JPS63266323A - Magneto-optical measuring instrument - Google Patents

Magneto-optical measuring instrument

Info

Publication number
JPS63266323A
JPS63266323A JP10160687A JP10160687A JPS63266323A JP S63266323 A JPS63266323 A JP S63266323A JP 10160687 A JP10160687 A JP 10160687A JP 10160687 A JP10160687 A JP 10160687A JP S63266323 A JPS63266323 A JP S63266323A
Authority
JP
Japan
Prior art keywords
optical
component
light
temperature
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10160687A
Other languages
Japanese (ja)
Inventor
Yasuhito Ueda
上田 康仁
Kozo Yukanami
床並 孝三
Hideki Saito
秀樹 斎藤
Masao Otsuka
正雄 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP10160687A priority Critical patent/JPS63266323A/en
Publication of JPS63266323A publication Critical patent/JPS63266323A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To exactly measure the temp. at a current measurement point by using a Faraday element of which the optically rotatory power is changed by a temp. change as an optical sensor. CONSTITUTION:The light emitted from a light transmitter 1 having a light source consisting of a laser diode or light emitting diode passes an optical fiber 2, then a polarizer 3, the Faraday element 4 and an analyzer 5 and arrives at a light receiver 7 having a light receiving element such as photodiode or phototransistor by passing an optical fiber 6. A magnetic field and temp. are simultaneously measurable by separating the DC component and AC component of the output of the receiver 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、導体の電流又は磁界と温度とを同時に測定す
ることが可能な磁気光学測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magneto-optical measuring device capable of simultaneously measuring current or magnetic field and temperature of a conductor.

〔従来の技術〕[Conventional technology]

高圧で駆動される電動機、変圧器の高圧側巻線あるいは
配電線の柱上開閉器用接点の接触部等の温度上昇等を測
定することは、それらの機器の信。
Measuring the temperature rise of electric motors driven by high voltage, the high-voltage side winding of transformers, or the contact parts of pole-mounted switch contacts of power distribution lines is a test of the reliability of these devices.

頼性及び動作の正常、異常を診断するうえで不可欠であ
る。
This is essential for diagnosing whether reliability and operation are normal or abnormal.

従来においては、これらの機器の電流値を測定゛し、そ
の電流値の変動によって温度上昇を測定するという間接
的方法が採られている。
Conventionally, an indirect method has been adopted in which the current value of these devices is measured and the temperature rise is measured based on the fluctuation of the current value.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、開閉器の接点の場合のように電流値と温
度上昇とは、必ずしも相関があるとは限らない。したが
って、機器の動作が正常か否かを診断するためには、電
流だけでなく温度を直接測定する必要がある。しかし、
高圧大電流回路の温度測定、特に巻線内部などの温度は
、従来の熱電対等による測定では絶縁及びノイズの点で
正確な値を容易に測定できないという問題がある。
However, as in the case of a switch contact, there is not necessarily a correlation between the current value and the temperature rise. Therefore, in order to diagnose whether the device is operating normally, it is necessary to directly measure not only the current but also the temperature. but,
Temperature measurement of high-voltage, large-current circuits, particularly the temperature inside the windings, has the problem that accurate values cannot be easily measured using conventional thermocouples or the like due to insulation and noise issues.

本発明は、電流又は磁界を測定するだけでなく、絶縁及
び電磁誘導の影響を受けることなしに、正確に電流測定
点における温度も同時に測定でき、しかも温度測定のた
めの特別な設備及び測定器を設置せずに、簡便に電流又
は磁界と温度とを同時測定する装置を提供することを目
的とする。
The present invention not only measures the current or magnetic field, but also accurately measures the temperature at the current measurement point simultaneously without being influenced by insulation or electromagnetic induction, and requires special equipment and measuring equipment for temperature measurement. It is an object of the present invention to provide a device that can easily measure current or magnetic field and temperature simultaneously without installing a device.

〔問題点を解決するための手段〕[Means for solving problems]

この目的を達成するため、本発明は、光源、光センサ及
び光受信器を備え、前記光源からの光信号を光ファイバ
を伝送路として伝達する光学系において、前記光、セン
サとして、光の進行方向に沿って順に、偏光子、ファラ
デー素子及び検光子を配列したものを使用し、且つ前記
ファラデー素子として温度変化によって旋光性が変化す
る物質を使用するとともに該ファラデー素子の素子長を
、その旋光角が(π/4)±nπ(n=0.1.2.・
・・)のいずれかのnとなるように設定し、被測定対象
である交流磁界中に設置された前記光センサから受信し
た光信号の光パワー成分を前記光受信器により直流成分
と交流成分とに分離し、直流成分を温度成分、交流成分
の振幅を磁界に比例する量としてそれぞれ検出する構成
としたことを特徴とする。
To achieve this object, the present invention provides an optical system that includes a light source, a light sensor, and a light receiver, and transmits a light signal from the light source using an optical fiber as a transmission path. A polarizer, a Faraday element, and an analyzer are arranged in order along the direction, and the Faraday element is made of a material whose optical rotation changes with temperature changes, and the element length of the Faraday element is determined by its optical rotation. The angle is (π/4)±nπ(n=0.1.2.・
. The magnetic field is characterized by a configuration in which the direct current component is detected as a temperature component, and the amplitude of the alternating current component is detected as an amount proportional to the magnetic field.

〔作用〕[Effect]

本発明の磁気光学測定装置は、高電圧回路の耐電圧性を
確保することを目的に、電流/磁界検出部を光センサで
構成し、検出された電流又は磁界と温度情報とを光信号
に変換し、且つこれらの2つの信号を同一光ファイバで
低圧部へ伝送し、電気信号に変換した後に2つの情報を
分離する高電圧回路の測定装置である。
The magneto-optical measuring device of the present invention has a current/magnetic field detection section configured with an optical sensor, and converts the detected current or magnetic field and temperature information into an optical signal, in order to ensure voltage resistance of a high voltage circuit. This is a high-voltage circuit measurement device that converts the signals, transmits these two signals to the low-voltage part through the same optical fiber, and separates the two pieces of information after converting them into electrical signals.

第1図は本発明の基本原理を示す概略構成図である。レ
ーザーダイオード又は発光ダイオードからなる光源を有
する光送信器1から出た光は、光ファイバ2を通って、
偏光子3.ファラデー素子4、検光子5を通過した後、
光ファイバ6を通り、フォトダイオード又はフォトトラ
ンジスタ等の受光素子を有する光受信器7に達する。こ
のときの光受信器7に人力される光パワーは、 P = Po(L +cos2θ) ・・・・・・・・
・・・・・・・・(1)となる。ただし、偏光子3.検
光子5は平行ニコルの場合とする。ここで、θは偏光面
がファラデー素子4を通るときの回転角度である。
FIG. 1 is a schematic diagram showing the basic principle of the present invention. Light emitted from an optical transmitter 1 having a light source consisting of a laser diode or a light emitting diode passes through an optical fiber 2,
Polarizer 3. After passing through Faraday element 4 and analyzer 5,
The light passes through an optical fiber 6 and reaches an optical receiver 7 having a light receiving element such as a photodiode or a phototransistor. The optical power input to the optical receiver 7 at this time is: P = Po (L + cos2θ)
......(1). However, polarizer 3. The analyzer 5 is assumed to be a parallel Nicol analyzer. Here, θ is the rotation angle when the plane of polarization passes through the Faraday element 4.

この回転角θは、旋光角をθ1.外部磁界によるファラ
デー回転角をθ「とすると、 θ=θ、+θ、     ・・・・・・・・・・・・・
・・・(2)となる。ここで、常温付近での旋光角θ1
をθ、=(π/4)±nπ+にθ7 ・・・・・・・・
・・・・(3)となるようにファラデー素子長を調整す
る。ただし、koTは、温度(θT)による旋光角の変
化であり、kはファラデー素子によって決まる定数であ
る。例えば、B G O(Bi、2Ge 020)結晶
ではkは負となる。第5図に、BGO結晶の旋光角の温
度変化の一例を示している。この場合、左旋光角を正と
して表した。
This rotation angle θ is equal to the optical rotation angle θ1. If the Faraday rotation angle due to the external magnetic field is θ, then θ=θ, +θ, ・・・・・・・・・・・・・・・
...(2). Here, the optical rotation angle θ1 near room temperature
to θ, = (π/4)±nπ+ to θ7...
...Adjust the Faraday element length so that it becomes (3). However, koT is a change in the angle of optical rotation due to temperature (θT), and k is a constant determined by the Faraday element. For example, k is negative in B G O (Bi, 2Ge 020) crystal. FIG. 5 shows an example of a temperature change in the optical rotation angle of a BGO crystal. In this case, the left-handed optical rotation angle was expressed as positive.

一方、ファラデー回転角θ、は、 θ、=V、HL      ・・・・・・・・・・・・
・・・・(4)である。ただし、vrはベルデ定数、H
はコアのギャップ中の磁界、Lはファラデー素子長であ
る。
On the other hand, the Faraday rotation angle θ is as follows: θ, = V, HL ・・・・・・・・・・・・
...(4). However, vr is the Verdet constant, H
is the magnetic field in the core gap, and L is the Faraday element length.

(3)式、(4)式を(2)式に代入し、さらにこれら
を(1)式に代入すると、 π P = Pa (1+cos(=±20π+2にθ、 
+2V、HL) )= Pa (1+5in(2にθ、
 +2V、HL) )となる。ここで、2に0丁+2V
、HLが小さければ、P # po(1+2にθt+2
Vr)IL)   *t+e+++t++(5)となる
。この(5)式において、第2項が温度による成分、第
3項が磁界による変動成分である。
Substituting equations (3) and (4) into equation (2), and then substituting these into equation (1), we get π P = Pa (1+cos(=±20π+2, θ,
+2V, HL) )= Pa (1+5in(2 to θ,
+2V, HL) ). Here, 2 to 0 + 2V
, if HL is small, P # po(1+2 plus θt+2
Vr)IL) *t+e+++t++(5). In this equation (5), the second term is a component due to temperature, and the third term is a variation component due to magnetic field.

さて、磁界成分が交流であれば、温度成分と磁界成分が
分離でき、H= H,sinωtとなるので、(5)式
は、 P =、Pa(1+2にθy+2VrHoLsinωt
)  ・・・・−(6)となる。
Now, if the magnetic field component is AC, the temperature component and the magnetic field component can be separated and H = H, sinωt, so equation (5) is as follows: P =, Pa (1+2 to θy+2VrHoLsinωt
) ...-(6).

したがって、光検出部で電気信号に変換した後、直流分
と交流分とを分離することにより、磁界と温度とを同時
に測定できることになる。第2図にその様子を示す。磁
界は電流に比例するので、磁界を電流に換算することが
できる。第1図に示すように直流分は温度表示器8に表
示され、交流分は電流表示器9に表示される。
Therefore, by converting the signal into an electrical signal in the photodetector and separating the DC component and the AC component, the magnetic field and temperature can be measured simultaneously. Figure 2 shows the situation. Since the magnetic field is proportional to the current, the magnetic field can be converted into a current. As shown in FIG. 1, the DC component is displayed on a temperature display 8, and the AC component is displayed on a current display 9.

〔実施例〕〔Example〕

第1図の構成のものは、本発明の基本的構成であり、現
実には、光パワーの変動及び光回路、例えば接続損失の
変動などにより、そのたびに測定値を校正する必要があ
る。この対策を施すために第3図のような光学系の接続
を行う。この光学系においては、光送信器1によって発
生したパルスは、方向性結合器10.11によって光受
信器7側に戻り、光パルスが返ってくる(特開昭61 
=228626号公報参照)。
The configuration shown in FIG. 1 is the basic configuration of the present invention, and in reality, it is necessary to calibrate the measured value each time due to fluctuations in optical power and fluctuations in optical circuit, for example, connection loss. To take this measure, the optical system is connected as shown in FIG. In this optical system, the pulse generated by the optical transmitter 1 returns to the optical receiver 7 side by the directional coupler 10.11, and the optical pulse is returned (Japanese Patent Laid-Open No. 61
=Refer to Publication No. 228626).

この光パルスを光受信器7によって受信したとき、偏光
子3′、ファラデー素子4及び検光子5よりなる光セン
サ20の端面すなわち遅延線12が入っていない側の反
射パルスP+、センサ20を通過して返ってくる透過パ
ルスFT、さらに遅延線側のセンサ端面で反射するパル
スP2 の3つの光パルスが観測される。この場合、P
 o ” P r又はP2 の関係があるので、(6)
式より、 −Oc (1+2にθt+2VrHoLsinωt) 
  ・・・・・・(7)が得られ、Po の影響すなわ
ち光ファイバ及び発光パワーの変動の影響がなくなる。
When this optical pulse is received by the optical receiver 7, the reflected pulse P+ on the end face of the optical sensor 20 consisting of the polarizer 3', the Faraday element 4, and the analyzer 5, that is, the side where the delay line 12 is not included, passes through the sensor 20. Three optical pulses are observed: the transmitted pulse FT which is returned by the sensor, and the pulse P2 which is reflected by the sensor end face on the delay line side. In this case, P
o ” Since there is a relationship of P r or P2, (6)
From the formula, -Oc (θt+2VrHoLsinωt on 1+2)
(7) is obtained, and the influence of Po, that is, the influence of fluctuations in the optical fiber and the light emission power is eliminated.

このことを示すのが、第4図である。すなわち、第4図
(a)は光センサの温度変化に対する光信号の関係を示
しており、同図υは反射パルス及び透過パルスP。、P
I及びP2 の出力波形を示している。
FIG. 4 shows this. That is, FIG. 4(a) shows the relationship of the optical signal to the temperature change of the optical sensor, and υ in the figure shows the reflected pulse and the transmitted pulse P. , P
The output waveforms of I and P2 are shown.

なお、本発明に用いるファラデー素子としては、旋光性
に温度変化がある前述のBGO結晶のほか、B S 0
(Bi、、Si 02゜)結晶等を使用することができ
る。
In addition to the above-mentioned BGO crystal whose optical rotation changes with temperature, the Faraday element used in the present invention includes BSO
(Bi, Si 02°) crystal, etc. can be used.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明においては、温度変化に
よって旋光性が変化するファラデー素子を光センサに用
い、またファラデー素子長を前記の値に調整したものを
用いている。これにより、光パワーを直流成分と交流成
分とに分離して温度変化及び磁界の検出を行う。したが
って、高圧回路の電流を測定できるだけでなく、追加設
備を用いずに、温度情報を同一光ファイバにより測定で
きる電流、温度測定装置を提供することができる。
As explained above, in the present invention, a Faraday element whose optical rotation changes with temperature change is used as an optical sensor, and the Faraday element length is adjusted to the above-mentioned value. Thereby, optical power is separated into a DC component and an AC component, and temperature changes and magnetic fields are detected. Therefore, it is possible to provide a current and temperature measuring device that can not only measure the current of a high voltage circuit but also measure temperature information using the same optical fiber without using additional equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理を示すブロック図、第2図は動作
波形図、第3図は本発明の実施例のブロック図、第4図
は本実施例の動作波形図、第5図はBGO結晶の旋光角
の温度変化の一例を示すグラフである。 1:光送信器     2:光ファイバ3:偏光子  
    4:ファラデー素子5:検光子      6
:光ファイバ7:光受信器     8.9:温度表示
器10、11:方向性結合器  12:遅延線20:光
センサ 特許出願人  株式会社 安用電機製作所代  理  
人   小  堀   益 (ほか2名)第5図 温 度θT(’C) 第1図 笛 2 図 第 3 図 第 4 図
Fig. 1 is a block diagram showing the principle of the present invention, Fig. 2 is an operating waveform diagram, Fig. 3 is a block diagram of an embodiment of the invention, Fig. 4 is an operating waveform diagram of this embodiment, and Fig. 5 is an operating waveform diagram. It is a graph which shows an example of the temperature change of the optical rotation angle of a BGO crystal. 1: Optical transmitter 2: Optical fiber 3: Polarizer
4: Faraday element 5: Analyzer 6
: Optical fiber 7: Optical receiver 8.9: Temperature display 10, 11: Directional coupler 12: Delay line 20: Optical sensor Patent applicant Anyo Electric Manufacturing Co., Ltd. Agent
Person Masu Kobori (and 2 others) Figure 5 Temperature θT ('C) Figure 1 Whistle 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1、光源、光センサ及び光受信器を備え、前記光源から
の光信号を光ファイバを伝送路として伝達する光学系に
おいて、前記光センサとして、光の進行方向に沿って順
に、偏光子、ファラデー素子及び検光子を配列したもの
を使用し、且つ前記ファラデー素子として温度変化によ
って旋光性が変化する物質を使用するとともに該ファラ
デー素子の素子長を、その旋光角が(π/4)±nπ(
n=0、1、2、・・・)のいずれかのnとなるように
設定し、被測定対象である交流磁界中に設置された前記
光センサから受信した光信号の光パワー成分を前記光受
信器により直流成分と交流成分とに分離し、直流成分を
温度成分、交流成分の振幅を磁界に比例する量としてそ
れぞれ検出する構成としたことを特徴とする磁気光学測
定装置。
1. In an optical system that includes a light source, a light sensor, and a light receiver, and transmits an optical signal from the light source using an optical fiber as a transmission path, the light sensor includes a polarizer, a Faraday An array of elements and analyzers is used, and a material whose optical rotation changes with temperature changes is used as the Faraday element.
n = 0, 1, 2, ...), and the optical power component of the optical signal received from the optical sensor installed in the alternating current magnetic field that is the object to be measured is 1. A magneto-optical measurement device characterized by having a configuration in which an optical receiver separates a DC component and an AC component, and detects the DC component as a temperature component and the amplitude of the AC component as an amount proportional to a magnetic field.
JP10160687A 1987-04-23 1987-04-23 Magneto-optical measuring instrument Pending JPS63266323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10160687A JPS63266323A (en) 1987-04-23 1987-04-23 Magneto-optical measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10160687A JPS63266323A (en) 1987-04-23 1987-04-23 Magneto-optical measuring instrument

Publications (1)

Publication Number Publication Date
JPS63266323A true JPS63266323A (en) 1988-11-02

Family

ID=14305051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10160687A Pending JPS63266323A (en) 1987-04-23 1987-04-23 Magneto-optical measuring instrument

Country Status (1)

Country Link
JP (1) JPS63266323A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10210436A1 (en) * 2002-03-09 2003-10-02 Michael Licht Determining the concentration of an analyte comprises irradiating a sample with polarized light through a magnetic field and measuring reflected/scattered light absorption as a function of polarization angle
DE102007054309A1 (en) 2007-11-08 2009-05-14 Laser- und Medizin-Technologie GmbH, Berlin (LMTB) Highly dispersive matrix interaction length increasing method for determining concentration of e.g. blood, involves, involves detecting electromagnetic radiation, where amount of detected radiation is different from noise of detectors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10210436A1 (en) * 2002-03-09 2003-10-02 Michael Licht Determining the concentration of an analyte comprises irradiating a sample with polarized light through a magnetic field and measuring reflected/scattered light absorption as a function of polarization angle
DE102007054309A1 (en) 2007-11-08 2009-05-14 Laser- und Medizin-Technologie GmbH, Berlin (LMTB) Highly dispersive matrix interaction length increasing method for determining concentration of e.g. blood, involves, involves detecting electromagnetic radiation, where amount of detected radiation is different from noise of detectors

Similar Documents

Publication Publication Date Title
US6124706A (en) Electro-optic voltage sensor with Multiple Beam Splitting
US20210285987A1 (en) Reflective current and magnetic sensors based on optical sensing with integrated temperature sensing
US8922194B2 (en) Master-slave fiber optic current sensors for differential protection schemes
EP0156533A1 (en) Metering system for measuring parameters of high ac electric energy flowing in an electric conductor
US20110115469A1 (en) Optical fiber electric current sensor, electric current measurement method, and fault zone detection apparatus
JPS62297716A (en) Method and device for measuring magnitude of physical quantity
JPH0670651B2 (en) Method and device for measuring electric and magnetic quantities by light
WO2000040980A1 (en) Fiber optic difference current sensor
US4956607A (en) Method and apparatus for optically measuring electric current and/or magnetic field
US8773119B2 (en) System for fiber DC magneto-optic detection and method thereof
KR20180115828A (en) apparatus for measuring direct current using light
JPS613075A (en) Troubled section discrimination for transmission line
JPS63266323A (en) Magneto-optical measuring instrument
Leung et al. Fiber-optic current sensor developed for power system measurement
Ghosh et al. Development of a fiber-optic current sensor with range-changing facility using shunt configuration
JP2001033490A (en) Optical current transformer
CA2239722C (en) Electro-optic voltage sensor
KR100307639B1 (en) Current / temperature measurement optical sensor using multi-wavelength light source and its method
Kumagai et al. Interferometric fiber-optic electric current sensor for railway power systems
CA2401771C (en) Electro-optic voltage sensor
JPH073346Y2 (en) Zero-phase current measuring device
Woods et al. Electro-optic voltage sensor for sensing voltage in an E-field
KR20210096745A (en) shed Current sensor
Liu et al. Magneto-optic current tranducer
JPH01276074A (en) Optical demodulator