of the classified product is 1.1 rre/
? It is not much different from that of Avicel ■PH-101.

結晶セルロースはもともと多孔性粉体ゆえ、分級して粒
径が変わっても、比表面積はそれほど変fヒしないと推
定される。本発明の微粉セルロースの比表面積は1.3
tri/を以上であり、分級品等に比べかなり高い。粉
砕などにより形態変化を起こすために、比表面積は大き
くなると考えられる。したがって、ただ市販品の結晶セ
ルロースを篩分、分級しただけでは、本発明には到達し
ない。また、特公昭56−38128の実施例5には、
平均粒径20μ襲の試料0が使用されているが、この試
料の製法を記述した実施例4にしたがって試料を作成し
たところ、平均粒径は20μ属となったものの、比表面
積は0.8−/lにしか過ぎなく1本発明の微粉セルロ
ースと違って、結合性を発揮しなかった。
Since crystalline cellulose is originally a porous powder, it is presumed that even if the particle size changes through classification, the specific surface area will not change much. The specific surface area of the finely divided cellulose of the present invention is 1.3
tri/ or more, which is considerably higher than classified products. It is thought that the specific surface area increases due to morphological changes caused by pulverization or the like. Therefore, the present invention cannot be achieved simply by sieving and classifying commercially available crystalline cellulose. In addition, in Example 5 of Special Publication No. 56-38128,
Sample 0 with an average particle size of 20 μm is used, but when a sample was prepared according to Example 4, which describes the manufacturing method of this sample, the average particle size was 20 μm, but the specific surface area was 0.8 -/l, and unlike the finely divided cellulose of the present invention, it did not exhibit binding properties.

本発明の微粉セルロースは、例えば以下の方法により製
造されるが、これらの方法に限定されるものではない。
The finely divided cellulose of the present invention is produced, for example, by the following method, but is not limited to these methods.

パルプを10係塩酸中で105℃、20分間加水分解し
て得られた酸不醇解残渣をp過洗浄し、乾燥したものを
、高速回転衝撃粉砕機あるいは気流式粉砕機で微粉砕し
て得る。さらに、平均粒径の小さい粉体が得たければ、
必要に応じ、粉砕工程の後で分級を行なってもかまわな
い。
The acid-insoluble residue obtained by hydrolyzing the pulp in 10% hydrochloric acid at 105°C for 20 minutes is washed with P filter, dried, and pulverized using a high-speed rotational impact crusher or an airflow crusher. obtain. Furthermore, if you want to obtain powder with a small average particle size,
If necessary, classification may be performed after the pulverization step.

製錠方法には大別して、粉末直接圧縮法(直打法)と顆
粒圧縮法(混打法)の2通りがある。
There are two types of tablet-making methods: direct powder compression method (direct compression method) and granule compression method (mixed compression method).

錠剤を直打法によって製造する場合、錠剤は生薬、賦形
剤、結合剤、崩壊剤等で構成されるが、これら構成成分
の相互の関係を無視できない。微粉セルロースを配合す
ると、処方系の流動性が低下する傾向にあり、微粉セル
ロースを除く各成分にもよるが、錠剤重量バラツキを許
容範囲に抑えるためには、微粉セルロースの添加量の上
限は20重量置部ある。また、有意な錠剤硬度向上のた
めの微粉セルロースの添加量の下限は2重量幅である、
微粉セルロース配合の組成物の錠剤硬度向上のためには
、微粉セルロースが生薬あるいは他の添加剤の表面に付
着した状態にあることが必要である。
When tablets are manufactured by the direct compression method, the tablets are composed of crude drugs, excipients, binders, disintegrants, etc., and the mutual relationships among these components cannot be ignored. When finely divided cellulose is added, the fluidity of the formulation tends to decrease, and although it depends on each component other than finely divided cellulose, in order to keep tablet weight variations within an acceptable range, the upper limit of the amount of finely divided cellulose added is 20%. There is a weight station. In addition, the lower limit of the amount of finely powdered cellulose added to significantly improve tablet hardness is 2 weight range.
In order to improve the tablet hardness of a composition containing finely divided cellulose, it is necessary that the finely divided cellulose be attached to the surface of the crude drug or other additives.

直打法において最良の結合剤とされてきた従来の結晶セ
ルロース、アビセル■PH−101配合処方系に比べ、
微粉セルロース配合処方系は2〜3倍の錠剤硬度が得ら
れた。また、従来の結晶セルI−スでは、アスコルビン
酸の直打において処方中のアスコルビン酸濃度を80重
t=iまでしか上げることができなかったが、微粉セル
ロースでは86重量置部で上げることが可能であった。
Compared to the conventional crystalline cellulose, Avicel PH-101 formulation system, which has been considered the best binder in the direct compression method,
The tablet hardness of the formulation containing finely powdered cellulose was 2 to 3 times higher. In addition, with conventional crystalline cellulose, it was possible to raise the ascorbic acid concentration in the prescription only to 80 parts by weight when ascorbic acid was applied directly, but with finely powdered cellulose, it was possible to raise the concentration of ascorbic acid in the formulation to 86 parts by weight. It was possible.

また、従来の結晶セルロースは、成形圧1 ton/c
11で得た錠剤の硬度より、成形圧1.5 ton/c
Iiで得た錠剤の硬度が低く、キャッピング傾向が見ら
れたが、微粉セルロース配合処方は、キャッピングは全
く見られなかった。成形圧についても微粉セルロース配
合処方は、従来の結晶セルロース配合処方の半分以下で
よく、成形圧を下げて打錠が可能であることから、微粉
セルロースを使用すると、打錠機の杵の消耗を抑えられ
ることが推定される。
In addition, conventional crystalline cellulose has a molding pressure of 1 ton/c
From the hardness of the tablet obtained in step 11, the molding pressure was 1.5 ton/c.
The tablets obtained in Ii had low hardness and showed a tendency to cap, but no capping was observed in the formulation containing finely powdered cellulose. In terms of molding pressure, finely powdered cellulose formulations require less than half of the conventional crystalline cellulose formulations, and it is possible to compress tablets with lower molding pressure.Using finely divided cellulose reduces wear and tear on the punches of the tablet machine. It is estimated that this can be suppressed.

造粒で得られた顆粒に、微粉セルロースを後末添加して
打錠する場合には、顆粒自体にある程度の成形性がある
ので、微粉セルロースの添加量の上限#:t20重量係
であ置部また、有意な錠剤硬度向上のためには、微粉セ
ルロースの添加量の下限は2重量幅である。この方法に
おいても、直打錠の場合と同様に、顆粒表面に微粉セル
ロースがコーティングされた状態にあることにより、従
来の結晶セルロースに比べて高い硬度の錠剤を得ること
ができる。さらに、従来の結晶セルロースを後末添加し
て打錠する際には、顆粒と結晶セルロースの分離偏析が
起こり、錠剤の重量バラツキが生じたり、生薬含量均一
性が損われたりすることがあった。微粉セルロースは従
来の結晶セルロースより平均粒径が小さいので、顆粒の
粒径とのギャップは、従来の結晶セルロースより大きく
なっており、従来の考えからすると、むしろ顆粒との分
離偏析は起こり易いように考えられるが、事実は逆で、
顆粒表面へ微粉セルロースが均一に付着するために1分
離偏析は起こらない。
If finely divided cellulose is added to the granules obtained by granulation and then tableted, the upper limit of the amount of finely divided cellulose to be added should be set at #: t20 weight, since the granules themselves have a certain degree of moldability. Furthermore, in order to significantly improve tablet hardness, the lower limit of the amount of finely divided cellulose added is 2 weight range. In this method, as in the case of direct compression tablets, the surface of the granules is coated with finely divided cellulose, making it possible to obtain tablets with higher hardness than conventional crystalline cellulose. Furthermore, when conventionally adding crystalline cellulose as a powder and compressing it into tablets, separation and segregation of the granules and crystalline cellulose occurred, resulting in variations in the weight of the tablets and loss of uniformity in herbal drug content. . Since finely divided cellulose has a smaller average particle size than conventional crystalline cellulose, the gap between it and the particle size of the granules is larger than that of conventional crystalline cellulose, and from the conventional thinking, separation and segregation from the granules would be more likely to occur. However, the opposite is true,
Since the finely divided cellulose adheres uniformly to the granule surface, no one-separation segregation occurs.

本発明の錠剤組成物は、従来の製造方法と同様に製錠で
きる。したがって、1種以上の生薬成分に微粉セルロー
スを添加し、必要に応じて他の添加剤を加えた後、乾式
、湿式など公知の方法で賦形し1錠剤とする。あるいは
181以上の生薬成分に添加剤を加えた後、公知の方法
で顆粒となし。
The tablet composition of the present invention can be made into tablets using conventional manufacturing methods. Therefore, finely powdered cellulose is added to one or more crude drug ingredients, and other additives are added as necessary, and then shaped into one tablet by a known method such as dry or wet. Alternatively, after adding additives to 181 or more crude drug ingredients, it is made into granules using a known method.

これに微粉セルロースと必要に応じて他の添加剤を加え
て賦形し、錠剤とする。本発明で規定した錠剤組成物を
フィルムコーチングしたり、糖衣掛けすることも自由で
ある。
Finely powdered cellulose and other additives are added as necessary to form the mixture into tablets. It is also free to film-coat or sugar-coat the tablet composition defined in the present invention.

実施例に先立ち、粉体および錠剤物性の測定法を説明す
る。
Prior to Examples, methods for measuring physical properties of powder and tablets will be explained.

〈平均粒径(μ、)> 柳本製作所製ロータツブ式篩撮盪機により、JiS標準
篩を用いて試料50Fを30分間篩別し、累積5([1
%の粒度を平均粒径とする。400メツシユパスが50
重量qbt−超えるときは、 400メツシユを通過し
た粉体について、高滓沈降式粒度分布測定装置(CP−
50)により粒度分布を求め、篩分により求めた400
メツシユ以上の留分の粒度分布と合わせた時の累積50
重鼠循の粒度を平均粒径とする。なお、平均粒径が小さ
くなると。
<Average particle size (μ,)> Sample 50F was sieved for 30 minutes using a JiS standard sieve using a rotary tube sieve shaker manufactured by Yanagimoto Seisakusho, and a cumulative particle size of 5 ([1
% particle size is taken as the average particle size. 400 mesh pass is 50
If the weight exceeds qbt, the powder that has passed through 400 meshes should be measured using a high slag sedimentation particle size distribution analyzer (CP-
Particle size distribution was determined by 50), and 400 was determined by sieving.
Cumulative 50 when combined with particle size distribution of fractions larger than mesh
Let the particle size of the heavy grain be the average particle size. Note that as the average particle size becomes smaller.

篩上で凝集し篩分が困難になるものがあるが、その場合
は、高滓沈降式粒度分布測定装置で充分側れるはど粒径
が小さくなっているので、篩分を行なわず、直接測定し
た。
Some particles agglomerate on the sieve, making it difficult to sieve, but in that case, the particle size is small enough to be detected by a high slag sedimentation particle size distribution analyzer, so it can be directly sieved without sieving. It was measured.

〈比表面積(Jy ) > 高滓製作所■製フローンープ2300t−用い。<Specific surface area (Jy)> Uses 2300t flow loop made by Takasugi Seisakusho ■.

吸着ガスとして窒素ガスを使用し、BET法により測定
した。
The measurement was carried out by the BET method using nitrogen gas as the adsorption gas.

〈錠剤硬度(kt) > フロイント産業■製シュロインガー硬度計で錠剤の径方
向に荷重を加え、破壊した時の荷重で表わす。繰り返し
数は10で、その平均値をとる。
<Tablet hardness (kt)> It is expressed as the load when a tablet is broken by applying a load in the radial direction using a Schroinger hardness tester manufactured by Freund Sangyo ■. The number of repetitions is 10, and the average value is taken.

〈含量均一性(%)〉 錠剤1個を精秤し、乳鉢中でよく粉砕する。粉砕物約5
0q1精秤し、10〇−容メスフラスコに入れる。0.
IN塩酸を約7〇−加えて密栓し、オートシェーカーで
1時間振盪する。061N塩酸を標線まで加えて、よく
混合する。分散液全0.2μ溝のメンブランフィルタ−
でp過後戸液ヲ15倍稀釈する。稀釈液の吸光度を高滓
製作所■製UV150−02型比色計を用いて、波長2
44μ■で測定する。予め作成しておいた検量線から、
錠剤中のツェナセチン量を求め、錠剤中に含まれるべき
理論量に対するツェナセチン含有*Xi(イ)を計算す
る、繰り返し数はlOで、その平均値(X)、変動係数
(CV)を計算する。
<Content uniformity (%)> Accurately weigh one tablet and thoroughly crush it in a mortar. Approximately 5 pieces of crushed material
Accurately weigh 0q1 and place it in a 100-volume volumetric flask. 0.
Add about 70ml of IN hydrochloric acid, seal, and shake for 1 hour in an auto shaker. Add 061N hydrochloric acid up to the marked line and mix well. Membrane filter with 0.2μ grooves for all dispersion liquids
Dilute the p-filtered solution 15 times. The absorbance of the diluted solution was measured at wavelength 2 using a UV150-02 colorimeter manufactured by Takashi Seisakusho.
Measure at 44μ■. From the calibration curve created in advance,
The amount of zenacetin in the tablet is determined, and the zenacetin content *Xi (a) relative to the theoretical amount that should be contained in the tablet is calculated.The number of repetitions is lO, and its average value (X) and coefficient of variation (CV) are calculated.

Aobsd−:ツェナセチン含量測定値Acalc、 
: 7エナセチン含量理論値又 なお、実施例、比較例で使用した試料は、以下のように
作成した。
Aobsd-: zenacetin content measurement value Acalc,
: 7 Theoretical value of enacetin content The samples used in the Examples and Comparative Examples were prepared as follows.

試料(2)、CB)、(C):市販DPバルブを細断し
、10係塩酸中で105℃、20分間加水分解して得ら
れた酸不溶解残渣をp過、洗浄、乾燥後、気流式粉砕機
の1種であるセイシン企業■製5TJ−200で粉砕し
、原料供給量を変えることによって、平均粒径の異なる
試料(4)、[F])、0を得た。
Sample (2), CB), (C): A commercially available DP bulb was cut into pieces and hydrolyzed in 10% hydrochloric acid at 105°C for 20 minutes. The acid-insoluble residue obtained was filtered, washed, and dried. Samples (4), [F]), and 0 having different average particle sizes were obtained by pulverizing with 5TJ-200 manufactured by Seishin Enterprise ■, which is a type of air flow pulverizer, and varying the amount of raw material supplied.

試料0):旭化成工業■製結晶セルロース、アビセル@
PH−MO6を試料(D)とした。
Sample 0): Crystalline cellulose manufactured by Asahi Kasei Corporation, Avicel@
PH-MO6 was used as sample (D).

試料[F]:旭化成工業■製結晶セルロース、アビセル
■PH−1011−試料■とした。
Sample [F]: Crystalline cellulose manufactured by Asahi Kasei Kogyo ■, Avicel ■PH-1011 - Sample ■.

試料p;旭化成工業■製結晶セルロース、アビセル■P
H−102i試料いとした。
Sample P: Crystalline cellulose manufactured by Asahi Kasei Corporation, Avicel P
This was designated as the H-102i sample.

試料口:試料■を分級し、微粉側を試料G)とした。Sample port: Sample (■) was classified, and the fine powder side was designated as sample (G).

試料■〜G)の粉体物性を第1表に示す。Table 1 shows the powder properties of samples (1) to (G).

第1表 (実施例) 実施例1 試料(2)、(B)、(Ot−各に30f、乳糖(rJ
MV社製。
Table 1 (Example) Example 1 Samples (2), (B), (Ot-30f each, lactose (rJ
Manufactured by MV.

100メツシユ)268.5ft−1,5を容S型ブレ
ンダーでlO0分間混し、局方ステアリン酸マグネシウ
ム〔太平化学■製)1.5fi加えて、さらに1分間混
合したものを、菊水製作所■製RT−89型ロータリー
打錠機で8■φ、12Rの杵を用いて1回転速度25 
rpmで打錠成形し、重量200岬の錠剤を得た。その
結果を第2表に示す、比較例1〜4 試料[F])、(E)、 (rl、 C)tl−各々実
施例1の方法に準じて打錠成形した。結果を第2表に示
す。また。
100 mesh) 268.5ft-1.5 was mixed for 100 minutes in an S-type blender, 1.5fi of pharmacopoeial magnesium stearate (manufactured by Taihei Kagaku ■) was added, and the mixture was further mixed for 1 minute. Using an RT-89 type rotary tablet press with an 8 φ, 12R punch, the rotation speed was 25.
It was compressed into tablets at rpm to obtain tablets weighing 200 capes. The results are shown in Table 2.Comparative Examples 1 to 4 Samples [F]), (E), (rl, C)tl- were each compressed into tablets according to the method of Example 1. The results are shown in Table 2. Also.

それぞれの処方で得られた錠剤の最高硬度を縦軸に、 
平均粒径を横軸にプロットした結果を第1図に示す。
The maximum hardness of the tablet obtained with each formulation is plotted on the vertical axis.
The results of plotting the average particle size on the horizontal axis are shown in FIG.

第2表 第2表から、比較例1〜4は、成形圧1.0ton/c
lIで錠剤は最高硬度を示し、成形圧1.5 ton/
ajではキャッピング傾向を示し、成形圧1.0 to
n/cdより低い硬度となった。これに対し、実施例1
の試料(至)、 (Bl、(Oの微粉セルロースは、成
形圧1.5ton/di以下の範囲では、成形圧が上が
るにしたがって錠剤硬度も上昇した。第1図から、比較
例3(平均粒径120μS)→比較例2(同45μw&
)→比較例4(同20μ1IK)と市販品およびその分
級品は平均粒径が小さくなっても、それほど錠剤最高硬
度は変化しない。しかし、実施例1は28μ諷→12μ
賜→5μ篤と平均粒径が小さくなると、錠剤最高硬度は
著しく高くなった。これはDMV100メツシュ乳糖の
表面に、試料(2)、(BJ。
Table 2 From Table 2, Comparative Examples 1 to 4 had a molding pressure of 1.0 ton/c.
The tablet shows maximum hardness at lI, and the molding pressure is 1.5 ton/
aj shows a capping tendency, molding pressure 1.0 to
The hardness was lower than n/cd. In contrast, Example 1
Samples (To), (Bl, (O) finely powdered cellulose had a tablet hardness that increased as the molding pressure increased in the range of 1.5 ton/di or less. From FIG. Particle size 120μS) → Comparative example 2 (particle size 45μW &
)→Comparative Example 4 (20 μl IK), commercial products, and classified products thereof do not change the maximum tablet hardness so much even if the average particle size becomes smaller. However, in Example 1, 28μ → 12μ
As the average particle diameter decreased from 5μ to 5μ, the maximum tablet hardness significantly increased. This was applied to sample (2), (BJ) on the surface of DMV100 mesh lactose.

(Oはよく付着し、成形性のほとんどない乳糖同志の接
触を少なくするためと考えられた。一方、市販品である
試料E)はほとんど付着しなかった。試料口)および試
料[F]と乳糖を混合した処方の走査型電子顕微鏡写真
を第2図および第3図に示すうじかし、試料0.0の結
果から、平均粒径が30声爲以下であっても、比表面積
が1.3 ff!1/を未満であると、錠剤硬度は、市
販品■と比較して同等または低かった。
(O adhered well and was thought to reduce contact between lactose, which has little moldability. On the other hand, Sample E, a commercially available product) hardly adhered. Figures 2 and 3 show scanning electron micrographs of a formulation prepared by mixing sample port) and sample [F] with lactose. From the results for sample 0.0, the average particle size was 30 or less. Even though the specific surface area is 1.3 ff! When it was less than 1/2, the tablet hardness was the same or lower than that of the commercial product ■.

実施例2 局方結晶アスコルビン酸〔武田薬品工業■製〕と試料口
)を、第3表に示す量で56容V型プレンダーで255
分間混し、さらにステアリン酸マグネシウム(Mg−8
t)e加えて5分間混合した後、実施例1に準じて、錠
剤型@250Mgで直接打錠した結果を第4表に示す。
Example 2 Pharmacopoeia crystalline ascorbic acid (manufactured by Takeda Pharmaceutical Co., Ltd.) and sample port) were mixed in a 56-volume V-type blender in the amounts shown in Table 3.
Mix for a minute and then add magnesium stearate (Mg-8
t) After adding e and mixing for 5 minutes, the results were directly compressed using a tablet mold @250Mg according to Example 1, and the results are shown in Table 4.

比較例5.6 試料■を用い、実施例2に準じて直接打錠した。Comparative example 5.6 Using sample ①, it was directly compressed into tablets according to Example 2.

配合量を@3表に、結果を第4表に示す。The blending amounts are shown in Table 3, and the results are shown in Table 4.

第3表 第4表 アスコルビン酸と市販結晶セルロースとの処方において
、アスコルビン酸含量が80重量置部時に、ようやく実
用硬度の錠剤ができたのに対し。
Table 3 Table 4 In the formulation of ascorbic acid and commercially available crystalline cellulose, tablets with practical hardness were finally produced when the ascorbic acid content was 80 parts by weight.

微粉セルロース、試料@)?、用いると、アスコルビン
酸含量が86重量幅の錠剤が直接打錠可能であった。な
お、市販品を用いてアスコルビンe含量86型量係の錠
剤の作成を試みたが、硬度が非常に低く、実用には供せ
ないものであった。
Micropowdered cellulose, sample @)? , tablets with an ascorbic acid content of 86 weight range could be directly compressed. An attempt was made to prepare a tablet with an ascorbine e content of 86 using a commercially available product, but the hardness was so low that it could not be put to practical use.

実施例3 局方ツェナセチン[山水化学■W] 350 f。Example 3 Pharmacopoeia Zenacetin [Sansui Chemical ■W] 350 f.

局方乳糖(DMV社製、200メツ−7ユ)79f、局
方コーンスターチ〔日澱比学■製150F、#JII維
素グリコール酸カルシウム〔ニチリン化学@製。
Pharmacopoeia lactose (manufactured by DMV, 200 Metsu-7 Yu) 79f, pharmacopoeia cornstarch [manufactured by Nippon Higaku ■ 150F, #JII fibrillar calcium glycolate [manufactured by Nichirin Kagaku@].

商品名ECG−505) 25 fをポリ袋で1分間混
合した後、品用製作所■製プラネタリーミキサー(5D
Mr ) K 移L、ヒドロキシプロピルセルロース−
L型〔日曹■製〕6係水溶液83fと水100F’(j
加えて混練した。得られた混線物を不二バウダル製フラ
ッシュミル(FL−200)で破砕造粒した。これを4
0℃で16時間乾燥し、続いて10メツシユの篩で整粒
し、顆粒を得た。以上の操作t−3回繰り返し、得られ
た顆粒を混合し、下記の粒度分布を持つツェナセチン顆
粒を得た。
After mixing 25 f (product name ECG-505) in a plastic bag for 1 minute, mix it with a planetary mixer (5D
Mr) K transfer L, hydroxypropylcellulose-
Type L [manufactured by Nisso ■] 6-layer aqueous solution 83f and water 100F' (j
It was added and kneaded. The obtained mixed material was crushed and granulated using a flash mill (FL-200, manufactured by Fuji Baudal). This is 4
The mixture was dried at 0° C. for 16 hours and then sieved through a 10-mesh sieve to obtain granules. The above operation was repeated t-3 times, and the obtained granules were mixed to obtain zenacetin granules having the following particle size distribution.

平均粒径は550μm、粗化容積は2.4 sg/rで
あった。
The average particle size was 550 μm, and the roughening volume was 2.4 sg/r.

ツェナセチン顆粒450f、試料■50f’k1.5を
容S型ブレンダーで100分間混し、さらにステアリン
酸マグネシウム1.5 f t−加えて1分間混合した
後、実施例IK準じて打錠した。得られた錠剤硬度の結
果を第5表に示す、″また。成形圧0、7 toシーで
打錠した錠剤中の7エナセテンの含有率と、その変動係
数〔Cv(%)〕t−第6表に示す。
Zenacetin granules 450f and sample 50f'k1.5 were mixed for 100 minutes in an S-type blender, 1.5 ft of magnesium stearate was added, mixed for 1 minute, and then tableted according to Example IK. The results of the obtained tablet hardness are shown in Table 5. Also, the content of 7-enacetene in the tablets compressed at a molding pressure of 0 and 7 to It is shown in Table 6.

比較例7 試料[F]を用いて、実施例3に準じて打錠した。Comparative example 7 Using sample [F], tablets were compressed according to Example 3.

錠剤硬度を第5表に、7エナセチン含有率とその変動係
数を第6表に示す。
Table 5 shows the tablet hardness, and Table 6 shows the 7enacetin content and its coefficient of variation.

第5表 第6表 錠剤最高硬度ti、実施例3が7.2kf、比較例7が
4.8陣を与え、湿式打錠後床法においても、試料の)
を用いると、試料りに比べて高い錠剤硬度が達成できた
。試料■では辛うじて実用硬度に到達しているが、試料
量)は充分な硬度を持っているため、成形圧を下げると
か、試料量を下げての打錠が可能となる。また1錠剤中
のツェナセチン含有率を調べると、実施例3のほうが変
動係数(CV)がかなり小さかった。このことは、従来
問題とされた市販結晶セルロースの分離偏析による錠剤
中の主薬の含量バラツキが、微粉セルロースを使用する
と大巾に低減できるということである。この効果は、第
2図および第3図で示したように、微粉セルロースは他
成分(こ、の場合は顆粒)の表面へ付着するためで、そ
のために、他成分との分離偏析は市販結晶セルロースよ
り大巾に低減できた。
Table 5 Table 6 Maximum tablet hardness ti, Example 3 gave 7.2 kf, Comparative Example 7 gave 4.8 kf, and even in the wet tableting bed method, the sample
Using this method, higher tablet hardness was achieved compared to the sample. Sample (2) has barely reached the practical hardness, but since the sample (amount of sample) has sufficient hardness, it is possible to compress the tablet by lowering the molding pressure or reducing the amount of sample. Furthermore, when the zenacetin content in one tablet was examined, the coefficient of variation (CV) of Example 3 was considerably smaller. This means that the conventional problem of variation in the content of the active ingredient in tablets due to separation and segregation of commercially available crystalline cellulose can be greatly reduced by using finely divided cellulose. This effect is due to the fact that finely divided cellulose adheres to the surface of other components (granules in this case), as shown in Figures 2 and 3. The reduction was significantly greater than that of cellulose.

(発明の効果) 本発明が提供する錠剤組成物は、従来の結晶セルロース
を含む錠剤組成物に比較して、キャッピングを起こし難
く、高い錠剤硬度を与えるものである。このことは、従
来より低いβ−1,4グルカン粉末の添加量で同等の硬
度を持つ錠剤が製造できることを示すものであり、高王
薬系の直接打錠や小型錠の製造を容易に行なうことがで
きる。
(Effects of the Invention) The tablet composition provided by the present invention is less likely to cause capping and provides higher tablet hardness than conventional tablet compositions containing crystalline cellulose. This shows that tablets with the same hardness can be manufactured with a lower amount of β-1,4 glucan powder added than conventional tablets, making it easier to directly compress Kooh Pharmaceutical products and manufacture small tablets. be able to.

例えば、市販の結晶セルロースを用いた直接打錠テハ、
アスコルビン酸含!t80重t%が限界であったが、本
発明の微粉セルロースを用いると、アスコルビン酸含量
86重置部の錠剤が製造できる。
For example, direct tableting using commercially available crystalline cellulose,
Contains ascorbic acid! Although the limit was 80% by weight, by using the finely divided cellulose of the present invention, tablets with an ascorbic acid content of 86 parts can be manufactured.

また、従来より低い成形圧で打錠しても同等の硬度を持
つ錠剤が製造可能であり、杵の消耗を減少させ、摩擦に
よる発熱に起因する生薬の失活を減少させることも可能
である。
In addition, it is possible to produce tablets with the same hardness even if the tablets are compressed using a lower compression pressure than conventional tablets, which reduces the wear and tear of punches and reduces the deactivation of crude drugs caused by heat generation due to friction. .

さらに、本発明が提供する錠剤組成物は、顆粒圧縮法に
おいて微粉セルロースを後末添加した場合には、従来の
結晶セルロースを後末添加した場合に問題となった顆粒
と結晶セルロースとの分離偏析を起こさず、したがって
、主薬の含量均一性の極めて優れた錠剤を製造すること
が可能である。
Furthermore, in the tablet composition provided by the present invention, when micronized cellulose is added as a final powder in the granule compression method, separation and segregation of granules and crystalline cellulose, which was a problem when conventional crystalline cellulose was added as a final powder, can be avoided. Therefore, it is possible to produce tablets with extremely high uniformity of the active ingredient content.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例1で得られた錠剤の最高硬度と平均粒
径の結果を示すグラフ、第2図は、試料CB)と乳mを
混合した処方の粒子構造を示す電子顕微鏡写真、第3図
は、試料[F]と乳糖を混合した処方の粒子構造を示す
電子顕微鏡写真である。
FIG. 1 is a graph showing the maximum hardness and average particle size of the tablets obtained in Example 1, and FIG. 2 is an electron micrograph showing the particle structure of a formulation prepared by mixing sample CB) and milk m. FIG. 3 is an electron micrograph showing the particle structure of a formulation containing sample [F] and lactose.

Claims (3)

【特許請求の範囲】[Claims] (1)平均粒径が大きくとも30μmであり、かつ比表
面積が1.3ml/g以上であるβ−1,4グルカン粉
末を含有することを特徴とする錠剤組成物。
(1) A tablet composition characterized by containing β-1,4 glucan powder having an average particle size of at most 30 μm and a specific surface area of 1.3 ml/g or more.
(2)β−1,4グルカン粉末の平均粒径が大きくとも
20μmである特許請求の範囲第1項記載の錠剤組成物
(2) The tablet composition according to claim 1, wherein the average particle size of the β-1,4 glucan powder is at most 20 μm.
(3)β−1,4グルカン粉末を2〜20重量パーセン
ト含有する特許請求の範囲第1項または第2項記載の錠
剤組成物。
(3) The tablet composition according to claim 1 or 2, which contains 2 to 20 weight percent of β-1,4 glucan powder.
JP9858687A 1987-04-23 1987-04-23 Tablet composition Granted JPS63267731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9858687A JPS63267731A (en) 1987-04-23 1987-04-23 Tablet composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9858687A JPS63267731A (en) 1987-04-23 1987-04-23 Tablet composition

Publications (2)

Publication Number Publication Date
JPS63267731A true JPS63267731A (en) 1988-11-04
JPH0538732B2 JPH0538732B2 (en) 1993-06-10

Family

ID=14223752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9858687A Granted JPS63267731A (en) 1987-04-23 1987-04-23 Tablet composition

Country Status (1)

Country Link
JP (1) JPS63267731A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5574150A (en) * 1993-01-05 1996-11-12 Asahi Kasei Kogyo Kabushiki Kaisha Excipient having high compactability and process for preparing same
WO2006115198A1 (en) 2005-04-22 2006-11-02 Asahi Kasei Chemicals Corporation Porous cellulose aggregate and molding composition thereof
WO2008078730A1 (en) 2006-12-26 2008-07-03 Translational Research, Ltd. Preparation for transnasal application
US7514552B2 (en) 2003-05-30 2009-04-07 Asahi Kasei Chemicals Corporation Cellulose powder
WO2009142255A1 (en) 2008-05-21 2009-11-26 旭化成ケミカルズ株式会社 Cellulose powder having excellent segregation preventive effect, and compositions thereof
US7638138B2 (en) 2003-02-21 2009-12-29 Translational Research, Ltd. Compositions for nasal administration of pharmaceuticals
JP2010031019A (en) * 2002-04-23 2010-02-12 Novartis Ag High drug load tablet
US7939101B2 (en) 2000-07-05 2011-05-10 Asahi Kasei Kabushiki Kaisha Cellulose powder
US8597686B2 (en) 2004-01-30 2013-12-03 Asahi Kasei Chemicals Corporation Porous cellulose aggregate and formed product composition comprising the same
US8673360B2 (en) 2004-08-10 2014-03-18 Shin Nippon Biomedical Laboratories, Ltd. Compositions that enable rapid-acting and highly absorptive intranasal administration
US8827946B2 (en) 2009-07-31 2014-09-09 Shin Nippon Biomedical Laboratories, Ltd. Intranasal granisetron and nasal applicator
USRE45404E1 (en) 2003-03-27 2015-03-03 Shin Nippon Biomedical Laboratories, Ltd. Powder medicine applicator for nasal cavity
US20150174255A1 (en) * 2010-06-29 2015-06-25 Asahi Kasei Chemicals Corporation Composite particles which contain both cellulose and inorganic compound
US9101539B2 (en) 2009-05-15 2015-08-11 Shin Nippon Biomedical Laboratories, Ltd. Intranasal pharmaceutical compositions with improved pharmacokinetics
WO2016024493A1 (en) * 2014-08-12 2016-02-18 旭化成ケミカルズ株式会社 Cellulose micropowder
US11744967B2 (en) 2017-09-26 2023-09-05 Shin Nippon Biomedical Laboratories, Ltd. Intranasal delivery devices

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5574150A (en) * 1993-01-05 1996-11-12 Asahi Kasei Kogyo Kabushiki Kaisha Excipient having high compactability and process for preparing same
US7939101B2 (en) 2000-07-05 2011-05-10 Asahi Kasei Kabushiki Kaisha Cellulose powder
US8221789B2 (en) 2000-07-05 2012-07-17 Asahi Kasei Chemicals Corporation Cellulose powder
JP2015143250A (en) * 2002-04-23 2015-08-06 ノバルティス アーゲー High drug load tablet
US9011911B2 (en) 2002-04-23 2015-04-21 Novartis Ag High drug load tablet
JP2013079271A (en) * 2002-04-23 2013-05-02 Novartis Ag High drug load tablet
JP2010031019A (en) * 2002-04-23 2010-02-12 Novartis Ag High drug load tablet
US9138410B2 (en) 2003-02-21 2015-09-22 Shin Nippon Biomedical Laboratories, Ltd. Compositions for nasal administration of pharmaceuticals
US7638138B2 (en) 2003-02-21 2009-12-29 Translational Research, Ltd. Compositions for nasal administration of pharmaceuticals
US8435554B2 (en) 2003-02-21 2013-05-07 Shin Nippon Biomedical Laboratories, Ltd. Compositons for nasal administration of pharmaceuticals
USRE45404E1 (en) 2003-03-27 2015-03-03 Shin Nippon Biomedical Laboratories, Ltd. Powder medicine applicator for nasal cavity
US7514552B2 (en) 2003-05-30 2009-04-07 Asahi Kasei Chemicals Corporation Cellulose powder
US8597686B2 (en) 2004-01-30 2013-12-03 Asahi Kasei Chemicals Corporation Porous cellulose aggregate and formed product composition comprising the same
US8673360B2 (en) 2004-08-10 2014-03-18 Shin Nippon Biomedical Laboratories, Ltd. Compositions that enable rapid-acting and highly absorptive intranasal administration
WO2006115198A1 (en) 2005-04-22 2006-11-02 Asahi Kasei Chemicals Corporation Porous cellulose aggregate and molding composition thereof
WO2008078730A1 (en) 2006-12-26 2008-07-03 Translational Research, Ltd. Preparation for transnasal application
US10195139B2 (en) 2006-12-26 2019-02-05 Shin Nippon Biomedical Laboratories, Ltd. Preparation for transnasal application
US8337817B2 (en) 2006-12-26 2012-12-25 Shin Nippon Biomedical Laboratories, Ltd. Preparation for transnasal application
WO2009142255A1 (en) 2008-05-21 2009-11-26 旭化成ケミカルズ株式会社 Cellulose powder having excellent segregation preventive effect, and compositions thereof
US9132195B2 (en) 2008-05-21 2015-09-15 Asahi Kasei Chemicals Corporation Cellulose powder having excellent segregation preventive effect, and compositions thereof
US9101539B2 (en) 2009-05-15 2015-08-11 Shin Nippon Biomedical Laboratories, Ltd. Intranasal pharmaceutical compositions with improved pharmacokinetics
US8827946B2 (en) 2009-07-31 2014-09-09 Shin Nippon Biomedical Laboratories, Ltd. Intranasal granisetron and nasal applicator
US20150174255A1 (en) * 2010-06-29 2015-06-25 Asahi Kasei Chemicals Corporation Composite particles which contain both cellulose and inorganic compound
US9446137B2 (en) * 2010-06-29 2016-09-20 Asahi Kasei Chemicals Corporation Composite particles which contain both cellulose and inorganic compound
WO2016024493A1 (en) * 2014-08-12 2016-02-18 旭化成ケミカルズ株式会社 Cellulose micropowder
US10016367B2 (en) 2014-08-12 2018-07-10 Asahi Kasei Kabushiki Kaisha Cellulose micropowder
JPWO2016024493A1 (en) * 2014-08-12 2017-04-27 旭化成株式会社 Fine cellulose powder
US11744967B2 (en) 2017-09-26 2023-09-05 Shin Nippon Biomedical Laboratories, Ltd. Intranasal delivery devices
US12102754B2 (en) 2017-09-26 2024-10-01 Shin Nippon Biomedical Laboratories, Ltd. Intranasal delivery devices

Also Published As

Publication number Publication date
JPH0538732B2 (en) 1993-06-10

Similar Documents

Publication Publication Date Title
JPS63267731A (en) Tablet composition
AU2001267860B2 (en) Cellulose powder
JP5513564B2 (en) Low substituted hydroxypropylcellulose powder and solid preparation
IE46720B1 (en) Excipients and their use
JP6706245B2 (en) Directly compressible composition containing microcrystalline cellulose
JP2994956B2 (en) Low-substituted hydroxypropylcellulose, composition thereof and tablet thereof
JP5324302B2 (en) High moldability, high fluidity, low substituted hydroxypropyl cellulose and solid preparation containing the same
JP3534130B2 (en) Pharmaceutical composition
JP5089287B2 (en) Method for producing low substituted hydroxypropylcellulose powder
EP1192942B1 (en) Base material for dry direct tableting comprising low-substituted hydroxypropyl cellulose
CN103110595B (en) Cefdinir dispersible tablet and preparation method thereof
US5985323A (en) Microcrystalline cellulose/alginate wet granulation excipient/binder
WO2008020990A1 (en) New direct compressible excipient blend
TWI498130B (en) Directly compressible high functionality granular microcrystalline cellulose based excipient, manufacturing process and use thereof
JP2518854B2 (en) Manufacturing method of solid formulation
US20230255907A1 (en) Tablet and method for manufacturing same
US7009046B2 (en) Low-substituted hydroxypropyl cellulose and agent serving both as binder and disintegrant for dry direct compression
JPH10305084A (en) Production of low substitution degree hydroxypropyl cellulose powder
CN112870176B (en) Levetiracetam tablet and preparation method thereof
US5547943A (en) Sucralfate preparation
JPS59193815A (en) Preparation of tablet
JPH0352823A (en) Solid agent
JPH01258625A (en) Production of chinese medicine extract tablet
JPH05229936A (en) Granular pharmaceutical for internal use
JPH11286456A (en) Composite powder composition and tablet

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term