JPS63267105A - Cutting tool - Google Patents

Cutting tool

Info

Publication number
JPS63267105A
JPS63267105A JP9899887A JP9899887A JPS63267105A JP S63267105 A JPS63267105 A JP S63267105A JP 9899887 A JP9899887 A JP 9899887A JP 9899887 A JP9899887 A JP 9899887A JP S63267105 A JPS63267105 A JP S63267105A
Authority
JP
Japan
Prior art keywords
flank
cutting edge
wear
cutting
tool point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9899887A
Other languages
Japanese (ja)
Other versions
JPH0446682B2 (en
Inventor
Haruo Goto
後藤 治男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
O S G KK
OSG Mfg Co
Original Assignee
O S G KK
OSG Mfg Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by O S G KK, OSG Mfg Co filed Critical O S G KK
Priority to JP9899887A priority Critical patent/JPS63267105A/en
Publication of JPS63267105A publication Critical patent/JPS63267105A/en
Publication of JPH0446682B2 publication Critical patent/JPH0446682B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/005Geometry of the chip-forming or the clearance planes, e.g. tool angles

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PURPOSE:To maintain the extent of sharpness as long as possible and delay the timing of regrinding a tool point by successively lowering abrasive resistance in the material used so as to have a flank self-generated in order in proportion as going away from a near side to the tool point of the flank formed in succession to the tool point. CONSTITUTION:Since abrasion resistance in material forming the flank of a tool point 1 is lowered in proportion as going away from a cutting edge 2, if contact pressure with a ground surface 5 of a workpiece 3 in the flank becomes smaller successively from a nearer side to the cutting edge 2, wear precedes earlier than a nearer side to the tool point 1. Accordingly, with the cutting, a flank 4' with a clearance angle is autogenously generated in proportion to the wear. In case of high speed steel, decarburizable carbon potentional is adjustable by controlling a dew point of ambient gas, and heating for hardening is carried out in a weak decarburizing atmosphere, decarburizing the flank surface 4', and hardening-tempering hardness is lowered by a drop of carbon content on the surface, thus abrasion resistance is lowered.

Description

【発明の詳細な説明】 イ0発明の目的 イー1.産業上の利用分野 この発明は切れ味の持続性を改良した切削工具に関する
DETAILED DESCRIPTION OF THE INVENTION A.0 Objective of the Invention E.1. INDUSTRIAL APPLICATION FIELD This invention relates to a cutting tool with improved sharpness retention.

イー2.従来技術 従来から、切削工具には被削面との摩擦を防ぎ、切れ味
をよくするために、切れ刃の刃先に続いて形成された逃
げ面には逃げ角(6)が付与されている。 その状態を
第3図に示す。
E2. Prior Art Conventionally, cutting tools have been provided with a relief angle (6) on the relief surface formed next to the cutting edge of the cutting edge in order to prevent friction with the workpiece surface and improve sharpness. The state is shown in FIG.

イー3. 本発明が解決しようとする問題点切削工具は
使用によって刃先が摩耗鈍化する。
E3. Problems to be Solved by the Invention The cutting tool has a cutting edge that wears and becomes dull with use.

切削工具の逃げ面摩耗は刃先摩耗に続く形で進行し、逃
げ面摩耗部は第3図に示すように逃げ角と逆の傾きを持
ち、次第にその巾が大きくなっていく。 逃げ面摩耗を
生じると二番当りを起こし、切れ味が悪くなる。 逃げ
面摩耗部が大きくなるに従って被削材との摩耗熱の発生
が大きくなり、つ5いには刃先が赤熱し、軟化し、切削
不能となる。
Flank wear of a cutting tool progresses following the cutting edge wear, and the flank wear portion has an inclination opposite to the clearance angle, as shown in Figure 3, and its width gradually increases. When flank wear occurs, double contact occurs and cutting becomes dull. As the flank wear area increases, heat generated by friction with the workpiece increases, and eventually the cutting edge becomes red hot, softens, and becomes uncuttable.

この劣化した切れ味を回復させるためには、再研摩によ
って、刃付けをし直さなければならない。
In order to restore this deteriorated sharpness, the blade must be sharpened again by re-sharpening.

口0発明の構成 ロー1. 問題点を解決するための手段上記従来の問題
点を解決するため、この発明は、切れ刃の刃先に続いて
形成された逃げ面において、刃先に近い方か′ら遠ざか
るに従い順次逃げ面が自生されるように逃げ面を形成す
る材質の耐摩耗性を上記のように順次低下させたことを
特徴とするものである。
Constituent row of invention 01. Means for Solving the Problems In order to solve the above-mentioned conventional problems, the present invention provides a method in which, in the flank formed following the cutting edge of the cutting edge, the flank is formed in sequence from nearer to the cutting edge to further away from the cutting edge. This is characterized in that the wear resistance of the material forming the flank surface is gradually reduced as described above.

ロー20作 用 切削工具の逃げ面摩耗は切削された被削面と工具の逃げ
而が摩擦力に抗して切削速度による相対運動を行なうこ
とによって生ずるものであるが、逃げ面を形成する材質
の耐摩耗性を、刃先に近い方から遠ざかるに従い順次低
下させているため逃げ面における被削面との接触圧力が
刃先に近い方から遠ざかるに従い順次小さくなっても摩
耗は刃先に近い方よりも先行することになる。 その状
態を第2図にボす。
Flank wear of a low-20 action cutting tool is caused by relative movement between the cut work surface and the tool's relief due to the cutting speed against frictional force. Wear resistance is gradually decreased from near the cutting edge to further away from the cutting edge, so even if the contact pressure on the flank face with the workpiece decreases from near the cutting edge to further away from the cutting edge, wear will still occur earlier than on the side near the cutting edge. It turns out. The situation is shown in Figure 2.

従って、切削に伴う逃げ面摩耗の進行そのものが逃げ角
の付いた逃げ面を刃先の摩耗につれて自生していくこと
\なるのである。
Therefore, the progression of flank wear associated with cutting itself causes a flank face with a clearance angle to grow naturally as the cutting edge wears.

即ち、研削砥石には切り刃の自生機能があり、切削作業
中に切削刃と切屑空隙を間断なく自生し、研削性能を持
続するが、この研削砥石の持つ切り固自生機能を切削工
具に持たせようとするものである。
In other words, a grinding wheel has a self-sharpening function of the cutting edge, and during the cutting operation, the cutting blade and the chip space are self-synthesized without any interruption, sustaining the grinding performance. It is an attempt to

ロー3.実施例 刃部の材質が高速度鋼の場合、焼入加熱を弱脱炭性雰囲
気中で行ない、逃げ部表面に脱炭を生じさせる。 脱炭
性のカーボンポテンシャルは雰囲気ガスの露点を制御す
ることによって調製可能である。 表面がフェライト組
織となるような強脱炭性雰囲気は避ける。 高速度鋼表
面の炭素含有量の低下により、焼入焼戻硬さが低下し、
耐摩耗性が低下する。 その基礎実験データを第5図、
第6図に示す。
Row 3. Example When the material of the blade part is high-speed steel, quenching heating is performed in a weakly decarburizing atmosphere to cause decarburization on the surface of the relief part. The decarburizing carbon potential can be adjusted by controlling the dew point of the atmospheric gas. Avoid a strongly decarburizing atmosphere where the surface becomes a ferrite structure. Due to the decrease in carbon content on the surface of high-speed steel, the quenching and tempering hardness decreases,
Wear resistance decreases. Figure 5 shows the basic experimental data.
It is shown in FIG.

実施例の高速度鋼製ニック付きラフイングエンドミルを
第1図に示す。 鋼種は6−5−2形、焼入雰囲気はN
Zガスで露点は一6℃、加熱温度は1200℃、保持時
間10分、焼入冷却はN2ガスファン冷却、焼戻は56
0℃、保持時間60分、3回繰り返しとし、表面硬さH
v (0,3)  650、脱炭深さ0.32m1を得
た。
FIG. 1 shows a roughing end mill with nicks made of high speed steel as an example. The steel type is 6-5-2 type, and the quenching atmosphere is N.
Dew point is -6℃ using Z gas, heating temperature is 1200℃, holding time is 10 minutes, quenching cooling is N2 gas fan cooling, tempering is 56℃.
0℃, holding time 60 minutes, repeated 3 times, surface hardness H
v (0,3) 650 and a decarburization depth of 0.32 m1 was obtained.

尚、脱炭を生じさせる必要のない逃げ曲以外の部分は脱
炭防止剤を塗布して脱炭の防止をはかった。
Incidentally, a decarburization inhibitor was applied to the parts other than the relief curves where decarburization does not need to occur to prevent decarburization.

また、逃げ部の切れ刃からの距離と硬さ、即ち炭素含有
率との関係を漸減形にするために逃げ面の研削仕上量を
切れ刃に近い位置では大きく、切れ刃から遠ざかるに従
って次第に小さくなる様に焼入前の粗形状を考慮した。
In addition, in order to make the relationship between the distance from the cutting edge of the relief part and the hardness, that is, the carbon content, the amount of grinding of the flank surface is large near the cutting edge, and gradually decreases as the distance from the cutting edge increases. The rough shape before quenching was taken into consideration.

その結果、刃先硬さはllv (0,3)  850、
刃先から1.2mm後方の逃げ面硬さはllv (0,
3)  650となっ゛た。
As a result, the hardness of the cutting edge was llv (0,3) 850,
The hardness of the flank surface 1.2mm behind the cutting edge is llv (0,
3) It became 650.

別途表面硬さと、接触圧力と、摩耗量との関係を調べる
ための摩耗試験を行ない、第7図の結果を得た。 硬さ
をHv850とし650の2種類の試験片で比較した結
果、硬さにより摩耗量の差が約20%あり、かつ、接触
圧力30kg/cjまでは摩耗量は比例的に増加するこ
とがわかった。
Separately, a wear test was conducted to examine the relationship between surface hardness, contact pressure, and amount of wear, and the results shown in FIG. 7 were obtained. As a result of comparing two types of test pieces with hardness of Hv 850 and Hv 650, it was found that there is a difference of about 20% in the amount of wear depending on the hardness, and that the amount of wear increases proportionally up to a contact pressure of 30 kg/cj. Ta.

また、摩耗面を観察した結果40kg/aa以上では溶
融摩耗面となっており、従って通常の使用範囲は30 
kg / co!以下と判断できる。
In addition, as a result of observing the wear surface, it has become a melted wear surface at 40 kg/aa or more, so the normal usage range is 30 kg/aa or more.
kg/co! The following can be determined.

表面硬さを下げることによって接触圧力が低くても大き
な摩耗量が得られることがわかった。
It was found that by lowering the surface hardness, a large amount of wear could be obtained even at low contact pressure.

第8図に本実施例のニック付うフイングエンドミルの切
削性能を従来品と比較した試験結果を示す。
FIG. 8 shows test results comparing the cutting performance of the nicked wing end mill of this example with that of a conventional product.

切削長さに対応させて、切削トルクおよびエンドミル外
径減耗量を比較した結果、200On切削した辺りから
切削トルクの上昇が少なくなり、それに対応した形で外
径減耗量も上昇勾配が低下し始めていることが認められ
ている。
As a result of comparing the cutting torque and end mill outside diameter wear amount in response to the cutting length, the increase in cutting torque became less after cutting 200 On, and correspondingly, the increase slope of the outside diameter loss began to decrease. It is recognized that there are

尚、図中(1)は切れ刃、(2)は刃先、(3)は被削
材、(4)は逃げ面、(4”)は自生逃げ面、(5)は
被削面、(6)は逃げ角、(7)はすくい面、(8)は
切屑を示す。
In the figure, (1) is the cutting edge, (2) is the cutting edge, (3) is the work material, (4) is the flank surface, (4") is the natural flank surface, (5) is the machined surface, (6) ) indicates the clearance angle, (7) indicates the rake face, and (8) indicates the chip.

ハ1発明の効果 この発明に係る切削工具は使用に伴って逃げ面を自生す
る機能を持っているために切削工具に必要な切れ味を長
く持続することができ、刃先の再研摩の時期を遅くする
ことが可能である。 工具取換えのための時間的ロスを
減少し、また、自動機等の長時間無人運転を容易にする
など、著しい効果がある。
C1 Effects of the Invention The cutting tool of this invention has a function of self-generating a flank surface as it is used, so it can maintain the sharpness required for the cutting tool for a long time, and the time for re-sharpening of the cutting edge can be delayed. It is possible to do so. It has remarkable effects, such as reducing time loss due to tool replacement and facilitating long-term unattended operation of automatic machines.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施した工具を示すもので、(A)は
側面図、(B)は正面図、第2図は本発明の工具の刃先
の摩耗状態を示す側面図、第3図は刃先の摩耗がない状
態の側面図、第4図は従来工具の刃先摩耗状態を示す側
面図、第5図は高速度工具の炭素含有量と焼入焼戻硬さ
の関係、第6図は硬度と摩耗量の関係、第7図は接触圧
力と摩耗量の関係をそれぞれボす図、第8図は本実施例
のニック付きラフィングエンドミルの切削性能を従来品
と比較した試験結果をボす図である。 (1)・・・切れ刃 (2)・・・刃先 (4″)・・・自生逃げ面
Fig. 1 shows a tool in which the present invention is implemented, (A) is a side view, (B) is a front view, Fig. 2 is a side view showing the wear state of the cutting edge of the tool of the present invention, and Fig. 3 is a side view. Figure 4 is a side view showing the state of wear on the cutting edge of a conventional tool; Figure 5 is the relationship between carbon content and quenching and tempering hardness of a high-speed tool; Figure 6 Figure 7 shows the relationship between hardness and wear amount, Figure 7 shows the relationship between contact pressure and wear amount, and Figure 8 shows the test results comparing the cutting performance of the roughing end mill with nicks of this example with the conventional product. This is a diagram. (1)... Cutting edge (2)... Cutting edge (4'')... Natural flank

Claims (1)

【特許請求の範囲】[Claims] 切れ刃の刃先に続いて形成された逃げ面において、刃先
に近い方から遠ざかるに従い順次逃げ面が自生されるよ
うに逃げ面を形成する材質の耐摩耗性を上記のように順
次低下させたことを特徴とする切削工具。
The wear resistance of the material forming the flank surface is gradually reduced as described above so that the flank surface formed following the cutting edge of the cutting edge is formed sequentially from the side closest to the cutting edge to the side farther away from the cutting edge. A cutting tool featuring:
JP9899887A 1987-04-21 1987-04-21 Cutting tool Granted JPS63267105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9899887A JPS63267105A (en) 1987-04-21 1987-04-21 Cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9899887A JPS63267105A (en) 1987-04-21 1987-04-21 Cutting tool

Publications (2)

Publication Number Publication Date
JPS63267105A true JPS63267105A (en) 1988-11-04
JPH0446682B2 JPH0446682B2 (en) 1992-07-30

Family

ID=14234642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9899887A Granted JPS63267105A (en) 1987-04-21 1987-04-21 Cutting tool

Country Status (1)

Country Link
JP (1) JPS63267105A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007124726A1 (en) * 2006-05-02 2007-11-08 Leibniz Universität Hannover Tool geometry for a geometrically defined cutting edge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007124726A1 (en) * 2006-05-02 2007-11-08 Leibniz Universität Hannover Tool geometry for a geometrically defined cutting edge

Also Published As

Publication number Publication date
JPH0446682B2 (en) 1992-07-30

Similar Documents

Publication Publication Date Title
KR100323801B1 (en) Insert having variable width land
US4539875A (en) High-speed metal cutting method and self-sharpening tool constructions and arrangements implementing same
US5355921A (en) Process and apparatus for self sharpening a pellet lathe knife
CA1247350A (en) Method for extending the life of a cutting tool
Gavas et al. A NOVEL METHOD TO IMPROVE SURFACE QUALITY IN CYLINDRICAL GRINDING.
US3900975A (en) Cryogenic grinding of copper
US2645471A (en) Cutter bit
Opitz et al. Some recent research on the wear behaviour of carbide cutting tools
JPS63267105A (en) Cutting tool
Luo et al. Effects of diamond grain characteristics on sawblade wear
Nordström et al. Wear testing of saw teeth in timber cutting
CN101146638A (en) Structure of cutting tip and saw blade including the structure
US3951012A (en) Process for making a file and article resulting therefrom
CN112048657A (en) Impact-resistant wear-resistant cutting edge alloy, cutting edge part and application
US2581226A (en) Work rest blade
US4163402A (en) Method of machining workpieces after preheating
CN112658357A (en) Powder metallurgy die steel high efficiency milling cutter
De Oliveira et al. Grinding process dominance by means of the dressing operation
US3874953A (en) Method of hardening saws
Lal et al. On the attritious wear of abrasive grains
Hadad et al. Some Experimental Aspects of Grinding Soft Steel Under Different Machining Conditions
Digges Cutting Tests With Cemented-Tungsten-Carbide Lathe Tools
Pearce et al. Applications of continuous dressing in grinding operations
Navarro Influence of the abrasive grain on the surface integrity of high speed steel
KR20040050314A (en) Sword with originally material of upper surface blade and method therefore