JPS63266073A - Microwave plasma cvd device - Google Patents

Microwave plasma cvd device

Info

Publication number
JPS63266073A
JPS63266073A JP9968287A JP9968287A JPS63266073A JP S63266073 A JPS63266073 A JP S63266073A JP 9968287 A JP9968287 A JP 9968287A JP 9968287 A JP9968287 A JP 9968287A JP S63266073 A JPS63266073 A JP S63266073A
Authority
JP
Japan
Prior art keywords
deposited film
microwave plasma
plasma cvd
film
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9968287A
Other languages
Japanese (ja)
Inventor
Tatsuji Okamura
竜次 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP9968287A priority Critical patent/JPS63266073A/en
Publication of JPS63266073A publication Critical patent/JPS63266073A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stably form a uniform and good-quality deposited film with excellent reproducibility by providing plural oil diffusion pumps as the exhaust means of the title microwave plasma CVD device. CONSTITUTION:Plural carriers 105, 305, and 402 for forming a deposited film are provided in the CVD device, and plural oil diffusion pumps DP are provided in the vicinity of the carriers as the exhaust means for the reaction vessels 101 and 301 having a decomposition space 106 wherein a raw gas such as silane is excited by the microwave energy and dissociated. As a result, the flow of the raw gas injected from gas discharge pipes 108 and 401 is uniformized as shown by the curved arrow, and the density of the gas in the space 106 is also uniformized. In addition, even if the remaining impurities are generated after the deposited film is formed several times, the possibility of the impurities remaining in the space 106 is remarkably reduced by the exhaustion from both sides. Accordingly, a good-quality deposited film having uniform thickness and quality can be formed on the carriers 105, 305, and 402 with excellent reproducibility.

Description

【発明の詳細な説明】 (発明の属する技術分野〕 本発明は、基体上に堆積膜、とりわけ機能性膜、特に半
導体デバイス、電子写真用感光体デバイス、画像入力用
ラインセンサー、撮像デバイス、光起電力デバイス等に
用いるアモルファス半導体膜を形成する装置、およびエ
ツチング装置等のマイクロ波プラズマCVD装置に関す
るものである。
Detailed Description of the Invention (Technical Field to Which the Invention Pertains) The present invention relates to a film deposited on a substrate, particularly a functional film, particularly a semiconductor device, a photoreceptor device for electrophotography, a line sensor for image input, an imaging device, an optical The present invention relates to an apparatus for forming an amorphous semiconductor film used in an electromotive force device and the like, and a microwave plasma CVD apparatus such as an etching apparatus.

〔従来技術の説明〕[Description of prior art]

従来、半導体デバイス、電子写真用感光体デバイス、画
像入力用ラインセンサー、撮像デバイス、光起電力デバ
イス、その他各種エレクトロニクス素子、光学素子、等
に用いる素子部材として、アモルファス・シリコン、例
えば水素又は/及びハロゲン(例えばフッ素、塩素等)
で補償されアモルファス・シリコン(以下(a−3i(
H; X) )と記す、)等のアモルファス半導体等の
堆積膜が提案され、その中のいくつかは実用に付されて
いる。
Conventionally, amorphous silicon, such as hydrogen or/and Halogens (e.g. fluorine, chlorine, etc.)
compensated by amorphous silicon (hereinafter (a-3i(
Deposited films of amorphous semiconductors such as H;

そして、こうした堆積膜は、プラズマCVD法、即ち、
原料ガスを直流、又は高周波、マイクロ波グロー放電に
よって分解し、ガラス、石英、耐熱性合成樹脂フィルム
、ステンレス、アルミニウムなどの支持体上に薄膜状の
堆積膜を形成する方法により形成されることが知られて
おり、そのための装置も各種提案されている。
Then, such a deposited film is deposited using a plasma CVD method, that is,
It can be formed by a method in which a raw material gas is decomposed by direct current, high frequency, or microwave glow discharge, and a thin film-like deposited film is formed on a support such as glass, quartz, heat-resistant synthetic resin film, stainless steel, or aluminum. This is known, and various devices for this purpose have been proposed.

特に近年マイクロ波グロー放電分解を用いたプラズマC
VD法が工業的にも注目されている。
Especially in recent years, plasma C using microwave glow discharge decomposition
The VD method is also attracting attention from an industrial perspective.

そうした従来のマイクロ波プラズマCVD法による堆積
膜形成装置は代表的には、第9図の透視略図及び第10
図の平面図で示される装置tS成のものである。
Such a conventional deposited film forming apparatus using the microwave plasma CVD method is typically shown in the schematic perspective view of FIG.
The apparatus shown in plan view is of the configuration tS.

第9図及び第10図において、901.1001は反応
容器であり、真空気密化構造を成している6902.1
002は、マイクロ波電力を反応容器内に効率良く透過
し、かつ真空気密保持し得る様な材料(例えば、石英ガ
ラス、アルミナセラミックス等)で形成された誘電体窓
である。903゜1003は、マイクロ波の伝送部で、
主として金属性の矩形導波管からなっており、整合器、
アイソレーダーを介してマイクロ波電源(図示せず)に
接続されている。904.1004は、一端が真空容器
901.1001内に開口し、他端が排気装置(図示せ
ず)に連通している排気口である。
In Figures 9 and 10, 901.1001 is a reaction vessel, and 6902.1 has a vacuum-tight structure.
002 is a dielectric window made of a material (for example, quartz glass, alumina ceramics, etc.) that can efficiently transmit microwave power into the reaction vessel and maintain vacuum tightness. 903°1003 is a microwave transmission section,
It mainly consists of a metallic rectangular waveguide, and has a matching box,
It is connected to a microwave power source (not shown) via an iso radar. 904.1004 is an exhaust port that opens into the vacuum vessel 901.1001 at one end and communicates with an exhaust device (not shown) at the other end.

905.1005は、堆積膜を形成すべき支持体であり
、906.1006は、支持体により囲まれた放電空間
を示す。
905.1005 is a support on which a deposited film is to be formed, and 906.1006 represents a discharge space surrounded by the support.

こうした従来の堆積膜形成装置による堆積膜形成は、以
下の様にして行われる。まず真空ポンプ(図示せず)に
より排気口904.1004を介して真空容器901.
1001を脱気し、反応容器内圧力をI X 10−’
Torr以下に調整する。次いで、支持体加熱用ヒータ
ー907.1(107により、支持体905.1005
の温度を膜堆積に好適な温度に加熱保持する。そこで原
料ガスをガス放出管908.1008を介して、例えば
アモルファスシリコン堆積膜を形成する場合であれば、
シランガス、水素ガス等の原料ガスが反応容器内に導入
される。それと同時併行的にマイクロ波電源(図示せず
)により、周波数500MH!以上の、好ましくは2.
450H2のマイクロ波を発生させ、このマイクロ波は
導波管903.1003を通じ、誘電体窓902.10
02を介して反応容8901.1001内に導入される
。かくして、反応容器901.1001内のガスはマイ
クロ波のエネルギーにより励起されて解離し、支持体表
面に堆積する。このとき、支持体を回転させることによ
り、支持体全周に渡って堆積膜が形成される。
Formation of a deposited film using such a conventional deposited film forming apparatus is performed in the following manner. First, a vacuum pump (not shown) connects the vacuum container 901.
1001 was degassed and the pressure inside the reaction vessel was reduced to I x 10-'
Adjust to below Torr. Next, the heater 907.1 (107) for heating the support body 905.1005
The temperature is maintained at a temperature suitable for film deposition. Therefore, when forming an amorphous silicon deposited film by passing the raw material gas through the gas discharge pipe 908.1008, for example,
A raw material gas such as silane gas or hydrogen gas is introduced into the reaction vessel. At the same time, a microwave power source (not shown) is used to generate a frequency of 500 MH! Above, preferably 2.
A microwave of 450H2 is generated, and this microwave passes through the waveguide 903.1003 and passes through the dielectric window 902.10.
02 into reaction volume 8901.1001. Thus, the gas in the reaction vessel 901.1001 is excited by the microwave energy, dissociates, and deposits on the support surface. At this time, by rotating the support, a deposited film is formed over the entire circumference of the support.

しかし、この様な従来の装置では、導入された原料ガス
を片側から排気するので、排気口に近い放電空間と、遠
い放電空間では、ガス密度が不均一となり、安定した放
電が得られにくく、その為、均一な膜厚、そして膜質の
堆積膜を通常的に形成することは困難であった。
However, in such conventional devices, the introduced raw material gas is exhausted from one side, so the gas density becomes uneven between the discharge space near the exhaust port and the discharge space far away, making it difficult to obtain a stable discharge. Therefore, it has been difficult to normally form a deposited film of uniform thickness and quality.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、マイクロ波プラズマCVD法により、
半導体デバイス、電子写真用感光体デバイス、光起電力
素子、その他の各種エレクトロニクス素子、光学素子等
に用いられる素子部材としての堆積膜を形成する場合に
、均一かつ良質で、再現性に富んだ堆積膜を安定して形
成し得る方法、及び該方法を実施するに至適な装置を提
供することにある。
The purpose of the present invention is to
When forming a deposited film as an element member used in semiconductor devices, electrophotographic photoreceptor devices, photovoltaic devices, various other electronic devices, optical devices, etc., uniform, high-quality, and highly reproducible deposition is required. The object of the present invention is to provide a method for stably forming a film, and an apparatus most suitable for carrying out the method.

C発明の構成〕 本発明は、前記の目的を達成する為に、堆積膜形成用の
支持体と該支持体の近傍にマイクロ波エネルギーによる
堆積膜形成用の原料ガス分解空間を有するマイクロ波プ
ラズマCVD装置において、その排気手段が複数の油拡
散ポンプを有することを特徴としている。
C Structure of the Invention] In order to achieve the above object, the present invention provides a microwave plasma having a support for forming a deposited film and a space for decomposing a raw material gas for forming a deposited film using microwave energy in the vicinity of the support. The CVD apparatus is characterized in that its exhaust means includes a plurality of oil diffusion pumps.

以下、具体的実施例により本発明を更に詳細に説明する
が、本発明はこれによって限定されるものではない。
Hereinafter, the present invention will be explained in more detail with reference to specific examples, but the present invention is not limited thereto.

〔実施例〕 本発明の目的を達成しうるマイクロ波プラズマCVD装
置の具体例を第1図の透視略図、第2図の平面図及び第
3図の断面略図に示す。
[Example] A specific example of a microwave plasma CVD apparatus that can achieve the object of the present invention is shown in a perspective schematic diagram in FIG. 1, a plan view in FIG. 2, and a cross-sectional diagram in FIG. 3.

第1図、第2図及び第3図において、101゜201.
301は反応容器であり、真空気密化構造を成している
。102,202,302は、マイクロ波電力を反応容
器内に効率良く透過し、かつ真空気密を保持し得る様な
材料(例えば、石英ガラス、アルミナセラミックス等)
で形成された誘電体窓である。103,203,303
は、マイクロ波の伝送部で主として金属性の矩形導波管
からなっており、整合器、アイソレーターを介して、マ
イクロ波電源(図示せず)に接続されている。105,
205,305は堆積膜を形成すべき支持体である。1
04,204,304は、一端が真空容器101,20
1,301内に開口し、他端が、排気装置(図示せず)
に連通している排気口である。支持体105,205,
305の昇温手段および回転機構、また、原料ガスの導
入機構は、第9図及び第10図に示したマイクロ波プラ
ズマCVD装置と同様な構成である。
In FIGS. 1, 2, and 3, 101°201.
301 is a reaction vessel, which has a vacuum-tight structure. 102, 202, and 302 are materials that can efficiently transmit microwave power into the reaction vessel and maintain vacuum tightness (for example, quartz glass, alumina ceramics, etc.)
It is a dielectric window made of. 103,203,303
is a microwave transmission section, which is mainly made of a metal rectangular waveguide, and is connected to a microwave power source (not shown) via a matching box and an isolator. 105,
205 and 305 are supports on which the deposited film is to be formed. 1
04, 204, 304, one end is the vacuum container 101, 20
1,301, and the other end is an exhaust device (not shown).
This is an exhaust port that communicates with the Support body 105, 205,
The temperature raising means and rotation mechanism 305, as well as the raw material gas introduction mechanism, have the same configuration as the microwave plasma CVD apparatus shown in FIGS. 9 and 10.

前記の様な機構による本発明のマイクロ波プラズマCV
D装置の作用を従来の装置と比較して説明する。第1)
図は従来の装置を、第4図は本発明の装置を示す、第1
)図及び第4図の矢印は、ガス放出管1)01.401
より噴出した原料ガスの流れを示している0本発明の装
置である第4図は、従来の装置である第1)図に比べ、
ガスの流れは均一であり、放電空間におけるガスの密度
も第1)図に比べ第4図が均一であることがわかる。
Microwave plasma CV of the present invention using the above-described mechanism
The operation of the D device will be explained in comparison with a conventional device. 1)
The figure shows a conventional device, and FIG. 4 shows the device of the present invention.
) figure and the arrow in figure 4 indicate the gas discharge pipe 1) 01.401
Figure 4, which shows the flow of the raw material gas ejected from the device of the present invention, shows the flow of the raw material gas that has been blown out.
It can be seen that the gas flow is uniform, and the gas density in the discharge space is also more uniform in FIG. 4 than in FIG. 1).

また、第1)図■に示す不純物質が数回の堆積膜形成で
残存し、加熱及び放電により不純ガスとして発生し、堆
積膜における膜質を劣下させることが、このような堆積
膜形成装置のかかえる問題の一つとされてきたが、第4
図における本発明では、前記の様な不純物質が発生して
も、両側から排気されることにより、放電空間中に残有
する可能性は、極めて小さくなる。
In addition, in this type of deposited film forming apparatus, the impurity substances shown in 1) Figure 3 remain after several times of deposited film formation, are generated as impurity gas by heating and discharge, and deteriorate the quality of the deposited film. It has been considered as one of the problems faced by
In the present invention shown in the figure, even if such impurities are generated, the possibility of them remaining in the discharge space is extremely small because they are exhausted from both sides.

その結果、各支持体4020表面に形成された堆積膜は
、膜厚及び膜質が均一で、良質かつ再現性の高いものと
なる。なお、排気口の位置は、第1図乃至第3図のよう
に向かい合わせて配置するかわりに、第5図及び第6図
のように一定の角度をつけて配置してもよい。
As a result, the deposited film formed on the surface of each support 4020 has uniform thickness and quality, and is of good quality and highly reproducible. Note that, instead of arranging the exhaust ports facing each other as shown in FIGS. 1 to 3, they may be arranged at a certain angle as shown in FIGS. 5 and 6.

以下、本発明のマイクロ波プラズマCVD装置を用いて
、堆積膜を形成した例を従来装置を用いた場合の比較例
とともに説明する。なお、本発明はこれらの例によって
限定されるものではない。
Hereinafter, an example in which a deposited film was formed using the microwave plasma CVD apparatus of the present invention will be described together with a comparative example in which a conventional apparatus was used. Note that the present invention is not limited to these examples.

■よ 第1図及び第2図、第3図、第4図に示す様な、2台の
油拡散ポンプを持ち、原料ガス排気口が向かい合ってい
るマイクロ波プラズマCVD装置を使用し、支持体とし
て、長さ358龍、外径108φのAI製クシリンダ−
用い、該支持体上に第1表に示す条件で、電荷注入阻止
層、光導電層及び表面保護層からなる感光ドラムを作成
した。マイクロ波電源は、最大5Kw、2.45GHz
の発振器を用い、支持体の加熱は加熱用ヒーターを入れ
、支持体を回転させながら所定の温度まで加熱保持した
■As shown in Figures 1, 2, 3, and 4, a microwave plasma CVD device with two oil diffusion pumps and raw material gas exhaust ports facing each other is used. As a cylinder made of AI with a length of 358mm and an outer diameter of 108φ.
A photosensitive drum consisting of a charge injection blocking layer, a photoconductive layer, and a surface protection layer was prepared on the support under the conditions shown in Table 1. Microwave power supply maximum 5Kw, 2.45GHz
A heating heater was used to heat the support using an oscillator, and the support was heated and maintained at a predetermined temperature while being rotated.

この様な条件下で作成した感光ドラム120本につき下
記の様な評価を行った。
The following evaluation was performed on 120 photosensitive drums produced under such conditions.

(評価A) ハロゲンランプを光源とした電子写真装置及び780龍
mの波長を有する半導体レーザーを光源とした電子写真
装置に夫々セントして、種々の条件のもとに初期帯電能
、感度、残留電位、ゴースト等の電子写真特性をチェッ
クし、また、200万枚相当の加速耐久後の帯電能低下
、表面削れ、画像欠陥の増加等を調べた。又、膜厚、帯
電能、感度に関しては、さらに下記の様な評価も同時に
行った。
(Evaluation A) Initial charging ability, sensitivity, residual Electrophotographic characteristics such as electric potential and ghost were checked, and a decrease in charging ability, surface abrasion, and increase in image defects after accelerated durability equivalent to 2 million sheets were also examined. Further, regarding film thickness, charging ability, and sensitivity, the following evaluations were also conducted at the same time.

(評価B) 膜 厚;渦電流式膜厚計にて、堆積膜が形成されたAj
!シリンダーの中央の膜厚を測定する。1回の成膜工程
で作製された複数の感光ドラムの各々の膜厚を求め、該
膜厚の平均値を求める。該平均値に対する各々の感光ド
ラムの膜厚のバラツキを調べる。上記方法により、20
回の成膜工程に対して、測定を行った。
(Evaluation B) Film thickness: Aj at which the deposited film was formed using an eddy current film thickness meter.
! Measure the film thickness in the center of the cylinder. The film thickness of each of the plurality of photosensitive drums produced in one film forming process is determined, and the average value of the film thicknesses is determined. The variation in film thickness of each photosensitive drum with respect to the average value is examined. By the above method, 20
Measurements were made for the film formation process.

帯電能;複写装置に堆積膜が形成されたA1シリンダー
を搭載し、ドラムを回転させながら、一定帯電量のもと
のドラムの中央の表面電位を測定する。1回の成膜工程
で作製された複数の感光ドラムの各々の帯電能を求め、
該帯電能の平均値を求める。
Charging ability: The A1 cylinder on which the deposited film has been formed is mounted on a copying machine, and while the drum is being rotated, the surface potential at the center of the drum under a constant charging amount is measured. Determine the charging ability of each of the plurality of photosensitive drums produced in one film forming process,
The average value of the charging capacity is determined.

該平均値に対する各々の感光ドラムの帯電能のバラツキ
を調べる。上記方法により、20回の成膜工程に対して
測定を行った。
The variation in charging ability of each photosensitive drum with respect to the average value is examined. Using the above method, measurements were performed for 20 film forming steps.

感 度;上記と同様の方法で帯電させ、一定置光量のち
とに、表面電位の測定を行う。1回の成膜工程で作製さ
れた複数の感光ドラムの各々の感度を求め、該感度の平
均値を求める。該平均値に対する各々の感光ドラムの感
度のバラツキを調べる。上記方法により、20回の成膜
工程に対して測定を行った。
Sensitivity: Charge in the same manner as above, and measure the surface potential after a certain amount of light exposure. The sensitivity of each of the plurality of photosensitive drums produced in one film forming process is determined, and the average value of the sensitivities is determined. The variation in sensitivity of each photosensitive drum with respect to the average value is examined. Using the above method, measurements were performed for 20 film forming steps.

上記の総合的な評価結果を第2表に示す。The above comprehensive evaluation results are shown in Table 2.

第2表に見られるように、全項目について良好な結果が
得られた。
As seen in Table 2, good results were obtained for all items.

肛 第5図及び第6図、第7図に示す様な、2台の油拡散ポ
ンプを持ち、原料ガス排気口が90°の位置にあるマイ
クロ波プラズマCVD装置を使用し、例1に示す同様の
実験を行い、同様の評価を行った。その結果を第3表に
示す。
Using a microwave plasma CVD apparatus with two oil diffusion pumps as shown in Figures 5, 6, and 7, and with the raw material gas exhaust port at a 90° position, the method shown in Example 1 was used. Similar experiments were conducted and similar evaluations were made. The results are shown in Table 3.

第3表に見られる様に全項目について、良好な結果が得
られたが、例1に比べると膜厚、帯電能、感度共ややバ
ラツキが大きくなっている。
As shown in Table 3, good results were obtained for all items, but as compared to Example 1, there were slightly larger variations in film thickness, charging ability, and sensitivity.

ル較斑 第9図及び第10図に示したマイクロ波プラズマCVD
装置を使用し、第4表に示す成膜条件で、例1と同様実
験を行い、同様の評価を行った。その結果を第5表に示
す、第5表に見られる様に全項目について良好な結果が
得られるものの、膜厚、帯電能、感度共に、例1と比ベ
バラツキが大きくなっている。
Microwave plasma CVD shown in Figures 9 and 10
Using the same apparatus and under the film forming conditions shown in Table 4, experiments were conducted in the same manner as in Example 1, and the same evaluations were made. The results are shown in Table 5. As seen in Table 5, although good results were obtained for all items, there were large variations in film thickness, charging ability, and sensitivity compared to Example 1.

前記実施例では、油拡散ポンプ2台であったが、上記油
拡散ポンプを3台、もしくはそれ以上にすることで、排
気能力が上がり、より高速成膜が可能となる。又、原料
ガス排気口の形状位置は前記実施例に限定されるもので
はなく、例えば、反応炉の放電空間の上下に前記排気口
をもうけることにより、より均一な膜厚、膜質の堆積膜
を形成することが可能となり、又排気口が反応炉と連通
ずる第7図、第8図の様な装置により、より高速かつ均
一な膜厚、良質な膜を形成することも可能となる。
In the above embodiment, two oil diffusion pumps were used, but by using three or more oil diffusion pumps, the exhaust capacity is increased and film formation can be performed at a higher speed. Further, the shape and position of the raw material gas exhaust port is not limited to the above example. For example, by providing the exhaust port above and below the discharge space of the reactor, a deposited film with a more uniform film thickness and quality can be obtained. Furthermore, by using the apparatus shown in FIGS. 7 and 8, in which the exhaust port communicates with the reactor, it becomes possible to form a film of uniform thickness and quality at a higher speed.

〔発明の効果の概要〕[Summary of effects of the invention]

以上説明した様に、本発明によれば、マイクロ波プラズ
マCVD装置において、その排気手段として複数の油拡
散ポンプを持つことにより、より高速に堆積膜を形成す
ることが出来、さらに、その排出孔の適切な形状、1位
、数を選ぶことにより、より良質かつ、均一な堆積膜が
形成され、生産性、量産性に富んだ堆積膜形成装置を堤
供することが出来る。
As explained above, according to the present invention, by having a plurality of oil diffusion pumps as exhaust means in a microwave plasma CVD apparatus, it is possible to form a deposited film at a higher speed, and furthermore, it is possible to form a deposited film at a higher speed. By selecting an appropriate shape, position, and number, a deposited film of better quality and uniformity can be formed, and a deposited film forming apparatus with high productivity and mass production can be provided.

第   1   表 第  3  表 ◎−特に良好 0・・良好 △・・・実用土さしつかえ
ない第   4   表
Table 1 Table 3 ◎ - Particularly good 0... Good △... Practical soil Poor Table 4

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明におけるマイクロ波プラズマCVD法に
よる堆積膜装置の1例の透視略図、第2図及び第4図は
、第1図の平面図、第3図は簡略図である。 第5図、第7図も本発明におけるマイクロ波プラズマC
VD法による堆積膜装置の1例の平面図であり、第6図
、第8図はそれぞれの簡略図である。第9図は、マイク
ロ波プラズマCVD法による堆積装置の透視略図、第1
0図及び第1)図は第1図の平面図である。 図において、101,901.1001・・・反応容器
(反応炉)、102,902.1002・・・誘電体窓
、103,903.1003・・・導波管、104゜9
04.1004・・・排気口、105,402,905
゜1005・・・支持体、106,906.1006・
・・グロー放電プラズマ空間(放電空間)、107゜9
07.1007・・・加熱用ヒーター、108.401
゜908.1008.1)01・・・ガス放出管。
FIG. 1 is a perspective schematic diagram of an example of a deposited film apparatus using the microwave plasma CVD method according to the present invention, FIGS. 2 and 4 are plan views of FIG. 1, and FIG. 3 is a simplified diagram. FIGS. 5 and 7 also show microwave plasma C in the present invention.
It is a plan view of an example of a deposited film apparatus by the VD method, and FIGS. 6 and 8 are respective simplified diagrams. FIG. 9 is a schematic perspective view of a deposition apparatus using microwave plasma CVD method,
0 and 1) are plan views of FIG. 1. In the figure, 101,901.1001...Reaction vessel (reactor), 102,902.1002...Dielectric window, 103,903.1003...Waveguide, 104°9
04.1004...exhaust port, 105,402,905
゜1005...Support, 106,906.1006.
...Glow discharge plasma space (discharge space), 107°9
07.1007... Heating heater, 108.401
゜908.1008.1)01...Gas discharge pipe.

Claims (4)

【特許請求の範囲】[Claims] (1)堆積膜形成用の複数の支持体と該支持体の近傍に
マイクロ波エネルギーによる堆積膜形成用の原料ガスの
分解空間を有するマイクロ波プラズマCVD装置におい
て、その排気手段が、複数の油拡散ポンプを有すること
を特徴とするマイクロ波プラズマCVD装置。
(1) In a microwave plasma CVD apparatus having a plurality of supports for forming a deposited film and a space for decomposing raw material gas for forming a deposited film using microwave energy in the vicinity of the supports, the exhaust means includes a plurality of oil A microwave plasma CVD apparatus characterized by having a diffusion pump.
(2)前記排気手段が、2台の油拡散ポンプを有する特
許請求の範囲第1項に記載のマイクロ波プラズマCVD
装置。
(2) The microwave plasma CVD according to claim 1, wherein the exhaust means includes two oil diffusion pumps.
Device.
(3)前記排気手段は、前記分解空間に導入された原料
ガスの排気孔を有し、該排気孔が、反応炉の側面と同一
である特許請求の範囲第1項に記載のマイクロ波プラズ
マCVD装置。
(3) The microwave plasma according to claim 1, wherein the exhaust means has an exhaust hole for the raw material gas introduced into the decomposition space, and the exhaust hole is the same as a side surface of the reactor. CVD equipment.
(4)前記分解空間に導入された原料ガスの排気孔が、
複数である特許請求の範囲第1項乃至第3項のいずれか
1項に記載のマイクロ波プラズマCVD装置。
(4) An exhaust hole for the raw material gas introduced into the decomposition space,
The microwave plasma CVD apparatus according to any one of claims 1 to 3, which is plural.
JP9968287A 1987-04-24 1987-04-24 Microwave plasma cvd device Pending JPS63266073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9968287A JPS63266073A (en) 1987-04-24 1987-04-24 Microwave plasma cvd device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9968287A JPS63266073A (en) 1987-04-24 1987-04-24 Microwave plasma cvd device

Publications (1)

Publication Number Publication Date
JPS63266073A true JPS63266073A (en) 1988-11-02

Family

ID=14253803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9968287A Pending JPS63266073A (en) 1987-04-24 1987-04-24 Microwave plasma cvd device

Country Status (1)

Country Link
JP (1) JPS63266073A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04263527A (en) * 1991-02-18 1992-09-18 Mitsubishi Electric Corp Voice decoding device
JPH051220U (en) * 1991-06-18 1993-01-08 古河電気工業株式会社 Vapor phase growth equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04263527A (en) * 1991-02-18 1992-09-18 Mitsubishi Electric Corp Voice decoding device
JPH051220U (en) * 1991-06-18 1993-01-08 古河電気工業株式会社 Vapor phase growth equipment

Similar Documents

Publication Publication Date Title
US5443645A (en) Microwave plasma CVD apparatus comprising coaxially aligned multiple gas pipe gas feed structure
US5637358A (en) Microwave plasma chemical vapor deposition process using a microwave window and movable, dielectric sheet
US5129359A (en) Microwave plasma CVD apparatus for the formation of functional deposited film with discharge space provided with gas feed device capable of applying bias voltage between the gas feed device and substrate
JPH0510428B2 (en)
US4897284A (en) Process for forming a deposited film on each of a plurality of substrates by way of microwave plasma chemical vapor deposition method
US5597623A (en) Process for using microwave plasma CVD
US6453913B2 (en) Method of cleaning a film deposition apparatus, method of dry etching a film deposition apparatus, and an article production method including a process based on the cleaning or dry etching method
US6435130B1 (en) Plasma CVD apparatus and plasma processing method
JP2787148B2 (en) Method and apparatus for forming deposited film by microwave plasma CVD
JP2000073173A (en) Formation of deposited film and deposited film forming device
JPS63266073A (en) Microwave plasma cvd device
JP2553331B2 (en) Deposited film forming apparatus by plasma CVD method
JPS62142783A (en) Deposited film forming device by plasma cvd method
JP2768539B2 (en) Deposition film forming equipment
JP2784784B2 (en) Method and apparatus for forming functional deposited film by microwave plasma CVD
JP3368142B2 (en) Deposition film forming equipment
JPH04247877A (en) Deposited film forming device
JP2867150B2 (en) Microwave plasma CVD equipment
JP3061852B2 (en) Apparatus for forming a deposited film by microwave plasma CVD
JP2994658B2 (en) Apparatus and method for forming deposited film by microwave CVD
JP2925291B2 (en) Deposition film forming equipment
JPH0897161A (en) Method and system for forming deposition film by rf plasma cvd
JPH07183228A (en) Deposited film forming device
JPH01156476A (en) Deposit film-forming apparatus
JPH02129378A (en) Device for producing functional deposited film by microwave plasma cvd