JPS63266338A - Piezoelectric vibrator - Google Patents

Piezoelectric vibrator

Info

Publication number
JPS63266338A
JPS63266338A JP10162587A JP10162587A JPS63266338A JP S63266338 A JPS63266338 A JP S63266338A JP 10162587 A JP10162587 A JP 10162587A JP 10162587 A JP10162587 A JP 10162587A JP S63266338 A JPS63266338 A JP S63266338A
Authority
JP
Japan
Prior art keywords
piezoelectric substrate
piezoelectric
vibrator
electrode
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10162587A
Other languages
Japanese (ja)
Inventor
Wataru Nakagawa
亘 中川
Masafumi Machida
町田 雅史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP10162587A priority Critical patent/JPS63266338A/en
Priority to GB8728115A priority patent/GB2200211B/en
Priority to US07/129,521 priority patent/US4961345A/en
Priority to DE19873741568 priority patent/DE3741568A1/en
Publication of JPS63266338A publication Critical patent/JPS63266338A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To prevent the variation of a resonance frequency of a vibrator, attended with thermal deformation due to a difference of a thermal expansion coefficient, by constituting the vibrator by joining a base body formed by a driving use piezoelectric substrate which has been fixed and held, and a piezoelectric substrate for fetching a vibration. CONSTITUTION:A piezoelectric substrate 1 and 2 consisting of the same material are laminated and joined, and a one-face peripheral edge part of the piezoelectric substrate 1 is fixed to a fixing part 23. An electrode 7 provided between the piezoelectric substrates 1, 2 is brought to an earth connection, and on the other face of the piezoelectric substrates 1, 2, electrodes 4, 16 are provided, respectively. In this state, when an AC voltage is applied between the electrodes 7, 4 by an amplifier 21, elastic force works in the radial direction and the piezoelectric substrate 1 vibrates in the vertical direction. On the other hand, an AC voltage generated in accordance with this vibration between the electrodes 7, 16 has a quality by which the phase leads by 90 deg. against an applied voltage to the piezoelectric substrate 1, by a mechanical resonance frequency determined by a piezoelectric vibrator consisting of the piezoelectric substrates 1, 2, and an additional mass of a medium brought into contact with said vibrator, therefore, when it is fed back to the piezoelectric substrate 1 through a positive feedback circuit 22, the piezoelectric vibrator is brought to a self-excited vibration by the resonance frequency.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、振動体の共振周波数を検出して該振動体に接
触している流体の密度または圧力を測定する振動式トラ
ンスジューサに好適に使用し得る圧電振動子に関する。
The present invention relates to a piezoelectric vibrator that can be suitably used in a vibrating transducer that detects the resonance frequency of a vibrating body and measures the density or pressure of a fluid in contact with the vibrating body.

【従来の技術】[Conventional technology]

° 上述のような振動式トランスジューサについて、本
件出願人は、既に、金属性基体の少なくとも一面倒に該
面に対向する空洞と該空洞に測定流体を導く筒体とを設
け、金属性基体を該基体に接着した圧電基板で駆動して
曲げ振動させるトランスジューサを提案している(特願
昭60−239228号参照)。
° Regarding the above-mentioned vibrating transducer, the applicant has already provided a cavity on at least one surface of the metallic substrate and a cylindrical body that guides the measurement fluid into the cavity, and A transducer has been proposed that is driven by a piezoelectric substrate bonded to a base to cause bending vibration (see Japanese Patent Application No. 60-239228).

【発明が解決しようとする問題点】[Problems to be solved by the invention]

このトランスジューサは、空洞および筒体の大きさと金
属性基体の弾性とを適宜設定することによって低密度流
体に対しても精度のよい測定が行える利点があるが、金
属性基体の駆動をこの基体に接着した圧電基板で行って
いるので、金属性基体と圧電基板との各熱膨張係数に差
があると温度変動に伴って金属性基体がそり返るという
現象が発生する。したがって上記のようなトランスジュ
ーサでは、金属性基体および圧電基板の再熱膨張係数を
一40℃〜+120℃というような広い温度範囲にわた
って一致させることは困難であるから、広い温度範囲で
使用すと大きい測定誤差が発生するという問題がある。 そこで、本発明は、上述の点に鑑みてなされ、広い使用
温度範囲にわたって測定誤差の小さい圧電極動子を提供
することを目的とする。
This transducer has the advantage of being able to measure accurately even low-density fluids by appropriately setting the sizes of the cavity and cylinder and the elasticity of the metal base. Since this is carried out using a bonded piezoelectric substrate, if there is a difference in the coefficient of thermal expansion between the metallic substrate and the piezoelectric substrate, a phenomenon occurs in which the metallic substrate warps due to temperature fluctuations. Therefore, in the above-mentioned transducer, it is difficult to match the rethermal expansion coefficients of the metal substrate and the piezoelectric substrate over a wide temperature range of -40°C to +120°C. There is a problem that measurement errors occur. Therefore, the present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide a piezo electrode mover with small measurement errors over a wide operating temperature range.

【問題点を解決するための手段】[Means to solve the problem]

このような目的を達成するために、本発明は、第1の圧
電基板と第2の圧電基板とを積層して接合し、第1の圧
電基板を固定保持し、第1の圧電基板を電気的に駆動す
ることによって、この積層した第1.第2の圧電基板に
屈曲振動を行わせることを特徴とする。 すなわち、第1図に本発明の原理構成を示すように、第
1の圧電基板1と第2の圧電基板2とが積層して接合さ
れ、第1の圧電基板1の片面周縁部が固定部23に固定
される。第1の圧電基板1と第2の圧電基板2との間に
は電極7が設けられ、この電極7はアース接続される。 第1の圧電基板1の他面には電極4が設けられ、また第
2の圧電基板2の他面には電極16が設けられる。 この場合、第1の圧電基板1は大径の円板(もしくは楕
円板)に形成されてその片面周縁部が固定部23に固定
され、第2の圧電基vi2は小径の円板に形成され、そ
して、第1の圧電基板1は電極7.4間に交流電圧を印
加すると、半径方向に伸縮するように構成されている。 なお、第1の圧電基板1の周縁部の固定は全周に亘って
行う必要はない。
In order to achieve such an object, the present invention laminates and joins a first piezoelectric substrate and a second piezoelectric substrate, fixes and holds the first piezoelectric substrate, and connects the first piezoelectric substrate with electricity. By driving the laminated first. It is characterized by causing the second piezoelectric substrate to undergo bending vibration. That is, as shown in FIG. 1 showing the principle structure of the present invention, a first piezoelectric substrate 1 and a second piezoelectric substrate 2 are laminated and bonded, and the peripheral edge of one side of the first piezoelectric substrate 1 is a fixed part. It is fixed at 23. An electrode 7 is provided between the first piezoelectric substrate 1 and the second piezoelectric substrate 2, and this electrode 7 is connected to ground. An electrode 4 is provided on the other surface of the first piezoelectric substrate 1, and an electrode 16 is provided on the other surface of the second piezoelectric substrate 2. In this case, the first piezoelectric substrate 1 is formed as a large-diameter disk (or elliptical plate), and the peripheral edge of one side thereof is fixed to the fixing part 23, and the second piezoelectric substrate vi2 is formed as a small-diameter disk. The first piezoelectric substrate 1 is configured to expand and contract in the radial direction when an alternating current voltage is applied between the electrodes 7.4. Note that it is not necessary to fix the peripheral edge of the first piezoelectric substrate 1 over the entire circumference.

【作 用】[For use]

しかして、増幅器21によって交流電圧を第1の圧電基
板1の電極7.4間に印加すると、半径方向に伸縮力が
働き、片面の周縁部が固定されているので、板厚及び伸
縮力に比例した曲げモーメントが固定部に生じ、圧電基
板1はその面に垂直な方向に振動する。。 一方、第2の圧電基板2にも分極処理を施しておくと、
電極7.16間にはこの振動に応じた交流電圧が発生す
る。この交流電圧は第1の圧電基板1および第2の圧電
基板2から成る圧電振動子とこの圧電振動子に接する媒
体の付加質量とで定まる機械的共振周波数にて第1の圧
電基板1への印加交流電圧に対し90@位相が進む性質
を有する。 それゆえこの位相を補償して第1の圧電基板1に正帰還
回路22を介して正帰還することにより、第1の圧電基
板1および第2の圧電基板2から成る圧電振動子はその
共振周波数で自動振動することになる。
When an AC voltage is applied between the electrodes 7.4 of the first piezoelectric substrate 1 by the amplifier 21, an elastic force acts in the radial direction, and since the peripheral edge of one side is fixed, the plate thickness and the elastic force are affected. A proportional bending moment is created in the fixed part and the piezoelectric substrate 1 vibrates in a direction perpendicular to its plane. . On the other hand, if the second piezoelectric substrate 2 is also subjected to polarization treatment,
An alternating current voltage corresponding to this vibration is generated between the electrodes 7 and 16. This AC voltage is applied to the first piezoelectric substrate 1 at a mechanical resonance frequency determined by the piezoelectric vibrator consisting of the first piezoelectric substrate 1 and the second piezoelectric substrate 2 and the additional mass of the medium in contact with the piezoelectric vibrator. It has a property that the phase advances by 90@ with respect to the applied AC voltage. Therefore, by compensating for this phase and providing positive feedback to the first piezoelectric substrate 1 via the positive feedback circuit 22, the piezoelectric vibrator consisting of the first piezoelectric substrate 1 and the second piezoelectric substrate 2 is adjusted to its resonant frequency. It will vibrate automatically.

【実施例】【Example】

次に本発明の実施例を図面に基づいて詳細に説明する。 第2図は本発明の一実施例の断面図、第3図は第2図の
A−A断面図、第4図は第2図の矢印B方向から示した
概略図である。 しかして、これらの図において、1は厚さ0.1ml1
1程度の圧電材料薄板から成る円板状の第1の圧電基板
であり、一方の面1aにはほぼ同心状に電極4が設けら
れている。第1の圧電基板1の他面1bには、特に第3
図から明らかなように、この第1の圧電基板1に設けら
れたスルーホール5を介して電極4に電気的に接続され
た電極15と、この電極15とは電気的に絶縁されかつ
第1の圧電基板1の他面1bのほぼ全面を覆う電極7と
が設けられている。 この電極7上には、厚さ0.1 mm程度の圧電材料薄
板から成る円板状の第2の圧電基板2が積層して接合さ
れている。この第2の圧電基板2の一面2aにはスルー
ホール8を介して前記電極6と接続した電極16がほぼ
同心状に設けられる。円環状スペーサ3は圧電基板2と
同一の材料にて厚さも等しく形成され、その−面3aに
はスルーホール9を介して電極6と接続された電極17
と、スルーホール10を介して電極15と接続された電
極18とが形成されている。また、この電極17.18
を除いた部分にはスルーホール11を介して電極7と接
続された電極19が設けられている。このようにして、
立体的に積層した第1の圧電基板1の面1aに設けた電
極4、第1の圧電基板1の他面1bに設けた電極7、お
よび、第2の圧電基板2の面2aに設けた電極16が円
環状スペーサ3の一面にそれぞれスルーホール5,10
,8,9.11を介して導出される。 12はこのように第1の圧電基板1、第2の圧電基板2
)スペーサ3で構成された圧電振動子である。このよう
な圧電振動子12を製作するには例えばセラミックスの
多層配線基板の製作技術を応用することが可能である。 すなわち、グリーンシート法により製作した薄膜から成
る第1の圧電基板1、第2の圧電基板2.スペーサ3の
各面1a。 lb、’la、3aにスクリーン印刷により電極パター
ンを形成し、所定形状に打抜いた後積層してセラミック
スの焼結と電極の焼付けを同時に行い、第1の圧電基板
1と第2の圧電基板2およびスペーサ3との機械的接合
と各電極間の電気的接合を同時に行う。このようにして
接合形成した振動子12の電極4と7、および6と7の
間にそれぞれ直流電界を加えていわゆる分極処理を施す
ことにより、第1の圧電基板1および第2の圧電基板2
は圧電性を有することになる。ただし、スペーサ3はそ
の上下面にスルーホール11を介して導通ずる電極7.
19があるので分極はされない。 第5図は第2図ないし第4図に示した圧電振動子を用い
て流体の密度もしくは圧力を測定する振動式トランスジ
ューサを構成した一例を示す。この第5図において、1
3はこの振動子12を保持するためのハウジングで、振
動子12を形成する圧電材料とほぼ熱膨張係数が等しい
Ni −Fe合会合材料らなる。このハウジング13は
その段差部13aでスペーサ3に設けた電極19とハン
ダ付けまたは導電性接着剤等の接合手段を用いて電気的
に接続されるとともに、振動子12を保持している。ハ
ウジング13には電極17および18に対応した開口2
3および24が設けられており、この電極17.18と
は絶縁されている。また、段差部13aの深さは振動子
12の厚さhよりも著干深くなっており、振動子12が
突出しない構造となっている。25および26は前記電
極17および18に接続したリード線である。27は底
部27aの外面に筒体28の一端が固定された容器で、
底部27aには筒体28の内部に連通ずる貫通孔27c
が設けられており、開口側の面27bがハウジング13
の端面と気密に接合され、振動子12の電極4との間に
わずかな空隙が残される。なお、この容器27ハウジン
グ13と同材料で形成されている。 この容器27と底部27aと圧電振動子12との間に形
成された空洞29と、筒体28内との媒質によって音響
振動系が構成されるが、空洞29の媒質のバネ定数を十
分大きくすることによって筒体28内の媒質の質量のみ
が振動子12の付加質量として作用するよう構成しであ
る。21は電極4 、15.18を介して交流電圧を第
1の圧電基板1に加える増幅器22は第2の圧電基板2
に発生した電圧を電極17,6.16を介して検出して
増幅器21に正帰環する帰環回路である。 第1の圧電基板1は前述のように電極7,4間に交流電
圧を印加すると半径方向に伸縮力が生じ、基板1の片面
周縁部が固定されているので、板厚及び伸縮力が比例し
た曲げモーメントが圧電基板1の固定部に加わり、その
面に垂直方向に振動する。一方、第2の圧電基板2も前
述のように分極処理を施しであるので、電極7.16間
にこの振動に応じた交流電圧が発生する。この交流電圧
は第1の圧電基板1および第2の圧電基板2からなる圧
電振動子12と筒体28内の媒質の付加質量で定まる機
械的共振周波数で、圧電基板2に印加した交流電圧に対
し90°位相が進む性質をもつので、この位相を補償し
て第2の圧電基板2に正帰環することにより、圧電振動
子12はその共振周波数で自助振動をすることになる。 それゆえ、この周波数を検出回路20にて計測すれば媒
質の付加1を量すなわち密度(または圧力)を計測でき
る。     ・この振動式トランスジューサにおいて
は、既に説明したように振動子を構成する第1の圧電基
板1を圧電基板2と同一材料にて構成しており、かつ、
同一条件で分極処理を施すので、第1の圧電基板1と第
2の圧電基板2との間の熱膨張率の差を広い温度範囲に
亘って無くすことができ、両者の熱膨張差に伴う、所謂
バイメタル状変形による振動子12の共振周波数の変化
を防止することができ、精度よく密度を計測することが
できる。また、この振動式トランスジューサにおいては
、圧電基板2に交流電圧を印加するための電極および圧
電基板1の振動を検出するための電極とリード線部をパ
ターン形成し、それぞれをスルーホールで接続すること
によって一つの平面上でかつ振動子12の固定部分とな
る周縁部分に引き出すようにしであるので、電気的に接
続することが容易でかつす−ド線の振動への影響が無(
なる。更に、第1の圧電基板1を駆動するので第2の圧
電基板の直径・板厚を小さくしても駆動力は低下せず、
外部加振で生じる変位量は軽量化となり小さくなる為、
測定誤差が小さくなり耐振性を向上できる。なお第2の
圧電基板2は第1の圧電基板1の変位を検出できるもの
ならどんな形状でも良い。また、以上の説明では、振動
子に接触している流体の密度または圧力を検出する振動
式トランスジューサに関するものであったが、この振動
子の応用は本実施例に限定されるものでなく、圧電振動
子を用いた形式の装置、たとえば積層型圧電アクチュエ
ータ、圧電ブザー、圧電スピーカ等にも適用できる。 【発明の効果] 以上に説明したように、本発明によれば、振動子を従来
のごとく金属性基体に駆動用圧電金属性基板を接合した
ものとは異なり、固定保持された駆動用の第1の圧電基
板で形成した基体と振動取出用の第2の圧電基板とを接
合して構成したので、駆動用の第1の圧電基板から成る
基体と振動取出用の第2の圧電基板との間の膨張差をほ
ぼ同一にすることができ、熱膨張率の差による熱変形に
伴う振動子の共振周波数の変化を防止できる。 また、本発明によれば、2層に積層した圧電基板の電極
とこの電極に電圧を印加するための電極およびこの電極
から電圧を取り出すためのリード電極とを両圧電基板に
形成したスルーホールを介して一方の圧電基板の一つの
平面上でかつ振動子の固定部となる周縁部に引き出すよ
うに構成したので、回路部との接続を従来のように直接
振動している部品からリード線によって引き出すのと異
なり、リード線の質量や共振等によって振動子の共振周
波数の変動がなくかつ製作コストも低減できる効果があ
る。 更に、第1の圧電基板を駆動するように構成したので第
2の圧電基板2の板厚・直径を小さくしても駆動力が低
下せず軽量化できる為、外部からの加振による変位が小
さくなり測定精度が向上する効果もある。
Next, embodiments of the present invention will be described in detail based on the drawings. 2 is a sectional view of one embodiment of the present invention, FIG. 3 is a sectional view taken along the line AA in FIG. 2, and FIG. 4 is a schematic view taken from the direction of arrow B in FIG. Therefore, in these figures, 1 has a thickness of 0.1 ml1
The first piezoelectric substrate is a disk-shaped first piezoelectric substrate made of a thin plate of piezoelectric material of about 1.0 mm, and electrodes 4 are provided substantially concentrically on one surface 1a. In particular, on the other surface 1b of the first piezoelectric substrate 1, a third
As is clear from the figure, the electrode 15 is electrically connected to the electrode 4 through the through hole 5 provided in the first piezoelectric substrate 1, and the electrode 15 is electrically insulated from the first piezoelectric substrate 1. An electrode 7 covering almost the entire surface of the other surface 1b of the piezoelectric substrate 1 is provided. On this electrode 7, a disk-shaped second piezoelectric substrate 2 made of a thin piezoelectric material plate with a thickness of about 0.1 mm is laminated and bonded. On one surface 2a of the second piezoelectric substrate 2, an electrode 16 connected to the electrode 6 through a through hole 8 is provided substantially concentrically. The annular spacer 3 is made of the same material and has the same thickness as the piezoelectric substrate 2, and has an electrode 17 connected to the electrode 6 via a through hole 9 on its negative side 3a.
and an electrode 18 connected to the electrode 15 via the through hole 10. Also, this electrode 17.18
An electrode 19 connected to the electrode 7 via a through hole 11 is provided in the area other than . In this way,
An electrode 4 provided on the surface 1a of the first piezoelectric substrate 1 stacked three-dimensionally, an electrode 7 provided on the other surface 1b of the first piezoelectric substrate 1, and an electrode provided on the surface 2a of the second piezoelectric substrate 2. The electrodes 16 are formed in through holes 5 and 10 on one side of the annular spacer 3, respectively.
, 8, 9.11. 12 is thus a first piezoelectric substrate 1, a second piezoelectric substrate 2
) This is a piezoelectric vibrator composed of spacers 3. To manufacture such a piezoelectric vibrator 12, it is possible to apply, for example, a technique for manufacturing a ceramic multilayer wiring board. That is, a first piezoelectric substrate 1, a second piezoelectric substrate 2, which is made of a thin film manufactured by a green sheet method. Each side 1a of the spacer 3. An electrode pattern is formed on lb, 'la, and 3a by screen printing, and after punching into a predetermined shape, they are laminated, and sintering of the ceramics and baking of the electrodes are performed simultaneously to form the first piezoelectric substrate 1 and the second piezoelectric substrate. 2 and spacer 3, and electrical connection between each electrode is performed simultaneously. By applying a DC electric field between the electrodes 4 and 7 and between the electrodes 6 and 7 of the vibrator 12 bonded in this way and performing a so-called polarization process, the first piezoelectric substrate 1 and the second piezoelectric substrate 2 are
has piezoelectricity. However, the spacer 3 has electrodes 7. connected to the upper and lower surfaces of the spacer 3 through through holes 11.
19, so it is not polarized. FIG. 5 shows an example of a vibrating transducer for measuring the density or pressure of a fluid using the piezoelectric vibrators shown in FIGS. 2 to 4. In this Figure 5, 1
Reference numeral 3 denotes a housing for holding the vibrator 12, which is made of a Ni--Fe aggregation material having approximately the same coefficient of thermal expansion as the piezoelectric material forming the vibrator 12. This housing 13 is electrically connected to an electrode 19 provided on the spacer 3 at its stepped portion 13a by soldering or using a bonding means such as a conductive adhesive, and also holds the vibrator 12. Housing 13 has openings 2 corresponding to electrodes 17 and 18.
3 and 24 are provided and are insulated from this electrode 17.18. Further, the depth of the stepped portion 13a is significantly deeper than the thickness h of the vibrator 12, so that the vibrator 12 does not protrude. 25 and 26 are lead wires connected to the electrodes 17 and 18. 27 is a container in which one end of a cylindrical body 28 is fixed to the outer surface of the bottom portion 27a;
The bottom portion 27a has a through hole 27c that communicates with the inside of the cylinder 28.
is provided, and the opening side surface 27b is connected to the housing 13.
is airtightly joined to the end face of the vibrator 12, leaving a slight gap between the electrode 4 of the vibrator 12 and the electrode 4 of the vibrator 12. Note that this container 27 is made of the same material as the housing 13. An acoustic vibration system is constituted by the cavity 29 formed between the container 27, the bottom 27a, and the piezoelectric vibrator 12, and the medium inside the cylinder 28, but the spring constant of the medium in the cavity 29 is made sufficiently large. As a result, only the mass of the medium within the cylindrical body 28 acts as an additional mass of the vibrator 12. 21 is the electrode 4; an amplifier 22 is the second piezoelectric substrate 2 which applies an AC voltage to the first piezoelectric substrate 1 through 15.18;
This is a return circuit that detects the voltage generated in the circuit through the electrodes 17, 6, 16, and returns the detected voltage to the amplifier 21. As described above, when an AC voltage is applied between the electrodes 7 and 4, the first piezoelectric substrate 1 generates a stretching force in the radial direction, and since the peripheral edge of one side of the substrate 1 is fixed, the plate thickness and the stretching force are proportional. This bending moment is applied to the fixed portion of the piezoelectric substrate 1, causing it to vibrate in a direction perpendicular to its surface. On the other hand, since the second piezoelectric substrate 2 has also been subjected to polarization treatment as described above, an alternating current voltage is generated between the electrodes 7 and 16 in accordance with this vibration. This AC voltage has a mechanical resonance frequency determined by the piezoelectric vibrator 12 consisting of the first piezoelectric substrate 1 and the second piezoelectric substrate 2 and the additional mass of the medium in the cylinder 28, and is applied to the AC voltage applied to the piezoelectric substrate 2. On the other hand, since the phase has the property of advancing by 90°, by compensating for this phase and returning positively to the second piezoelectric substrate 2, the piezoelectric vibrator 12 self-supports vibration at its resonant frequency. Therefore, by measuring this frequency with the detection circuit 20, the amount of addition 1 of the medium, that is, the density (or pressure) can be measured. - In this vibrating transducer, as already explained, the first piezoelectric substrate 1 constituting the vibrator is made of the same material as the piezoelectric substrate 2, and
Since the polarization treatment is performed under the same conditions, the difference in thermal expansion coefficient between the first piezoelectric substrate 1 and the second piezoelectric substrate 2 can be eliminated over a wide temperature range, and the difference in thermal expansion coefficient between the two can be eliminated. , it is possible to prevent a change in the resonance frequency of the vibrator 12 due to so-called bimetallic deformation, and it is possible to measure the density with high accuracy. In addition, in this vibrating transducer, the electrodes for applying an alternating voltage to the piezoelectric substrate 2 and the electrodes and lead wires for detecting the vibration of the piezoelectric substrate 1 are patterned and connected through through holes. Since the wire is drawn out on one plane and to the peripheral portion that is the fixed portion of the vibrator 12, it is easy to electrically connect and there is no influence on the vibration of the lead wire.
Become. Furthermore, since the first piezoelectric substrate 1 is driven, the driving force does not decrease even if the diameter and thickness of the second piezoelectric substrate are reduced.
Since the amount of displacement caused by external vibration becomes smaller due to the weight reduction,
Measurement errors are reduced and vibration resistance can be improved. Note that the second piezoelectric substrate 2 may have any shape as long as it can detect the displacement of the first piezoelectric substrate 1. Furthermore, although the above explanation has been about a vibrating transducer that detects the density or pressure of the fluid in contact with the vibrator, the application of this vibrator is not limited to this example, and is applicable to piezoelectric It can also be applied to devices using vibrators, such as laminated piezoelectric actuators, piezoelectric buzzers, piezoelectric speakers, etc. [Effects of the Invention] As explained above, according to the present invention, unlike the conventional case in which a piezoelectric metal substrate for driving is bonded to a metal base, the vibrator is attached to a fixedly held driving piezoelectric substrate. Since the base body formed of the first piezoelectric substrate and the second piezoelectric substrate for vibration extraction are bonded together, the base body formed of the first piezoelectric substrate for driving and the second piezoelectric substrate for vibration extraction are connected. The difference in expansion between them can be made almost the same, and it is possible to prevent changes in the resonant frequency of the vibrator due to thermal deformation due to a difference in coefficient of thermal expansion. Further, according to the present invention, a through-hole is formed in both piezoelectric substrates to connect the electrode of the piezoelectric substrate laminated in two layers, the electrode for applying voltage to this electrode, and the lead electrode for extracting voltage from this electrode. Since it is constructed so that it is drawn out on one plane of one of the piezoelectric substrates through the wire and to the periphery where the vibrator is fixed, the connection to the circuit section can be made without using lead wires from the directly vibrating parts as in the past. Unlike pulling out, there is no fluctuation in the resonant frequency of the vibrator due to the mass of the lead wire, resonance, etc., and the manufacturing cost can be reduced. Furthermore, since it is configured to drive the first piezoelectric substrate 2, the driving force does not decrease even if the thickness and diameter of the second piezoelectric substrate 2 are reduced, and the weight can be reduced, so that displacement due to external vibration is reduced. It also has the effect of becoming smaller and improving measurement accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理構成図、第2図は本発明の一実施
例の断面図、第3図は第2図のA−A断面図、第4図は
第2図の矢印B方向から示した概略図、第5図は第2図
ないし第4図に示した実施例を用いた振動式トランスジ
ューサの概略断面図である。 1 ・−・第1の圧電基板、2 ・−・第2の圧電基板
、4、 7.16−・電極。 第1図 12      t、  +a 第5図
Fig. 1 is a diagram showing the basic structure of the present invention, Fig. 2 is a cross-sectional view of an embodiment of the present invention, Fig. 3 is a cross-sectional view taken along line A-A in Fig. 2, and Fig. 4 is a direction of arrow B in Fig. 2. FIG. 5 is a schematic cross-sectional view of a vibrating transducer using the embodiment shown in FIGS. 2 to 4. 1.--First piezoelectric substrate, 2.--Second piezoelectric substrate, 4, 7.16-.Electrode. Fig. 1 12 t, +a Fig. 5

Claims (1)

【特許請求の範囲】 1)第1の圧電基板と第2の圧電基板とを積層して接合
し、前記第1の圧電基板を固定保持し、前記第1の圧電
基板を電気的に駆動することにより、この前記した第1
および第2の圧電基板に屈曲振動を行わせることを特徴
とする圧電振動子。 2)特許請求の範囲第1項に記載の圧電振動子において
、第1の圧電基板の片面周縁部を固定保持することを特
徴とする圧電振動子。
[Claims] 1) A first piezoelectric substrate and a second piezoelectric substrate are stacked and bonded, the first piezoelectric substrate is fixedly held, and the first piezoelectric substrate is electrically driven. By this, the above-mentioned first
and a piezoelectric vibrator characterized by causing a second piezoelectric substrate to perform bending vibration. 2) A piezoelectric vibrator according to claim 1, wherein a peripheral edge of one side of the first piezoelectric substrate is fixedly held.
JP10162587A 1986-12-08 1987-04-24 Piezoelectric vibrator Pending JPS63266338A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10162587A JPS63266338A (en) 1987-04-24 1987-04-24 Piezoelectric vibrator
GB8728115A GB2200211B (en) 1986-12-08 1987-12-01 Vibration-type transducer
US07/129,521 US4961345A (en) 1986-12-08 1987-12-07 Vibration type transducer
DE19873741568 DE3741568A1 (en) 1986-12-08 1987-12-08 DEVICE AND METHOD FOR DETECTING THE RESONANCE FREQUENCY OF AN VIBRATION ORGAN WHICH IS IN CONTACT WITH A FLUID

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10162587A JPS63266338A (en) 1987-04-24 1987-04-24 Piezoelectric vibrator

Publications (1)

Publication Number Publication Date
JPS63266338A true JPS63266338A (en) 1988-11-02

Family

ID=14305583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10162587A Pending JPS63266338A (en) 1986-12-08 1987-04-24 Piezoelectric vibrator

Country Status (1)

Country Link
JP (1) JPS63266338A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002047246A1 (en) * 2000-12-07 2002-06-13 Amersham Biosciences K.K. Chip quartz oscillator and liquid-phase sensor
CN105375900A (en) * 2014-08-19 2016-03-02 英诺晶片科技股份有限公司 Piezoelectric device and electronic device including the same
JP2016145762A (en) * 2015-02-09 2016-08-12 オリンパス株式会社 Gas sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002047246A1 (en) * 2000-12-07 2002-06-13 Amersham Biosciences K.K. Chip quartz oscillator and liquid-phase sensor
US7045931B2 (en) 2000-12-07 2006-05-16 Amersham Biosciences Kk Chip quartz oscillator and liquid-phase sensor
CN105375900A (en) * 2014-08-19 2016-03-02 英诺晶片科技股份有限公司 Piezoelectric device and electronic device including the same
JP2016046803A (en) * 2014-08-19 2016-04-04 イノチップ テクノロジー シーオー エルティディー Piezoelectric element and electronic apparatus comprising the same
JP2016145762A (en) * 2015-02-09 2016-08-12 オリンパス株式会社 Gas sensor

Similar Documents

Publication Publication Date Title
US4961345A (en) Vibration type transducer
KR101438301B1 (en) Acoustic sensor, acoustic transducer, microphone using the acoustic transducer, and method for producing acoustic transducer
US4836023A (en) Vibrational angular rate sensor
KR20130022083A (en) Ultrasonic transducer and method of manufacturing the sames
US7755253B2 (en) Piezoelectric element and shape of an elecrode thereof
JPH07169977A (en) Driving power sensor and manufacture of driving power sensor
JPS63266338A (en) Piezoelectric vibrator
WO2013002207A1 (en) Vibrating element and method for producing vibrating element
KR100765149B1 (en) Micro acoustic sensing apparatus and manufacturing thereof
JPH11271352A (en) Acceleration sensor element, acceleration sensor and their manufacture
JPH0521476B2 (en)
JPH0252599A (en) Ultrasonic transducer and its manufacture
JP3194234B2 (en) Piezoelectric ceramic rectangular plate, method of manufacturing the same, piezoelectric transformer using the piezoelectric ceramic, and oscillation circuit using the piezoelectric transformer
JP2004226294A (en) Static and dynamic pressure detection sensor
US20070062294A1 (en) Pressure sensor and method for manufacturing pressure sensor
JP2001025095A (en) Self-exciting microphone
JP4913467B2 (en) Potential sensor
JP5807226B2 (en) Vibration element and method for manufacturing vibration element
JPH0777552A (en) Method and apparatus for measuring piezo-electricity
JP2559708B2 (en) Piezoelectric vibrator
JPH08159706A (en) Interval sensor
JP4805787B2 (en) Piezoelectric / electrostrictive membrane sensor
JP2002188973A (en) Pressure sensor
JPH07227090A (en) Rodlike ultrasonic vibrator, rodlike ultrasonic motor and apparatus
JPS61280524A (en) Level detector