JPS63266175A - Method of restoring geothermal water to underground - Google Patents

Method of restoring geothermal water to underground

Info

Publication number
JPS63266175A
JPS63266175A JP9995687A JP9995687A JPS63266175A JP S63266175 A JPS63266175 A JP S63266175A JP 9995687 A JP9995687 A JP 9995687A JP 9995687 A JP9995687 A JP 9995687A JP S63266175 A JPS63266175 A JP S63266175A
Authority
JP
Japan
Prior art keywords
geothermal water
water
geothermal
silica
underground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9995687A
Other languages
Japanese (ja)
Other versions
JPH0635793B2 (en
Inventor
Sanae Kawazoe
川添 早苗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9995687A priority Critical patent/JPH0635793B2/en
Publication of JPS63266175A publication Critical patent/JPS63266175A/en
Publication of JPH0635793B2 publication Critical patent/JPH0635793B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To prevent reduction of the amount of generated steam, by a method wherein salt water is mixed in geothermal water released in the open air and brought into a saturated state under an atmospheric pressure to coagulate and separate a supersaturated inorganic compound, prepared resulting from reduction of solubility of an inorganic compound dissolved by geothermal water, for removal. CONSTITUTION:Gas liquid two-phase geothermal fluid injected from a production well 1 flows through a piping 2 to a gas liquid separator 3, and steam separated in the separator is fed through an inner cylinder 4 to a turbine, not shown, by means of a piping 5. Meanwhile, geothermal water separated by the gap liquid separator 3 flows to a silencer 7, and is released in the open air. The steam is diffused in the open air by means of the silencer 7, meanwhile, geothermal water is fed to a coagulating settling tank 11 with the aid of a pump 9, and is mixed and agitated with salt water fed from a salt water storage tank 12 with the aid of a pump 14. The mixing and agitation causes coagulation and settling of a supersaturated inorganic compound, especially silica, in geothermal water to densely settle the inorganic compound on a bottom. Geothermal water, freed from silica, is restored through a restoration well 22 to the underground by means of a solid liquid filter 20.

Description

【発明の詳細な説明】 産業上の利用分骨 本発明は、地熱流体を利用して発電する地熱発電プラン
トに適用される地熱水の地下還元法に関する。また、発
電プラントに限らず、地熱水、温泉水等無機化合物を多
量に溶解した水にも適用できる。
DETAILED DESCRIPTION OF THE INVENTION Industrial Application The present invention relates to a method for reducing underground geothermal water, which is applied to a geothermal power plant that generates electricity using geothermal fluid. In addition, it can be applied not only to power plants but also to geothermal water, hot spring water, and other water in which a large amount of inorganic compounds are dissolved.

従来の技術 従来の地熱発電プラントにおいて、気液二相流体として
生産井から噴出した地熱流体から蒸気を発生させた後に
残った多量の地熱水は、河川や海に放流されている。し
かし、地熱水中に多量に含まれている食塩や微量の重金
属類による環境汚染の恐れがあり、従来のような放流は
困難になっている。
BACKGROUND OF THE INVENTION In conventional geothermal power plants, a large amount of geothermal water remaining after steam is generated from geothermal fluid ejected from a production well as a gas-liquid two-phase fluid is discharged into rivers or the ocean. However, there is a risk of environmental pollution due to the large amounts of salt and trace amounts of heavy metals contained in geothermal water, making it difficult to release water as usual.

このため、地熱水を地下に還元する方法が一般的になり
つつあるが、一般には地熱水中冗数百ないし数千ppm
含まれるシリカが析出して付層するために還元井の容量
が減衰し、ついには閉塞する等の問題が発生していた。
For this reason, methods of returning geothermal water underground are becoming common, but in general, geothermal water contains hundreds to thousands of ppm.
The contained silica precipitates and forms a layer, causing problems such as the reduction in the capacity of the reinjection well and eventually blockage.

そこで下記のような種々の方法が実施されているが、い
ずれの場合にも問題点があり、まだ有効な地熱水の地下
還元方法がないのが現状である。
Therefore, various methods as described below have been implemented, but there are problems in each case, and the current situation is that there is still no effective method for returning geothermal water underground.

tl+  滞留槽法 蒸気発生後の地熱水を大気圧下において滞留槽で約1時
間滞留させ、過飽和シリカを粗大粒子へ成長させた後に
直接還元井より地下へ還元する方法である。
tl+ Retention Tank Method This is a method in which the geothermal water after steam generation is allowed to remain in a retention tank under atmospheric pressure for about one hour to grow supersaturated silica into coarse particles, which are then directly returned underground through a reinjection well.

不法は、熱水1陥送管のスケール析出に対しては有効な
方法であったが、還元井に対しては多量のシリカのコロ
イド粒子や粗大粒子を地中へ還元することになり、シリ
カの析出や竹屑等に基づくと思われる還元井の容量減衰
が生じるため有効な方法ではないことが明らかになった
Illegal method was an effective method for scale precipitation in the hot water conduit 1, but for reinjection wells, a large amount of silica colloidal particles and coarse particles were returned underground, and silica It has become clear that this is not an effective method because the capacity of the reinjection well decreases, which is thought to be due to precipitation of carbon dioxide and bamboo debris.

(2)高温高圧直接還元法 気液分h1機において地熱水中に首肩されるシリカの飽
和溶解度以上の温度で分離された地熱水を、気液分離機
の圧力を利用して高温高圧で還元井より地下へ還元する
方法である。最も簡で 単な方法と思われるが、気液分離機毎発生する蒸気量が
シリカの飽和溶解度に相当する飽和温度に依存するため
、より低温低圧の気液分離に比べて蒸気発生量が減少す
るという問題がある。
(2) High-temperature, high-pressure direct reduction method Gas-liquid separation Geothermal water separated at a temperature higher than the saturated solubility of silica in geothermal water in the h1 machine is heated at high temperature and high pressure using the pressure of the gas-liquid separator. This is a method of returning water underground from a reinjection well. This seems to be the simplest method, but since the amount of steam generated by each gas-liquid separator depends on the saturation temperature, which corresponds to the saturated solubility of silica, the amount of steam generated is reduced compared to gas-liquid separation at lower temperature and lower pressure. There is a problem with doing so.

(3)  消石灰添加によるシリカ除去法地熱水に消石
灰を添刀口して地熱水中のシリカを珪酸カルシウムとし
、この珪酸カルシウムを凝集沈殿させて除去した後の地
熱水を還元井より地下へ還元する方法である。
(3) Silica removal method by adding slaked lime Slaked lime is added to geothermal water to convert the silica in the geothermal water into calcium silicate, and after the calcium silicate is removed by coagulation and precipitation, the geothermal water is returned to the underground through a reinjection well. This is the way to do it.

不法(句、多量の消石灰を溶解させて添加する装置と、
凝集沈殿した珪酸カルシウムを主成分とするスラッジを
r過回収する装置とが必定である。また、多量に生成す
る濾過後のケーキの処理も問題となり、経費が高くつく
のでまだ実用化されていない。
Illegal (phrase) A device that dissolves and adds a large amount of slaked lime,
A device for collecting the sludge whose main component is coagulated and precipitated calcium silicate is essential. In addition, the treatment of the large amount of cake produced after filtration poses a problem and is expensive, so it has not yet been put to practical use.

発明が解決しようとする問題点 本発明の目的は、前述した従来技術の諸量1゛肩点、す
なわちJR境汚染、蒸気発生量の低減及び方法、装置の
経済性等の諸問題点を解決し、多量の地熱水を経済的に
安価な方法で、しかも還元井の減衰や閉塞を伴うことな
く長期にわたって地下へ還元できる方法を提供すること
にある。
Problems to be Solved by the Invention The purpose of the present invention is to solve various problems of the prior art mentioned above, such as JR environment pollution, reduction of steam generation amount, and economical efficiency of the method and equipment. Another object of the present invention is to provide a method that can return a large amount of geothermal water to the underground in an economically inexpensive manner and over a long period of time without attenuating or clogging the reinjection well.

問題点を解決するための手段 本発明は、前述の問題点を解決するもので、気液二相流
体として噴出した地熱流不から蒸気を分離して残った地
熱水を地下に還元する地熱水の地下還元方法において、
大気開放して大気圧下で飽和状態となった前記地熱水に
食塩水又は食塩スラリーを混合せしめ、前記地熱水に溶
解している無機化合物の溶解度が低下して生じる過飽和
無機化合物を凝集分離せしめて除去することを特徴とし
た地熱水の地下還元方法である。
Means for Solving the Problems The present invention solves the above-mentioned problems, and is a geothermal system that separates steam from a geothermal stream ejected as a gas-liquid two-phase fluid and returns the remaining geothermal water underground. In the underground hot water return method,
Salt water or salt slurry is mixed with the geothermal water that has been exposed to the atmosphere and has become saturated under atmospheric pressure, and the supersaturated inorganic compounds that are produced when the solubility of the inorganic compounds dissolved in the geothermal water decreases are aggregated. This is an underground return method for geothermal water that is characterized by separation and removal.

作用 前述の手段は、地熱水に食塩を添加すると地熱水中の無
機化合物、特にシリカの溶解度が減少することをオζU
用しており、還元地熱水の温度でシリカの溶M#が飽和
に達する竜の食塩を添加することにより過飽和なシリカ
が凝集沈殿する。こうして生じた地熱水の上蛭水をさら
に濾過した後に還元井から地下へ還元すれば、飽オロ屓
度以下のシリカしか含まない地熱水からではシリカスケ
ールが析出することもなく、透水層の目詰まりを起こす
ことがなくなるので還元井の減衰や閉構が防止できる。
Effect The aforementioned means demonstrate that adding salt to geothermal water reduces the solubility of inorganic compounds, especially silica, in geothermal water.
The supersaturated silica coagulates and precipitates by adding salt that reaches saturation at the temperature of the reduced geothermal water. If the upper leech water of the geothermal water generated in this way is further filtered and then returned underground from the reinjection well, silica scale will not precipitate from the geothermal water that only contains silica below the saturation level, and the permeable layer This prevents clogging of the reinjection well and prevents the reinjection well from becoming attenuated or closed.

実捲例 第1図及び第2図に本発明の一実施例を示して説明する
ACTUAL WINDING EXAMPLE An embodiment of the present invention will be described with reference to FIGS. 1 and 2.

第1図は地熱水の地下還元方法を示す系統図で、生産井
1から噴出した気液二相の、也熱流体は配管2を経て気
液分離機3に到る。気液分離機3で分離された水蒸気は
、内筒4から配管5を経て図示さnないタービンへ導入
される。−万気孜分離1残3で分離された地熱水は配管
6を経てサイレンサ二7に到り、大気圧へ開放される。
FIG. 1 is a system diagram showing a method for underground return of geothermal water, in which a gas-liquid two-phase gas-liquid thermal fluid ejected from a production well 1 reaches a gas-liquid separator 3 via a pipe 2. The water vapor separated by the gas-liquid separator 3 is introduced from the inner cylinder 4 through a pipe 5 to a turbine (not shown). - The geothermal water separated in Mankei Separation 1 and 3 passes through pipe 6 to silencer 27, where it is released to atmospheric pressure.

こうして発生した蒸気はサイレンサーフの頂部から大気
へ放散され、地熱水は配管8から熱水1論送ポンプ9に
より配管10を経て凝集沈殿槽11に到る。−万塩水貯
槽12から配管13を通って塩水ポンプ14に導かれた
食塩水は、そこで昇圧された後に配管15を経て凝集沈
殿槽11に送られる。凝集沈殿槽11では地熱水が食塩
水と混合攪拌され、30分ないし1時間滞留する間に地
熱水中の過飽和な無機化合物、特にシリカは凝集沈殿し
て底部に濃縮沈殿する。凝縮沈殿槽11の底部に濃縮沈
殿したシリカは、間欠的に配管16からスラッジポンプ
17の作用により配管18を経て糸外へ排出されろ。
The steam generated in this way is dissipated into the atmosphere from the top of the Siren Surf, and the geothermal water is sent from the pipe 8 to the coagulation sedimentation tank 11 via the pipe 10 by the hot water pump 9. - The salt water led from the salt water storage tank 12 to the salt water pump 14 through the pipe 13 is pressurized there and then sent to the coagulation sedimentation tank 11 via the pipe 15. In the flocculation-sedimentation tank 11, geothermal water is mixed with saline and stirred, and during the stay of 30 minutes to 1 hour, supersaturated inorganic compounds, especially silica, in the geothermal water are flocculated and precipitated and concentrated and precipitated at the bottom. The silica concentrated and precipitated at the bottom of the condensation sedimentation tank 11 is intermittently discharged from the pipe 16 to the outside of the thread via the pipe 18 by the action of the sludge pump 17.

凝集沈殿槽1]で過飽和なシリカを除去された地熱水は
、凝果沈゛設槽1】の上部からオーバーフローして配管
19を経て固液濾過機20に導入される。固液e過1偵
20では、凝縮沈殿槽11から一部浮遊してきた固形粒
子が地熱水から分離される。こうして得られた地熱水は
、配管21を経て還元井22から地下へ還元される。
The geothermal water from which supersaturated silica has been removed in the coagulation sedimentation tank 1 overflows from the upper part of the coagulation sedimentation tank 1 and is introduced into the solid-liquid filter 20 via a pipe 19. In the solid-liquid filter 20, solid particles partially suspended from the condensation sedimentation tank 11 are separated from the geothermal water. The geothermal water obtained in this way is returned underground from a reinjection well 22 via a pipe 21.

第2図は第1図に示した凝集沈殿槽11の構成例を示す
断面図である。凝集沈殿槽11の内部には中空の内筒2
3が配置されており、熱水輸送ポンプ9から地熱水を導
入する配管10と塩水ポンプ14から食塩水を導入する
配管】5が連通している。さらに、内筒23の内部には
攪拌機24に取り付けられた攪拌翼25があり、白抜矢
印の方向に回転して攪拌する。また、凝集沈殿4’ll
lの内部には、内筒23を囲むように底部が開口する三
角雄型の隔壁26が設けられている。隔壁26の底部に
設けら五た開口部の下rI7Jには、攪拌機24と同軸
で回転するレーキ27が配置しである。なお、固液f過
機20に地熱水を導く配管19は凝集沈殿槽11の上部
に連通し、艮うツジボンプ17に濃縮沈殿したシリカを
導く配管16は凝集沈殿槽11の底部に連通している。
FIG. 2 is a sectional view showing an example of the structure of the flocculation and sedimentation tank 11 shown in FIG. 1. Inside the coagulation-sedimentation tank 11 is a hollow inner cylinder 2.
A pipe 10 for introducing geothermal water from a hot water transport pump 9 and a pipe 5 for introducing saline water from a salt water pump 14 are in communication. Further, inside the inner cylinder 23 there is a stirring blade 25 attached to a stirrer 24, which rotates in the direction of the white arrow to stir. In addition, coagulation and precipitation 4'll
A triangular male-shaped partition wall 26 with an open bottom is provided inside the inner cylinder 23 so as to surround the inner cylinder 23 . A rake 27 that rotates coaxially with the stirrer 24 is disposed below the five openings provided at the bottom of the partition wall 26. Note that a pipe 19 that leads geothermal water to the solid-liquid filter 20 is connected to the top of the coagulation sedimentation tank 11, and a pipe 16 that leads the concentrated and precipitated silica to the Tsujibomp 17 is connected to the bottom of the coagulation sedimentation tank 11. ing.

      ・−上述した構成の凝集沈殿槽11におい
て、内筒23の内部では、配管10から導入された地熱
水と配管】5から導入された食塩水が攪拌@25の回転
によって攪拌混合される。こうして混合された地熱水は
、内′醐23の上部を越えて円筒23と隔壁26との間
に形成された空間を通って落下し、隔壁26の開口部と
レーキ27との隙間から再び上昇して流れる。上I昇し
てきた地熱水は、凝集沈殿槽】】の内部上方に4通する
配管19にオーバーフローして流れ込み、固液濾過機2
0へと導かれる。また、内筒23と隔壁26との間を下
降した地熱水の一部は、同筒23の下部から円筒内を上
昇して新たに導入された地熱水や食塩水と合流する。な
お、上述した地熱水及び弐塩水の凝集沈殿槽11173
における流れを第2図に矢印で゛示しである。   ′ 第3図に示したクリ力(無定形)の溶解度と食塩濃度の
関係からも明らかなように、シリカの溶解度゛は共存す
る食塩濃度が増大すれば減少する傾向にある。従って、
凝集沈殿槽11の内部において、地熱水中に含まれるシ
リカの濃度と還元熱水の温度に応じてシリカが過飽和と
なるように食塩水を添加して攪拌する。地熱水中に過飽
和状態で存在するシリカ[30分ないし11寺間の滞留
時間を与えると、飽和濃度を越えたシリカは急速な凝集
沈殿作用によジ凝′果沈殿槽11の底部にシリカ粒子と
なって落下して集められる。さらに、回転するレーキ2
7で攪拌することにより、シリカ粒子どうしが衝突して
凝集し、いっそう大きな粒子に成長して沈殿)層線され
る。このようにしてf@和譲度のシリカを溶解した地熱
水が得られ、配管】9から次工程に導かれる。すなわち
、シリカ濃度600 ppm %Nacg @度1モル
/L の地熱水を100’Cで地下還元する場合を的に
とれば、Naiを添加してNacgd度を5モル/Lに
すれば地熱水中のシリカの飽和溶解度は180 ppm
となV(第3図参照)、従って、600ppmと] 8
0 pprnとの差である420ppmのシリカが凝集
沈殿槽IIで除去され、シリカ濃度180ppmの飽本
口伏態にある地熱水が配管19に流れ込むことになる。
In the coagulation-sedimentation tank 11 configured as described above, inside the inner cylinder 23, the geothermal water introduced from the pipe 10 and the saline water introduced from the pipe 5 are stirred and mixed by the rotation of the stirrer @25. The geothermal water thus mixed falls over the upper part of the inner tube 23 through the space formed between the cylinder 23 and the partition wall 26, and again from the gap between the opening of the partition wall 26 and the rake 27. Rise and flow. The geothermal water that has risen to the top overflows into the four pipes 19 that run upward inside the coagulation and sedimentation tank, and flows into the solid-liquid filter 2.
It leads to 0. Further, a part of the geothermal water that has descended between the inner cylinder 23 and the partition wall 26 rises inside the cylinder from the lower part of the inner cylinder 23 and joins with the newly introduced geothermal water and saline water. In addition, the above-mentioned geothermal water and salt water coagulation sedimentation tank 11173
The flow in FIG. 2 is indicated by arrows. As is clear from the relationship between the solubility of silica (amorphous) and the salt concentration shown in Figure 3, the solubility of silica tends to decrease as the coexisting salt concentration increases. Therefore,
Inside the coagulation-sedimentation tank 11, saline is added and stirred so that the silica becomes supersaturated depending on the concentration of silica contained in the geothermal water and the temperature of the reduced hot water. Silica existing in a supersaturated state in geothermal water [If a residence time of 30 minutes to 11 hours is given, silica exceeding the saturation concentration will be deposited as silica particles at the bottom of the coagulation sedimentation tank 11 due to rapid coagulation-sedimentation action. They fall and are collected. Furthermore, rotating rake 2
By stirring at step 7, the silica particles collide and coagulate, grow into larger particles, and form a layer (precipitate). In this way, geothermal water containing dissolved silica of f@wa yield is obtained, and is led to the next step through pipe 9. In other words, if geothermal water with a silica concentration of 600 ppm % Nacg @ 1 mol/L degree is to be reduced underground at 100'C, if Nai is added and the Nacgd degree is 5 mol/L, the geothermal water will be reduced. The saturation solubility of silica is 180 ppm
Tona V (see Figure 3), therefore 600 ppm] 8
The 420 ppm of silica, which is the difference from 0 pprn, is removed in the coagulation sedimentation tank II, and the geothermal water in the saturated state with a silica concentration of 180 ppm flows into the pipe 19.

ところで、一部のシリカ粒子が飽和濃度の地熱水の流れ
に浮遊して#果沈殿槽11から流出するが、固液濾過機
20で除去される。従って、還元井22からFi飽和一
度の地熱水だけが地下に還元されることになり、シリカ
スケールの析出や透水層の目詰り等が起らない。
Incidentally, some silica particles float in the flow of geothermal water with a saturated concentration and flow out from the fruit settling tank 11, but are removed by the solid-liquid filter 20. Therefore, only the geothermal water once saturated with Fi is returned underground from the reinjection well 22, and precipitation of silica scale and clogging of the permeable layer do not occur.

なお、地熱水に添加する食塩水の原料としては、岩堪等
の未精練の食塩全使用することができる。
In addition, as a raw material for the salt solution added to the geothermal water, unrefined salt such as rock salt can be used.

また、不実m例では食塩水を添加する例を示したが、食
塩スラリーを添加してもよい。
Moreover, although the example of adding a salt solution was shown in the false example, a salt slurry may also be added.

発明の効果 前述の本発明によれば、飽和濃度以下のシリカしか含ん
でいない地熱水を還元井から地下に還元でキルので、シ
リカスケールの析出や透水1fiの目詰り等に起因する
還元井の減衰や閉塞を防止できる。しかも、安価な食塩
を添加するだけでシリカa度が飽和一度以下の地熱水を
得ることができるので、プロセスとして簡単で経済性や
実用性にも富んでいる。さらに、食塩は元来地熱水中に
多量に含まれており、還元熱水中に異物が混入されない
ので環境公害上の問題や地下での汚染問題が生じろこと
もない。また、蒸気発生量が低減するといった問題もな
く、長期にわたる経隣的でデボした地熱流体の利用に貢
献できる。
Effects of the Invention According to the present invention described above, geothermal water containing only silica below the saturation concentration is killed by being returned underground from the reinjection well. Attenuation and blockage can be prevented. In addition, geothermal water with a silica degree of 1 degree or less can be obtained simply by adding inexpensive common salt, so the process is simple, economical, and practical. Furthermore, salt is originally contained in large amounts in geothermal water, and since no foreign matter is mixed into the reduced hot water, there are no environmental pollution problems or underground contamination problems. In addition, there is no problem of a reduction in the amount of steam generated, and it can contribute to the long-term use of geothermal fluids that are adjacent to each other and are devoured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による地熱水の地下還元方法の1実施例
を示す系統図、第2図は第1図で示した凝集沈殿槽の1
実砲例を示す1新面図、第3図は無定形シリカの浴解度
と頁順」度の関係を示すグラフである。 】・・生産井、2・・配管、3・・気液分離機、4・・
内m、5.6・・配管、7・・サイレンサー、8・・配
管、9・・熱水輸送ポンプ、10・・配管、11・・凝
集沈殿槽、12・・塩水貯槽、13・・配管、I4・◆
塩水ポンプ、15,1611争配管、17・・スラツジ
ポンプ、18.19・  ・ 自己 管、  20  
・  ・ 固 イ紀 I4 過機 、   2 1  
・  ・ 自己 管、22・・還元井、23・・円筒、
24・・攪拌機、第3図 シ翫A(0C)
Figure 1 is a system diagram showing one embodiment of the method for underground return of geothermal water according to the present invention, and Figure 2 is a diagram showing one embodiment of the coagulation sedimentation tank shown in Figure 1.
Figure 3 is a graph showing the relationship between the bath solubility of amorphous silica and the degree of page order. ]... Production well, 2... Piping, 3... Gas-liquid separator, 4...
Inner m, 5.6... Piping, 7... Silencer, 8... Piping, 9... Hot water transport pump, 10... Piping, 11... Coagulation sedimentation tank, 12... Salt water storage tank, 13... Piping , I4・◆
Saltwater pump, 15,1611 Conflict piping, 17...Sludge pump, 18.19...Self pipe, 20
・ ・ Hard Iki I4 Peroki , 2 1
・ ・ Self-pipe, 22...reduction well, 23... cylinder,
24... Stirrer, Fig. 3 cylindrical A (0C)

Claims (1)

【特許請求の範囲】[Claims] 気液二相流体として噴出した地熱流体から蒸気を分離し
て残つた地熱水を地下に還元する地熱水の地下還元方法
において、大気開放して大気圧下で飽和状態となつた前
記地熱水に食塩水又は食塩スラリーを混合せしめ、前記
地熱水に溶解している無機化合物の溶解度が低下して生
じる過飽和無機化合物を凝集分離せしめて除去すること
を特徴とした地熱水の地下還元方法。
In an underground restoration method for geothermal water that separates steam from geothermal fluid ejected as a gas-liquid two-phase fluid and returns the remaining geothermal water underground, the geothermal water is exposed to the atmosphere and saturated under atmospheric pressure. Geothermal water underground characterized by mixing salt water or salt slurry with hot water and coagulating and separating supersaturated inorganic compounds that are generated due to a decrease in the solubility of inorganic compounds dissolved in the geothermal water and removing them. Reduction method.
JP9995687A 1987-04-24 1987-04-24 Geothermal water underground return method Expired - Lifetime JPH0635793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9995687A JPH0635793B2 (en) 1987-04-24 1987-04-24 Geothermal water underground return method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9995687A JPH0635793B2 (en) 1987-04-24 1987-04-24 Geothermal water underground return method

Publications (2)

Publication Number Publication Date
JPS63266175A true JPS63266175A (en) 1988-11-02
JPH0635793B2 JPH0635793B2 (en) 1994-05-11

Family

ID=14261143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9995687A Expired - Lifetime JPH0635793B2 (en) 1987-04-24 1987-04-24 Geothermal water underground return method

Country Status (1)

Country Link
JP (1) JPH0635793B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013180912A (en) * 2012-02-29 2013-09-12 Mitsubishi Heavy Ind Ltd Geothermal utilization system, method for synthesizing silicalite, and method for recovering lithium carbonate
CN114263578A (en) * 2021-12-14 2022-04-01 李华丽 Geothermal energy cyclic utilization efficient power generation equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013180912A (en) * 2012-02-29 2013-09-12 Mitsubishi Heavy Ind Ltd Geothermal utilization system, method for synthesizing silicalite, and method for recovering lithium carbonate
CN114263578A (en) * 2021-12-14 2022-04-01 李华丽 Geothermal energy cyclic utilization efficient power generation equipment
CN114263578B (en) * 2021-12-14 2022-07-12 李华丽 Geothermal energy cyclic utilization efficient power generation equipment

Also Published As

Publication number Publication date
JPH0635793B2 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
US4874529A (en) Process and apparatus for reducing the concentration of suspended solids in clarified geothermal brine
CN105060434B (en) Sedimentation clarification pool
US4765913A (en) Process for removing silica from silica-rich geothermal brine
CN101254984B (en) Centralized processing technique for slop oil and acidic oil and processing system thereof
JP5157279B2 (en) Oily water reuse system
US4619769A (en) Process for regenerating media filters used to filter geothermal brine
US4302328A (en) Geothermal brine treatment
US4763479A (en) Method for the production of useable steam and non-toxic solids from geothermal brine
CN109133413A (en) Industrial waste water purifying system and purification process based on air-float filtration processing
US4304666A (en) Geothermal brine treatment
CN208791356U (en) A kind of oil field water factory hyperfiltration treatment process unit
JP2007296466A (en) Sludge discharge apparatus and operation method thereof
CN108947137A (en) A kind of kitchen garbage percolation liquid treatment method
JPS63266175A (en) Method of restoring geothermal water to underground
CN111039453A (en) System and method for treating wastewater containing high-concentration calcium sulfate
CN206901956U (en) GTCC power plant wastewater zero discharge processing unit
CN110342674A (en) A kind of high-salt wastewater two-stage concentration and evaporation pretreatment system and processing method
US4978457A (en) Method of filtering a brine
JP3366258B2 (en) Method and apparatus for evaporating and concentrating sulfuric acid-containing wastewater
CN211896370U (en) Contain high concentration calcium sulfate effluent disposal system
CN107055907A (en) A kind of GTCC power plant wastewater zero discharge processing unit and handling process
CN208345922U (en) Three sections of high efficiency composition processing systems of oily wastewater
CN105923707B (en) A kind of desulfurization wastewater vibration membrane processing method and processing device
JPH1119696A (en) Treatment of sludge waste water and water purifier
CN109179779A (en) A kind of materialization water purifier

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term