JPS63266852A - Electronic device - Google Patents

Electronic device

Info

Publication number
JPS63266852A
JPS63266852A JP62099745A JP9974587A JPS63266852A JP S63266852 A JPS63266852 A JP S63266852A JP 62099745 A JP62099745 A JP 62099745A JP 9974587 A JP9974587 A JP 9974587A JP S63266852 A JPS63266852 A JP S63266852A
Authority
JP
Japan
Prior art keywords
superconducting
electric current
magnetic field
adjacent
superconducting wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62099745A
Other languages
Japanese (ja)
Inventor
Junji Shigeta
淳二 重田
Shinichiro Takatani
信一郎 高谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62099745A priority Critical patent/JPS63266852A/en
Publication of JPS63266852A publication Critical patent/JPS63266852A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To easily maintain a superconducting state even at a big current density by a method wherein, out of vector components of an electric current flowing through two adjacent wiring parts, the direction of a mutually parallel component is reversed so that an adverse effect by a magnetic field from an adjacent low-frequency or direct- current wiring part can be reduced. CONSTITUTION:Two superconducting wires 1, 2 mainly composed of barium, yttrium and copper oxide are arranged in parallel and to be adjacent to each other; a flowing direction of an electric current is reversed mutually. Even when a big electric current which is close to a critical electric current value flows through each superconducting wire in this case, a superconducting state is never broken. The big electric current which is close to the critical electric current value flows through the superconducting wire 1; the superconducting state is broken if even a small magnetic field is exerted; because the magnetic field caused by the superconducting wire 2 offsets the magnetic field caused by the superconducting wire 1, the magnetic field is not exerted on the superconducting wire 1 and the superconducting state is never broken. By this setup, it is possible to increase a density of the electric current flowing through the adjacent superconducting wires by a comparatively simple method; it becomes easy to design and manufacture an electronic device.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超電導材を電子素子間の配線材として用いた電
子装置、特に大電流密度の直流あるいは低周波電流を使
用する電子装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electronic device using a superconducting material as a wiring material between electronic elements, and particularly to an electronic device using a direct current or low frequency current of high current density.

〔従来の技術〕[Conventional technology]

従来の電子装置、例えば集積回路に用いられる配線は、
例えばrMO8LsI技術」日経マグロウヒル社(19
84年)第121頁に記載されているようにAQなとの
常伝導金属が用いられるのが通常であった。
The wiring used in traditional electronic devices, such as integrated circuits, is
For example, "rMO8LsI technology" Nikkei McGraw-Hill (19
As described on page 121 (1984), a normal conducting metal such as AQ was usually used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

□つOr 上記従来技術においては、低周波信号線或いは直流給電
線での隣接配線からの影響は考慮する必要はなかった。
□Or In the above-mentioned conventional technology, there is no need to consider the influence from adjacent wiring on the low frequency signal line or the DC power supply line.

しかし、配線材に超電導材を用いた場合、隣接する配線
からの磁界の影響により、とくに臨界に近い大電流密度
配線の場合は超電導状態が保ち難くなるという問題があ
る。
However, when a superconducting material is used as a wiring material, there is a problem in that it becomes difficult to maintain a superconducting state, especially in the case of wiring with a high current density close to criticality, due to the influence of magnetic fields from adjacent wirings.

本発明の目的は、隣接する低周波、或いは直流配線から
の磁界の影響を低減し、大電流密度においても超電導状
態を保ちやすくすることにある。
An object of the present invention is to reduce the influence of magnetic fields from adjacent low-frequency or DC wiring, and to facilitate maintaining a superconducting state even at high current density.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、隣接した2木の配線中を流れる電流の向き
を互に反対にすることで達成できる。すなわち、2本の
配線中を流れる電流のベクスル成分のうち、互に平行な
成分の向きを反対にすることで達成できる。
The above object can be achieved by reversing the directions of currents flowing through two adjacent wires. That is, this can be achieved by reversing the directions of the parallel components of the Vexal components of the current flowing through the two wires.

〔作用〕[Effect]

隣接する配線に流れる電流の向きが反対であれば電流に
より発生する磁界は互いに打ち消し合い、その結果磁界
の影響は少なくなり、超電導状態は破れ難くなる。
If the directions of the currents flowing through adjacent wires are opposite, the magnetic fields generated by the currents cancel each other out, and as a result, the influence of the magnetic fields is reduced, making it difficult to break the superconducting state.

〔実施例〕〔Example〕

以下実施例により本発明を説明する。 The present invention will be explained below with reference to Examples.

(実施例1)     、− 第1図に本発明の実施例を示す。バリウム、イツトリウ
ム、酸化鋼を主成分とする2本の超電導線1,2を隣接
して平行に配置し、電流の向き(図中矢印で示した)を
反射にする。この場合、各超電導線に、臨界電流値に近
い大電流を流しても、超電導状態が破れることはなかっ
た。超電導線1は臨界電流値に近い大電流が流れている
ので、少しでも磁場が加われば超電導状態が破られる状
態にあるが、超電導線2によって生じる磁場は超電導線
1によって生じる磁場と相殺するので、超電導線1には
磁場は印加されず、超電導状態が破れることはない。
(Example 1) - Fig. 1 shows an example of the present invention. Two superconducting wires 1 and 2 whose main components are barium, yttrium, and oxidized steel are arranged adjacent to each other in parallel, and the direction of the current (indicated by the arrow in the figure) is set to reflect. In this case, even when a large current close to the critical current value was passed through each superconducting wire, the superconducting state was not broken. Since a large current close to the critical current value is flowing through the superconducting wire 1, the superconducting state will be broken if even a small magnetic field is applied, but the magnetic field generated by the superconducting wire 2 cancels out the magnetic field generated by the superconducting wire 1. , no magnetic field is applied to the superconducting wire 1, and the superconducting state is not broken.

(実施例2) 第2図(a)、(b)に本発明の実施例2を示す。(Example 2) Embodiment 2 of the present invention is shown in FIGS. 2(a) and 2(b).

半導体素子の集積された半導体基板3上の超電導配線4
および5を隣接かつ平行に配置し、配線4および配線5
の低周波電流波形4′および5′の位相を第2図(b)
に示すように18o°ずらす。この場合、電流の向きは
同時に同一にならないので、実施例1の場合と同様超電
導状態が破れることはない。
Superconducting wiring 4 on a semiconductor substrate 3 on which semiconductor elements are integrated
and 5 are arranged adjacently and in parallel, and wiring 4 and wiring 5 are arranged adjacently and in parallel.
Figure 2(b) shows the phases of low frequency current waveforms 4' and 5'.
Shift it by 18o as shown. In this case, since the directions of the currents are not the same at the same time, the superconducting state is not broken as in the case of the first embodiment.

(実施例3) 実施例2の配線に、第3図に示す周期の一定でないパル
ス状電流4’、5’を印加する。この場合、電流の向き
は同時に同一にならないので、実施例1の場合を同様超
電導状態が破れることはない。
(Example 3) Pulse currents 4' and 5' having irregular cycles shown in FIG. 3 are applied to the wiring of Example 2. In this case, since the directions of the currents do not become the same at the same time, the superconducting state is not broken as in the case of the first embodiment.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、比較的簡単な方法で隣接した超電導線
に流れる電流の密度を増大させることができ、電子装置
の設計、製造が容易になるという利点がある。
According to the present invention, the density of current flowing through adjacent superconducting wires can be increased in a relatively simple manner, and there is an advantage that the design and manufacture of electronic devices are facilitated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1の超電導線の配置概略図、第
2図(a)は本発明の実施例2の半導体集積回路の概略
図、第2図(b)は低周波電流波形図、第3図はパルス
状電流波形図である。 1.2・・・超電導線、3・・・半導体基板、4、訃−
・超電導配線、4’ 、5’・・・低周波電流波形、4
’、5“・・・パルス状電流波形。
FIG. 1 is a schematic diagram of the arrangement of superconducting wires according to the first embodiment of the present invention, FIG. 2(a) is a schematic diagram of a semiconductor integrated circuit according to the second embodiment of the present invention, and FIG. 2(b) is a low-frequency current waveform. 3 are pulsed current waveform diagrams. 1.2...Superconducting wire, 3...Semiconductor substrate, 4. Death-
・Superconducting wiring, 4', 5'...Low frequency current waveform, 4
', 5''...Pulse current waveform.

Claims (1)

【特許請求の範囲】[Claims] 1、電子素子と、超電導材より成る前記電子素子間配線
を有し、かつ隣接する2本の前記配線を流れる電流の平
行成分の向きは反対であることを特徴とする電子装置。
1. An electronic device comprising an electronic element and an inter-electronic element wiring made of a superconducting material, wherein parallel components of current flowing through two adjacent wirings have opposite directions.
JP62099745A 1987-04-24 1987-04-24 Electronic device Pending JPS63266852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62099745A JPS63266852A (en) 1987-04-24 1987-04-24 Electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62099745A JPS63266852A (en) 1987-04-24 1987-04-24 Electronic device

Publications (1)

Publication Number Publication Date
JPS63266852A true JPS63266852A (en) 1988-11-02

Family

ID=14255547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62099745A Pending JPS63266852A (en) 1987-04-24 1987-04-24 Electronic device

Country Status (1)

Country Link
JP (1) JPS63266852A (en)

Similar Documents

Publication Publication Date Title
JP2971066B1 (en) Superconducting single flux quantum logic circuit
CA1145820A (en) Logic circuit with asymmetrical quantum interferometric circuits
JPS63266852A (en) Electronic device
JPH09213888A (en) Semiconductor integrated circuit chip
JPH07203686A (en) Method for lowering inductance of switching circuit
JP2009177040A (en) Wiring method of semiconductor switching element
JPS63266853A (en) Electronic device
JP2505821B2 (en) How to connect superconducting parts
JP3669891B2 (en) Superconducting single flux quantum circuit
JPS62165362A (en) Semiconductor integrated circuit device
JPH0199479A (en) Dc-ac converter
JPH10304651A (en) Equipment using high frequencies
JP2000040637A (en) Capacitor mounting structure for wiring board for power circuit
JP6210410B2 (en) Single flux quantum circuit and single flux quantum circuit operating method
JPS6146050A (en) Semiconductor integrated circuit device
JPH06275926A (en) High-frequency hybrid integrated circuit device
JPS61289724A (en) Interface circuit
JPH01100907A (en) Capacitor
JP2002184939A (en) Power module
JPH11191953A (en) Wiring structure of parallel circuit
JPS63228705A (en) High frequency transformer for power source circuit
JPH0231499A (en) Printed wiring board
JPS6334655B2 (en)
JPH064154A (en) Driving power supply for bridge circuit
JPH0215898B2 (en)