JPS6326763B2 - - Google Patents

Info

Publication number
JPS6326763B2
JPS6326763B2 JP16237681A JP16237681A JPS6326763B2 JP S6326763 B2 JPS6326763 B2 JP S6326763B2 JP 16237681 A JP16237681 A JP 16237681A JP 16237681 A JP16237681 A JP 16237681A JP S6326763 B2 JPS6326763 B2 JP S6326763B2
Authority
JP
Japan
Prior art keywords
weight
monomer
parts
acid
latex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16237681A
Other languages
Japanese (ja)
Other versions
JPS5863713A (en
Inventor
Kazuo Kishida
Hiroshi Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP16237681A priority Critical patent/JPS5863713A/en
Priority to CA000412311A priority patent/CA1193036A/en
Priority to DE8282109304T priority patent/DE3276755D1/en
Priority to EP82109304A priority patent/EP0077038B2/en
Priority to US06/433,507 priority patent/US4487890A/en
Priority to KR8204554A priority patent/KR860000302B1/en
Publication of JPS5863713A publication Critical patent/JPS5863713A/en
Publication of JPS6326763B2 publication Critical patent/JPS6326763B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は優れた耐衝撃性を有する新芏な熱可塑
性暹脂に関する。 ABS暹脂、ハむむンパクトポリスチレンに代
衚される耐衝撃性暹脂は通垞ゎム成分にスチレ
ン、アクリロニトリル、メチルメタクリレヌトそ
の他の単量䜓をグラフト重合させお埗られるが、
グラフト共重合䜓の組成ず構造、ゎム含有量及び
重合方法等が最終組成物の物性に倧きな圱響を䞎
える。特に乳化重合法でゎム成分をグラフト重合
させる堎合、基䜓ずなるゎム成分の粒子埄が最終
組成物の耐衝撃性、加工性を支配するこずは広く
知られおいる事実であり、ゎム粒子埄が倧きくな
る皋埗られる暹脂の耐衝撃性、加工性が向䞊す
る。 そこでゎム粒子埄を可胜な限り倧きくさせる方
法が詊みられ、これたでに皮々の提案がなされお
いる。 本出願人も先にゞ゚ン系ゎムを䞍飜和酞モノマ
ヌずアルキルアクリレヌトからなる共重合䜓ラテ
ツクスにより肥倧化しお埗られる倧粒子埄ゎムラ
テツクスの存圚䞋にスチレン、アクリロニトリル
及びメチルメタクリレヌトの矀から遞ばれた少く
ずも䞀皮の単量䜓ず、これず共重合可胜なCH2
基を有する単量䜓ずからなる混合物を重合し
お埗られる耐衝撃性良奜な暹脂組成物に぀いお提
案したが、曎に詳现な怜蚎を行぀た結果ゎム粒子
埄の肥倧化が曎に効率よくか぀短時間で進行し、
か぀埗られた倧粒子埄ゎムをグラフト重合しお耐
衝撃性の曎に良奜な暹脂組成物が埗られるこずを
芋出し本発明を完成させたものである。 本発明は、(ã‚€)−ブタゞ゚ン100〜50重量
ず、これず共重合可胜なCH2基を有する
単量䜓〜50重量ずからなるPH以䞊のゎム(A)
ラテツクス100重量郚固圢分ずしおに察し、
(ロ)アクリル酞、メタクリル酞、むタコン酞及びク
ロトン酞の矀から遞ばれた少くずも䞀皮の䞍飜和
酞〜30重量、アルキル基の炭玠数が〜12の
少くずも䞀皮のアルキルアクリレヌト97〜35重量
およびその他の共重合可胜な単量䜓〜48重量
からなる単量䜓(b)のうち、たずその〜90重量
で䞔぀該䞍飜和酞を含たない郚分を重合させた
埌、該䞍飜和酞を含む単量䜓(b)の残郚95〜10重量
を重合させるこずにより埗られる酞基含有共重
合䜓(B)ラテツクス0.1〜重量郚固圢分ずしお
を添加しお埗られる少くずも0.2Όの粒子埄を有す
る肥倧化ゎムラテツクス〜70重量郚固圢分ず
しおの存圚䞋に、(ハ)スチレン、アクリロニトリ
ル及びメチルメタクリレヌトの矀から遞ばれた少
くずも䞀皮の単量䜓30重量以䞊ずこれず共重合
可胜なCH2基を有する単量䜓30重量以䞋
ずから成る単量䜓混合物93〜30重量郚を重合する
こずを特城ずする耐衝撃性の優れた熱可塑性暹脂
の補造方法である。 ゎム成分(A)は、1.3−ポリブタゞ゚ン、もしく
は1.3−ブタゞ゚ン50以䞊を含む共重合䜓で、
たずえば、ブタゞ゚ン−スチレン、ブタゞ゚ン−
ビニルトル゚ン共重合䜓などのようなブタゞ゚ン
−芳銙族ビニル化合物共重合䜓、ブタゞ゚ン−ア
クリロニトリル共重合䜓、ブタゞ゚ン−メタクリ
ロニトリル共重合䜓、ブタゞ゚ン−メチルアクリ
レヌト、ブタゞ゚ン−゚チルアクリレヌト、ブタ
ゞ゚ン−ブチルアクリレヌト、ブタゞ゚ン−−
゚チルヘキシルアクリレヌト共重合䜓などのよう
なブタゞ゚ン−アクリル酞゚ステル共重合䜓、ブ
タゞ゚ン−メチルメタクリレヌト、ブタゞ゚ン−
゚チルメタクリレヌト共重合䜓などのようなブタ
ゞ゚ン−メタクリル酞゚ステル共重合䜓などを含
み、曎にブタゞ゚ン50以䞊を含有する䞉元共重
合䜓も含む。これらは通垞公知の乳化重合によ぀
お容易に埗るこずができる。觊媒、乳化剀等は特
に制限なく、その粒子埄は0.04〜0.2Όのものであ
る。 次にアクリル酞、メタクリル酞、むタコン酞及
びクロトン酞を含む共重合䜓(B)は先のゎムラテツ
クスを肥倧化するために䜿甚される。 この共重合䜓(B)には、酞基含有単量䜓ずアクリ
レヌトを含むこずが䞍可欠の条件であり、アクリ
レヌトずしおは、アルキル基の炭玠数が〜12の
アルキルアクリレヌトの少くずも䞀皮が遞ばれ
る。 アクリレヌトの代りに、䟋えばメタクリレヌ
ト、スチレン、アクリロニトリル等の単量䜓を甚
いおも党く効果は芋られない。しかしながらアク
リレヌトの半量以䞋を他の単量䜓で眮換するこず
は可胜である。 前蚘酞基含有単量䜓ずしおは〜30重量が甚
いられるが、未満では肥倧化胜力が小さく、
又30を越えるず逆に肥倧化胜力が匷すぎお、
1Όを越える過倧な粒子を生成させる為に奜たし
くない。 たた酞基含有単量䜓の最適含量は、甚いるアク
リレヌトの芪氎性の床合によ぀お倉り、アクリレ
ヌトの芪氎性が高い堎合には、酞基含有単量䜓の
量が少ない領域で肥倧化の効果が生じる反面、酞
基含有単量䜓の量が倚くなるずラテツクスが砎壊
され、奜たしくなく、逆にアクリレヌトの芪氎性
が䜎い堎合には酞基含有単量䜓の量の䜎い領域で
は肥倧化の効果が少なく、酞基含有単量䜓の量が
ある皋床より倚くならないず効果がでおこない。
䟋えば芪氎性の高いアクリレヌトであるメチルア
クリレヌトや゚チルアクリレヌトの堎合には酞基
含有単量䜓の量が〜10の堎合に最適であるの
に察し、アルキル基の炭玠数が以䞊の疎氎性ア
ルキルアクリレヌトであるブチルアクリレヌトや
−゚チルヘキシルアクリレヌトの堎合は酞基含
有単量䜓の量が13〜20の堎合に最適ずなる。な
お芪氎性の高いアクリレヌトを甚いるず、酞基含
有単量䜓の量が〜10の堎合であ぀おも、系が
䞍安定になり易く、そのためにカレツト粗倧粒
子が生じ易いずいう難点があるのに察し、前蚘
のような疎氎性アクリレヌトを甚いれば、系が䞍
安定になるこずもなく、均䞀な肥倧化粒子が埗ら
れるこずが倚い。 酞基含有単量䜓もしくはこれに準ずる単量䜓ず
しおは、前蚘の他に、桂皮酞、無氎マレむン酞、
ブテントリカルボン酞等があるが、これらを甚い
た堎合、肥倧化胜力が小さいので実甚的でない。 本発明においお甚いられる酞基含有共重合䜓(B)
ラテツクスは、アクリル酞、メタクリル酞、むタ
コン酞及びクロトン酞の矀から遞ばれた少くずも
䞀皮の䞍飜和酞〜30重量、アルキル基の炭玠
数が〜12の少くずも䞀皮のアルキルアクリレヌ
ト97〜35重量およびその他の共重合可胜な単量
䜓〜48重量からなる単量䜓(b)のうち、たずそ
の〜90重量で䞔぀該䞍飜和酞を含たない郚分
を重合させた埌、該䞍飜和酞を含む単量䜓(b)の残
郚95〜10重量を新たな粒子を生成させるこずな
く匕続き重合させお埗られる局構造を有するラ
テツクスであるこずが必芁である。 この酞基含有重合䜓(B)ラテツクスは基䜓ゎム(A)
ラテツクスに添加されるが、この際無機電解質奜
たしくは無機塩、特に䞭性無機塩を添加するこず
により、基䜓ゎムの粒子埄は極めお効率的に、か
぀安定に肥倧化される。 酞基含有重合䜓(B)ラテツクスの添加量は基䜓ゎ
ム(A)100重量郚圓り0.1〜重量郚であり、特に奜
たしくは0.5〜重量郚である。 又、無機電解質を基䜓ゎム(A)100重量郚圓り
0.05〜重量郚、特に0.1〜重量郚加えるず基
䜓ゎムの肥倧化がより効率的に行われ、埗られる
倧粒子埄ゎムラテツクスの安定性も倧巟に向䞊す
る。 無機電解質ずしおはKClNaClNa2SO4等通
垞既知の無機塩が䜿甚できる。 又、この無機電解質は基䜓ゎムラテツクスの重
合時に予め添加しおおくこずも可胜であり、肥倧
化時に添加する堎合ず同等効果を有する。 本発明の肥倧化凊理を行う堎合、基䜓ゎム(A)ラ
テツクスのPHは以䞊に保぀おおくこずが必芁で
ある。PH倀が酞性偎にある堎合には、酞基含有共
重合䜓(B)ラテツクスを添加しおも肥倧化効率が䜎
く、本発明の目的ずする組成物を有利に補造する
こずはできない。 この基䜓ゎム(A)ラテツクスのPHを以䞊にする
のは、この基䜓ゎムの重合䞭に調節しおも良いし
又肥倧化凊理の前に別に行぀おも良い。 このようにしお肥倧化凊理を行぀たゎムラテツ
クス〜70重量郚の存圚䞋で、スチレン、アクリ
ロニトリル、メタクリル酞メチルを䞻䜓ずする単
量䜓を重合させるこずにより、目的の耐衝撃性暹
脂が埗られる。ゎムラテツクスにグラフトさせる
単量䜓ずしおは、スチレン単独、メチルメタクリ
レヌト単独のほか、スチレン−アクリロニトリル
単量䜓混合物、スチレン−アクリル酞゚ステル単
量䜓混合物、メチルメタクリレヌト−アクリロニ
トリル単量䜓混合物、メチルメタクリレヌト−ア
クリル酞゚ステル単量䜓混合物、アクリロニトリ
ル−アクリル酞゚ステル単量䜓混合物などがあ
り、曎にこれらの単量䜓を䞉皮以䞊混合した単量
䜓混合物を甚いるこずもできる。この乳化グラフ
ト重合に際しおは通垞公知の乳化剀および觊媒が
䜿甚され、その皮類及び添加量に぀いお特に制限
はない。 ゎム含有量が重量未満では耐衝撃性が䜎い
ため実甚的䟡倀はなく、又70重量を超えるず流
動性及び加工性が悪くなるので奜たしくない。奜
たしいゎムの含有量は10〜25重量である。 又、䞊蚘グラフト重合䜓にゎムを含たない暹脂
をブレンドするこずにより耐衝撃性の良奜な暹脂
組成物を埗るこずが出来る。この堎合には母䜓ず
なるグラフト重合物䞭のゎム含有量は、〜70重
量の範囲にはなくおも良いが、ブレンド埌の最
終含有量は〜70重量の範囲にあるこずが奜た
しい。この時に甚いられる、ゎムを含たない暹脂
ずしおは、ポリスチレン、ポリメチルメタクリレ
ヌト、AS暹脂、ポリ塩化ビニル、ポリカヌボネ
ヌト等があげられる。 肥倧化ゎムにグラフト重合させる堎合、グラフ
ト単量䜓は䞀床に加えおも良く、又分割添加を行
぀たり、連続添加を行぀たり、各単量䜓を個々に
段階的にグラフト重合させおも良い。 埗られたグラフト又はグラフト−ブレンド重合
物には公知の抗酞化剀、滑剀、着色剀、充填剀等
を加えるこずができる。 本発明の補造方法により埗られる組成物は埓来
公知の熱可塑性暹脂組成物ず比范しお次のような
利点を有しおいる。  ゎムの重合から最終組成物の重合たで䞀貫し
お連続的に補造するこずが可胜である。  特殊な装眮を必芁ずしない。  ゎム重合を短時間で行えるため、著しく生産
性が良い。  ゎムの肥倧化凊理の際に特定の分散剀、乳化
剀を必芁ずしないため、経枈的であり、最終組
成物の熱安定性が良奜である。  ゎムの肥倧化凊理埌およびグラフト重合埌の
過倧な凝塊コアギナラムの生成が極めお少
い。  通垞公知の肥倧化方法では埗るこずが極めお
難しい倧粒子埄0.4〜1Όのゎムが容易に埗
られるため、極めお高い衝撃匷床を有する組成
物が埗られる。 䞋蚘実斜䟋䞭「郚」及び「」は、それぞれ
「重量郚」及び「重量」を意味する。 実斜䟋  基䜓ゎム−の合成 1.3−ブタゞ゚ン 66郚 ブチルアクリレヌト 〃 スチレン 25〃 ゞむ゜プロピルベンれンヒドロ パヌオキシド 0.2郚 オレむン酞カリりム 1.0〃 ロゞン酞カリりム 1.0〃 ピロリン酞゜ヌダ 0.5〃 硫酞第䞀鉄 0.005〃 デキストロヌズ 0.3〃 æ°Ž 200〃 䞊蚘組成に埓぀お100オヌトクレヌブで50℃
で重合した。時間でほが重合は完了し、転化率
97、粒子埄0.08Όのゎムラテツクスが埗られた。 肥倧化甚酞基含有共重合䜓ラテツクス−
の合成 −ブチルアクリレヌト 25郚 オレむン酞カリりム 〃 ゞオクチルスルホコハク酞゜ヌダ 〃 クメンヒドロパヌオキシド 0.1〃 ナトリりムホルムアルデヒドスルホ キシレヌト 0.3〃 æ°Ž 200〃 䞊蚘組成の混合物を70℃で1.5時間重合させた
埌、匕続き70℃で −ブチルアクリレヌト 60郚 メタクリル酞 15〃 クメンヒドロパヌオキシド 0.3〃 からなる混合物を時間かけお滎䞋し、その埌
時間撹拌を続けお転化率98の共重合䜓ラテツク
スを埗た。 肥倧化ラテツクスの調敎 基䜓ゎムラテツクス−100郚固圢分
に−ラテツクス1.5郚固圢分を撹拌
しながら秒間で添加した。 このラテツクスを30分撹拌埌、盎ちにサンプリ
ングしたものず、その埌日間攟眮埌サンプリン
グしたものに぀き、電子顕埮鏡でその粒子埄を枬
定した結果を第衚に瀺す。 次に䞊蚘の30分撹拌しお埗られた肥倧化ラテツ
クスを甚いお、ただちに䞋蚘組成に埓぀おグラフ
ト重合を行い、グラフト重合物を合成した。 グラフト重合物−の合成 肥倧化ゎム固圢分 60郚 スチレン 21〃 メチルメタクリレヌト 19〃 クメンヒドロパヌオキシド 0.16〃 ナトリりムホルムアルデヒドスルホ キシレヌト 0.1〃 オレむン酞カリりム 1.0〃 æ°Ž 200〃 重合条件70℃時間 埗られた重合䜓ラテツクスに抗酞化剀ずしおブ
チル化ヒドロキシトル゚ン郚、ゞラりリルチオ
プロピオネヌト0.5郚を加え、硫酞氎溶液で
凝固し、掗浄、也燥しお癜色粉末をえた。 この粉末暹脂−10郚を重合床700のポ
リ塩化ビニルPVC100郚、ゞブチルスズマレ
ヌト3.0郚、ブチルステアレヌト1.0郚、ステアリ
ルアルコヌル0.3郚、ヘキストワツクスOP0.2郚を
加え、165℃のミキシングロヌルで混合し、次に
180℃−150Kgcm2で15分間加圧成圢したものの
Charpy Impactを枬定したずころ、第衚の結
果を埗た。 比范のため、䞋蚘組成の混合物を段階で重合
させお埗たラテツクス−を甚いた堎合に
぀いおも同様の評䟡を行぀た。 −ブチルアクリレヌト 85郚 メタクリル酞 15〃 オレむン酞カリりム 〃 ゞオクチルスルホコハク酞゜ヌダ 〃 クメンヒドロパヌオキシド 0.4〃 ナトリりムホルムアルデヒドスルホ キシレヌト 0.3〃 æ°Ž 200〃
The present invention relates to a new thermoplastic resin having excellent impact resistance. Impact-resistant resins such as ABS resin and high-impact polystyrene are usually obtained by graft polymerizing styrene, acrylonitrile, methyl methacrylate, and other monomers to rubber components.
The composition and structure of the graft copolymer, the rubber content, the polymerization method, etc. greatly influence the physical properties of the final composition. In particular, when graft polymerizing rubber components using emulsion polymerization, it is a widely known fact that the particle size of the base rubber component controls the impact resistance and processability of the final composition. The larger the size, the better the impact resistance and processability of the resulting resin. Therefore, attempts have been made to make the rubber particle size as large as possible, and various proposals have been made so far. The present applicant also previously swelled a diene rubber with a copolymer latex consisting of an unsaturated acid monomer and an alkyl acrylate in the presence of a large particle size rubber latex. Both are a type of monomer and CH 2 = which can be copolymerized with this monomer.
We proposed a resin composition with good impact resistance obtained by polymerizing a mixture consisting of a monomer having a C Proceeds in a short time,
The present invention was completed based on the discovery that a resin composition with even better impact resistance could be obtained by graft polymerizing the obtained large particle diameter rubber. The present invention is directed to (a) a rubber having a pH of 7 or higher (A )
For 100 parts by weight of latex (as solid content),
(b) 3 to 30% by weight of at least one unsaturated acid selected from the group of acrylic acid, methacrylic acid, itaconic acid and crotonic acid, and at least one alkyl acrylate whose alkyl group has 1 to 12 carbon atoms 97 Of the monomer (b) consisting of ~35% by weight and 0-48% by weight of other copolymerizable monomers, first polymerize the portion that is 5-90% by weight and does not contain the unsaturated acid. After that, 0.1 to 5 parts by weight (as solid content) of an acid group-containing copolymer (B) latex obtained by polymerizing the remaining 95 to 10% by weight of the monomer (b) containing the unsaturated acid.
(c) at least one selected from the group of styrene, acrylonitrile and methyl methacrylate in the presence of 7 to 70 parts by weight (as solids) of an enlarged rubber latex having a particle size of at least 0.2Ό obtained by adding It is characterized by polymerizing 93 to 30 parts by weight of a monomer mixture consisting of 30% by weight or more of one type of monomer and 30% by weight or less of a monomer having a CH 2 =C< group copolymerizable with the monomer. This is a method for producing a thermoplastic resin with excellent impact resistance. The rubber component (A) is 1.3-polybutadiene or a copolymer containing 50% or more of 1.3-butadiene,
For example, butadiene-styrene, butadiene-
Butadiene-aromatic vinyl compound copolymers such as vinyltoluene copolymers, butadiene-acrylonitrile copolymers, butadiene-methacrylonitrile copolymers, butadiene-methyl acrylate, butadiene-ethyl acrylate, butadiene-butyl acrylate, butadiene-2-
Butadiene-acrylic acid ester copolymers such as ethylhexyl acrylate copolymers, butadiene-methyl methacrylate, butadiene-
It includes butadiene-methacrylic acid ester copolymers such as ethyl methacrylate copolymers, and also terpolymers containing 50% or more of butadiene. These can be easily obtained by commonly known emulsion polymerization. There are no particular restrictions on the catalyst, emulsifier, etc., and the particle size thereof is 0.04 to 0.2Ό. A copolymer (B) containing acrylic acid, methacrylic acid, itaconic acid and crotonic acid is then used to thicken the rubber latex. It is essential that this copolymer (B) contains an acid group-containing monomer and an acrylate, and at least one type of alkyl acrylate whose alkyl group has 1 to 12 carbon atoms is selected as the acrylate. It can be done. Even if a monomer such as methacrylate, styrene, or acrylonitrile is used instead of acrylate, no effect is observed. However, it is possible to replace up to half of the acrylate with other monomers. The acid group-containing monomer is used in an amount of 3 to 30% by weight, but if it is less than 3%, the enlargement ability is small;
Also, if it exceeds 30%, the enlargement ability is too strong,
This is not preferable because it generates particles that are larger than 1Ό. In addition, the optimal content of the acid group-containing monomer varies depending on the degree of hydrophilicity of the acrylate used. If the acrylate has a high hydrophilicity, the enlargement effect will be reduced in the region where the amount of the acid group-containing monomer is small. On the other hand, if the amount of acid group-containing monomer increases, the latex will be destroyed, which is undesirable.On the other hand, if the hydrophilicity of acrylate is low, areas with a low amount of acid group-containing monomer will have the effect of thickening. is small, and the effect will not be seen unless the amount of the acid group-containing monomer exceeds a certain level.
For example, in the case of highly hydrophilic acrylates such as methyl acrylate and ethyl acrylate, it is optimal when the amount of acid group-containing monomer is 5 to 10%, whereas hydrophobic In the case of butyl acrylate and 2-ethylhexyl acrylate, which are alkyl acrylates, the optimum amount is 13 to 20% of the acid group-containing monomer. However, when a highly hydrophilic acrylate is used, even if the amount of acid group-containing monomer is 5 to 10%, the system tends to become unstable, which leads to the formation of cullets (coarse particles). On the other hand, when hydrophobic acrylates such as those described above are used, the system does not become unstable and uniform enlarged particles can often be obtained. In addition to the above, examples of acid group-containing monomers or similar monomers include cinnamic acid, maleic anhydride,
There are butenetricarboxylic acids and the like, but their use is not practical due to their low enlargement ability. Acid group-containing copolymer (B) used in the present invention
The latex contains 3 to 30% by weight of at least one unsaturated acid selected from the group of acrylic acid, methacrylic acid, itaconic acid and crotonic acid, and at least one alkyl acrylate whose alkyl group has 1 to 12 carbon atoms. Of the monomer (b) consisting of ~35% by weight and 0-48% by weight of other copolymerizable monomers, first polymerize the portion that is 5-90% by weight and does not contain the unsaturated acid. After that, the remaining 95 to 10% by weight of the monomer (b) containing the unsaturated acid must be continuously polymerized without forming new particles, resulting in a latex with a two-layer structure. . This acid group-containing polymer (B) latex is the base rubber (A).
By adding an inorganic electrolyte, preferably an inorganic salt, particularly a neutral inorganic salt, to the latex, the particle size of the base rubber can be enlarged very efficiently and stably. The amount of the acid group-containing polymer (B) latex added is 0.1 to 5 parts by weight, particularly preferably 0.5 to 3 parts by weight, per 100 parts by weight of the base rubber (A). In addition, the inorganic electrolyte is added per 100 parts by weight of the base rubber (A).
Addition of 0.05 to 4 parts by weight, particularly 0.1 to 1 part by weight, will increase the size of the base rubber more efficiently and will greatly improve the stability of the resulting large particle size rubber latex. As the inorganic electrolyte, commonly known inorganic salts such as KCl, NaCl, Na 2 SO 4 etc. can be used. Further, this inorganic electrolyte can be added in advance during polymerization of the base rubber latex, and has the same effect as when added during enlargement. When carrying out the enlargement treatment of the present invention, it is necessary to maintain the pH of the base rubber (A) latex at 7 or higher. When the PH value is on the acidic side, even if the acid group-containing copolymer (B) latex is added, the enlargement efficiency is low, and the composition targeted by the present invention cannot be advantageously produced. The pH of the base rubber (A) latex may be adjusted to 7 or higher during the polymerization of the base rubber, or may be adjusted separately before the enlargement treatment. In the presence of 7 to 70 parts by weight of the rubber latex that has been enlarged in this way, the desired impact-resistant resin can be obtained by polymerizing monomers mainly consisting of styrene, acrylonitrile, and methyl methacrylate. . Examples of monomers to be grafted onto the rubber latex include styrene alone, methyl methacrylate alone, styrene-acrylonitrile monomer mixture, styrene-acrylic acid ester monomer mixture, methyl methacrylate-acrylonitrile monomer mixture, and methyl methacrylate-acrylic. Examples include acid ester monomer mixtures, acrylonitrile-acrylic acid ester monomer mixtures, and monomer mixtures of three or more of these monomers. In this emulsion graft polymerization, commonly known emulsifiers and catalysts are used, and there are no particular restrictions on the type and amount added. If the rubber content is less than 7% by weight, the impact resistance is low and there is no practical value, and if it exceeds 70% by weight, fluidity and processability deteriorate, which is not preferable. The preferred rubber content is 10-25% by weight. Further, by blending a resin not containing rubber with the above graft polymer, a resin composition with good impact resistance can be obtained. In this case, the rubber content in the base graft polymer may not be in the range of 7 to 70% by weight, but the final content after blending may be in the range of 7 to 70% by weight. preferable. Examples of rubber-free resins used at this time include polystyrene, polymethyl methacrylate, AS resin, polyvinyl chloride, and polycarbonate. When graft polymerizing the enlarged rubber, the graft monomer may be added all at once, added in portions, added continuously, or each monomer may be graft polymerized individually in stages. Also good. Known antioxidants, lubricants, colorants, fillers, etc. can be added to the resulting graft or graft-blend polymer. The composition obtained by the production method of the present invention has the following advantages compared to conventionally known thermoplastic resin compositions. 1. It is possible to manufacture continuously from the polymerization of the rubber to the polymerization of the final composition. 2 No special equipment is required. 3. Rubber polymerization can be carried out in a short time, resulting in extremely high productivity. 4. Since no specific dispersant or emulsifier is required during rubber enlargement treatment, it is economical and the final composition has good thermal stability. 5. Very little formation of excessive coagulum (coagulum) after rubber enlargement treatment and graft polymerization. 6. Rubber with a large particle diameter (0.4 to 1 ÎŒm), which is extremely difficult to obtain using conventional enlargement methods, can be easily obtained, so a composition with extremely high impact strength can be obtained. In the following examples, "parts" and "%" mean "parts by weight" and "% by weight," respectively. Example 1 Synthesis of base rubber (A-1) 1.3-Butadiene 66 parts Butyl acrylate 9〃 Styrene 25〃 Diisopropylbenzene hydroperoxide 0.2 parts Potassium oleate 1.0〃 Potassium rosinate 1.0〃 Sodium pyrophosphate 0.5〃 Ferrous sulfate 0.005 〃 Dextrose 0.3〃 Water 200〃 According to the above composition, autoclave 100 at 50℃
Polymerized with Polymerization was almost completed in 9 hours, and the conversion rate was
A rubber latex with a particle size of 97% and a particle size of 0.08Ό was obtained. Acid group-containing copolymer latex for enlargement (B-1)
Synthesis of n-butyl acrylate 25 parts Potassium oleate 2〃 Sodium dioctyl sulfosuccinate 1〃 Cumene hydroperoxide 0.1〃 Sodium formaldehyde sulfoxylate 0.3〃 Water 200〃 After polymerizing the mixture of the above composition at 70°C for 1.5 hours, continue At 70°C, a mixture consisting of 60 parts of n-butyl acrylate, 15 parts of methacrylic acid, and 0.3 parts of cumene hydroperoxide was added dropwise over 1 hour, and then 1
Stirring was continued for hours to obtain a copolymer latex with a conversion rate of 98%. Adjustment of enlarged latex Base rubber latex (A-1) 100 parts (solid content)
1.5 parts (solid content) of latex (B-1) was added to the mixture over 5 seconds while stirring. Table 1 shows the results of measuring particle diameters using an electron microscope for samples taken immediately after stirring this latex for 30 minutes and for samples taken after being left for 5 days. Next, using the enlarged latex obtained by stirring for 30 minutes, graft polymerization was immediately carried out according to the following composition to synthesize a graft polymer. Synthesis of graft polymer (G-1) Enlarged rubber (solid content) 60 parts Styrene 21〃 Methyl methacrylate 19〃 Cumene hydroperoxide 0.16〃 Sodium formaldehyde sulfoxylate 0.1〃 Potassium oleate 1.0〃 Water 200〃 (Polymerization conditions 70 ℃4 hours) 2 parts of butylated hydroxytoluene and 0.5 parts of dilaurylthiopropionate were added as antioxidants to the obtained polymer latex, which was coagulated with a 5% aqueous sulfuric acid solution, washed, and dried to obtain a white powder. . To 10 parts of this powdered resin (G-1) were added 100 parts of polyvinyl chloride (PVC) with a degree of polymerization of 700, 3.0 parts of dibutyl tin malate, 1.0 parts of butyl stearate, 0.3 parts of stearyl alcohol, and 0.2 parts of Hoechstwax OP. , mixed on a mixing roll at 165℃, then
Pressure molded at 180℃-150Kg/ cm2 for 15 minutes
When Charpy Impact was measured, the results shown in Table 1 were obtained. For comparison, a similar evaluation was conducted using a latex (B-2) obtained by polymerizing a mixture having the following composition in one step. n-Butyl acrylate 85 parts Methacrylic acid 15 Potassium oleate 2 Sodium dioctyl sulfosuccinate 1 Cumene hydroperoxide 0.4 Sodium formaldehyde sulfoxylate 0.3 Water 200

【衚】 第衚より明らかな劂く肥倧化剀を局構造に
しおおくこずにより粒子埄の肥倧化がより効率的
におこり、えられた肥倧化ラテツクスの安定性も
よくなる。 又、グラフト重合䜓をPVCにブレンドした時
衝撃匷床の発珟性が良奜ずなるこずがわかる。 実斜䟋  肥倧化甚酞基含有共重合䜓ラテツクスずしお
段目がブチルアクリレヌト20郚、メチルメタクリ
レヌト郚からなり、段目がブチルアクリレヌ
ト60郚、メタクリル酞15郚からなるラテツクス
−を実斜䟋の−ず同様の凊方
で合成した。 これを甚いお皮々の合成ゎムを肥倧化しこれら
肥倧化ゎム20郚の存圚䞋で第衚䞭に瀺す単量䜓
をグラフト重合させたものの衝撃匷床を第衚に
瀺した。
[Table] As is clear from Table 1, by forming the enlargement agent into a two-layer structure, the particle size can be enlarged more efficiently, and the stability of the obtained enlarged latex can also be improved. Furthermore, it can be seen that when the graft polymer is blended with PVC, the development of impact strength becomes better. Example 2 1 as acid group-containing copolymer latex for enlargement
A latex (B-3) in which the first stage consisted of 20 parts of butyl acrylate and 5 parts of methyl methacrylate and the second stage consisted of 60 parts of butyl acrylate and 15 parts of methacrylic acid was prepared in the same manner as (B-1) in Example 1. Synthesized with. Table 2 shows the impact strength of various synthetic rubbers which were enlarged using this compound and the monomers shown in Table 2 were graft-polymerized in the presence of 20 parts of these enlarged rubbers.

【衚】【table】

Claims (1)

【特蚱請求の範囲】[Claims]  (ã‚€)−ブタゞ゚ン100〜50重量ずこれ
ず共重合可胜なCH2基を有する単量䜓〜
50重量ずからなるPH以䞊のゎム(A)ラテツクス
100重量郚固圢分ずしおに察し、(ロ)アクリル
酞、メタクリル酞、むタコン酞及びクロトン酞の
矀から遞ばれた少くずも䞀皮の䞍飜和酞〜30重
量、アルキル基の炭玠数が〜12の少くずも䞀
皮のアルキルアクリレヌト97〜35重量およびそ
の他の共重合可胜な単量䜓〜48重量からなる
単量䜓(b)のうち、たず、その〜90重量で䞔぀
該䞍飜和酞を含たない郚分を重合させた埌、該䞍
飜和酞を含む単量䜓(b)の残郚95〜10重量を重合
させるこずにより埗られる酞基含有共重合䜓(B)ラ
テツクス0.1〜重量郚固圢分ずしおを添加
しお埗られる少くずも0.2Όの粒子埄を有する肥倧
化ゎムラテツクス〜70重量郚固圢分ずしお
の存圚䞋に、(ハ)スチレンアクリロニトリル及びメ
チルメタクリレヌトの矀から遞ばれた少くずも䞀
皮の単量䜓30重量以䞊ずこれず共重合可胜な
CH2基を有する単量䜓30重量以䞋ずから
成る単量䜓混合物93〜30重量郚を重合するこずを
特城ずする耐衝撃性の優れた熱可塑性暹脂の補造
方法。
1 (a) 100 to 50% by weight of 1,3-butadiene and a monomer having a CH 2 =C< group that can be copolymerized therewith from 0 to
Rubber (A) latex with a pH of 7 or higher consisting of 50% by weight
3 to 30% by weight of at least one unsaturated acid selected from the group of (b) acrylic acid, methacrylic acid, itaconic acid, and crotonic acid, based on 100 parts by weight (as solid content), Of the monomer (b) consisting of 97 to 35% by weight of at least one kind of alkyl acrylate of 1 to 12 and 0 to 48% by weight of other copolymerizable monomers, first, 5 to 90% by weight of the monomer (b) is An acid group-containing copolymer (B) obtained by polymerizing the portion not containing the unsaturated acid and then polymerizing the remaining 95 to 10% by weight of the monomer (b) containing the unsaturated acid. 7 to 70 parts by weight (as solid content) of enlarged rubber latex with a particle size of at least 0.2 Ό obtained by adding 0.1 to 5 parts by weight (as solid content) of latex
(iii) copolymerizable with at least 30% by weight of at least one monomer selected from the group of styrene acrylonitrile and methyl methacrylate;
A method for producing a thermoplastic resin having excellent impact resistance, comprising polymerizing 93 to 30 parts by weight of a monomer mixture comprising 30% by weight or less of a monomer having a CH 2 =C< group.
JP16237681A 1981-10-09 1981-10-12 Thermoplastic resin having excellent impact strength Granted JPS5863713A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP16237681A JPS5863713A (en) 1981-10-12 1981-10-12 Thermoplastic resin having excellent impact strength
CA000412311A CA1193036A (en) 1981-10-09 1982-09-27 Process for producing impact resistant graft resins including an agglomerated rubber
DE8282109304T DE3276755D1 (en) 1981-10-09 1982-10-07 Process for producing impact resistant resins
EP82109304A EP0077038B2 (en) 1981-10-09 1982-10-07 Process for producing impact resistant resins
US06/433,507 US4487890A (en) 1981-10-09 1982-10-08 Process for producing impact resistant resins
KR8204554A KR860000302B1 (en) 1981-10-09 1982-10-08 Process for producing impact resistant resins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16237681A JPS5863713A (en) 1981-10-12 1981-10-12 Thermoplastic resin having excellent impact strength

Publications (2)

Publication Number Publication Date
JPS5863713A JPS5863713A (en) 1983-04-15
JPS6326763B2 true JPS6326763B2 (en) 1988-05-31

Family

ID=15753392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16237681A Granted JPS5863713A (en) 1981-10-09 1981-10-12 Thermoplastic resin having excellent impact strength

Country Status (1)

Country Link
JP (1) JPS5863713A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0870799A4 (en) * 1995-12-13 2000-05-24 Kanegafuchi Chemical Ind Rubber latex, graft copolymer, and thermoplastic resin composition

Also Published As

Publication number Publication date
JPS5863713A (en) 1983-04-15

Similar Documents

Publication Publication Date Title
US4487890A (en) Process for producing impact resistant resins
EP0143858B1 (en) Particle agglomeration in rubber latices
EP0160285B1 (en) Impact resistant thermoplastic resin composition
KR910008580B1 (en) Thermoplastic resin having excellent impact resistant and heat resistant
US4463131A (en) Bulk flowable impact modifiers
JPH0335048A (en) Impact-resistant thermoplastic resin composition
EP0146035B1 (en) Thermoplastic resin having excellent impact resistance and heat resistance
US5541256A (en) Process for preparing synthetic resin powder having improved blocking resistance
CA1167710A (en) Bulk flowable impact modifiers coated with hard nonelastomeric high molecular weight polymer
JP3607708B2 (en) Weather resistant resin composition and method for producing the same
EP1647558A1 (en) Process for preparing enlarged latex particles
JP3358885B2 (en) Rubber latex, graft copolymer and thermoplastic resin composition
JPS6326763B2 (en)
JPS6320245B2 (en)
JPH0436170B2 (en)
JPH0435487B2 (en)
JPH0525896B2 (en)
JPH0132842B2 (en)
JPH0218683B2 (en)
JP2670854B2 (en) Method for producing thermoplastic resin with excellent impact resistance, molding appearance and fluidity
KR100539373B1 (en) Thermoplastic resin for impact reinforcing with good powder property and preparing method of the same
JPH10310714A (en) Impact-resistant thermoplastic resin composition
JPS60118708A (en) Thermoplastic resin having excellent impact resistance and heat resistance
JPS59105012A (en) Production of thermoplastic resin of excellent impact resistance
JP2681692B2 (en) Method for producing rubber latex having particle size distribution of two or more dispersions