JPS63266042A - Steel for nonmagnetic mold suitable for cvd treatment - Google Patents

Steel for nonmagnetic mold suitable for cvd treatment

Info

Publication number
JPS63266042A
JPS63266042A JP30454787A JP30454787A JPS63266042A JP S63266042 A JPS63266042 A JP S63266042A JP 30454787 A JP30454787 A JP 30454787A JP 30454787 A JP30454787 A JP 30454787A JP S63266042 A JPS63266042 A JP S63266042A
Authority
JP
Japan
Prior art keywords
steel
treatment
mold
cvd
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30454787A
Other languages
Japanese (ja)
Inventor
Hiroshi Otsubo
宏 大坪
Akihiro Matsuzaki
明博 松崎
Yutaka Oka
裕 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP30454787A priority Critical patent/JPS63266042A/en
Publication of JPS63266042A publication Critical patent/JPS63266042A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce the titled steel by incorporating specific ratios of C, Si and Mn into Fe. CONSTITUTION:The steel contg., by weight, 0.3-1.5% C, 0.1-1.0% Si, 12.0-35.0% Mn and the balance consisting of Fe with inevitable impurities is prepd. to obtain the nonmagnetic steel having excellent characteristics which is usable as a mold for molding of a ferrite magnetic and plastic magnet. A mold is formed by said nonmagnetic steel and the surface thereof is applied to a CVD treatment and aging treatment after that, by which the nonmagnetic mold having high strength and excellent wear resistance can be obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、フェライト磁石やプラスチック磁石の成形
用の金型などに使用される非磁性鋼に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to non-magnetic steel used in molds for molding ferrite magnets and plastic magnets.

(従来の技術) 例えばフェライト磁石を成形するとき素材を磁化するの
に磁場がかけられるが、その際の磁界の乱れを防ぐため
金型の材質は非磁性であることが必須である。
(Prior Art) For example, when molding a ferrite magnet, a magnetic field is applied to magnetize the material, but it is essential that the material of the mold be non-magnetic to prevent disturbance of the magnetic field.

また耐摩耗性を高めるため金型表面に窒化処理を施して
から使用に供しているが、耐摩耗性は不十分である。一
方金型表面に超硬合金をはめ合わせることによって耐摩
耗性の向上をはかり得るが、金型製作費用が増大する欠
点がある。
Furthermore, in order to improve wear resistance, the mold surface is subjected to nitriding treatment before use, but the wear resistance is insufficient. On the other hand, it is possible to improve wear resistance by fitting cemented carbide onto the surface of the mold, but this has the drawback of increasing mold manufacturing costs.

発明者らは、耐摩耗性に優れた金型を安価に作製するに
は、表面に耐摩耗性に優れた被膜をそなえる非磁性材料
を用いるのが有利であることに着目した。
The inventors have focused on the fact that in order to inexpensively produce a mold with excellent wear resistance, it is advantageous to use a nonmagnetic material whose surface has a coating with excellent wear resistance.

とくに磁石成形用の金型には、膜厚3μm以上の炭化物
膜が形成されていることが理想であるが、該炭化物膜を
CVD処理にて被成するのに適した素材となる非磁性鋼
は見当らない。
In particular, it is ideal for molds for magnet molding to have a carbide film with a thickness of 3 μm or more, but non-magnetic steel is a suitable material for forming the carbide film by CVD treatment. I can't find it.

また非磁性材料の引張強さは高々60〜80kg/mm
2であるため、この材料からなる金型を型締め力の大き
な敵方ショットでの成形に適用すると、永久変形が生じ
る。この変形を回避するために金型の肉厚を厚くするな
どの対策がとられるが、金型自身が大きくなって作業性
の低下をまねくことになる。したがって非磁性金型用の
材料には、高強度であることも要求される。
Also, the tensile strength of non-magnetic materials is at most 60 to 80 kg/mm.
2, therefore, if a mold made of this material is applied to molding with enemy shots that have a large mold clamping force, permanent deformation will occur. In order to avoid this deformation, measures such as increasing the wall thickness of the mold are taken, but this increases the size of the mold itself and reduces workability. Therefore, materials for non-magnetic molds are also required to have high strength.

一方特開昭52−111891号公報にはクロムモリブ
デン鋼、機械構造用鋼の表面硬化処理についての開示は
あるが、非磁性材料への適用に関しての記載はない。
On the other hand, JP-A-52-111891 discloses surface hardening treatment of chromium-molybdenum steel and steel for machine structural use, but does not mention application to non-magnetic materials.

そこで表面に耐摩耗性に優れた被膜をCV D処理にて
被成するのに最適な特性及び金型に必要な強度をそなえ
る非磁性鋼を提供することが、この発明の目的である。
Therefore, it is an object of the present invention to provide a non-magnetic steel that has properties suitable for forming a coating with excellent wear resistance on its surface by CVD treatment and strength necessary for molds.

(問題点を解決するための手段) この発明は、 C: 0.3〜1.5 wt%(以下単に%と示す) 
、Si :0.1〜1.0%及びMn : 12.0〜
35.0%を含有し、残部Fe及び不可避的不純物から
なるCVD処理に適した非磁性金型用w4(第1発明)
、 第1発明にさらにCr : 1.0〜9.0%及びAl
 : 0.5〜1.5%のうちの1種又は2種を含有す
る非磁性金型用鋼(第2発明)、 第1発明にさらにV:0.5〜2.0%及びNb : 
0.5〜2.0%のうちの1種又は2種を含有する非磁
性金型用鋼(第3発明)、 第1発明にさらに、S:o、o3〜0.3%、Pb :
 0.03〜0.3%及びBi : 0.03〜0.3
%のうちの1種又は2種以上を含有する非磁性金型用鋼
(第4発明)、第2発明にさらにV;0.5〜2.0%
及びNb : 0.5〜2.0%のうちの1種又は2種
を含有する非磁性金型用鋼(第5発明)、 第2発明にさらにS:0.03〜0.3%、Pb ; 
0.03〜0.3%及びBi : 0.03〜0.3%
のうちの1種又は2種以上を含有する非磁性金型用鋼(
第6発明)、第3発明にさらにS:0.03〜0.3%
、Pb : 0.03〜0.3%及びBi : 0.0
3〜0.3%のうちの1種又は2種以上を含有する非磁
性金型用鋼(第7発明)、第5発明にさら4.: S 
: 0.03〜0.3%、Pb : 0.03〜0.3
%及びBi : 0.03〜0.3%のうちの1種又は
2種以上を含有する非磁性金型用鋼(第8発明)、であ
る。
(Means for solving the problem) This invention has the following features: C: 0.3 to 1.5 wt% (hereinafter simply referred to as %)
, Si: 0.1~1.0% and Mn: 12.0~
W4 for non-magnetic molds suitable for CVD processing, containing 35.0% and the balance consisting of Fe and inevitable impurities (first invention)
, Cr: 1.0 to 9.0% and Al
: Non-magnetic mold steel containing one or two of 0.5-1.5% (second invention), V: 0.5-2.0% and Nb in addition to the first invention:
Non-magnetic mold steel containing one or two of 0.5 to 2.0% (third invention), further added to the first invention, S: o, o3 to 0.3%, Pb:
0.03-0.3% and Bi: 0.03-0.3
% (fourth invention), the second invention further contains V; 0.5 to 2.0%
and Nb: Non-magnetic mold steel containing one or two of 0.5 to 2.0% (fifth invention), S: 0.03 to 0.3% in the second invention, Pb;
0.03-0.3% and Bi: 0.03-0.3%
Non-magnetic mold steel containing one or more of the following:
6th invention), S: 0.03 to 0.3% in addition to the 3rd invention
, Pb: 0.03-0.3% and Bi: 0.0
Non-magnetic mold steel containing one or more of 3 to 0.3% (seventh invention); : S
: 0.03~0.3%, Pb: 0.03~0.3
% and Bi: non-magnetic mold steel (eighth invention) containing one or more of 0.03 to 0.3%.

(作 用) つぎにこの発明における化学成分の限定理由を説明する
(Function) Next, the reason for limiting the chemical components in this invention will be explained.

C:O,3〜1.5  % Cは炭化物をCVD処理にてコーティングするために不
可欠な元素であるが、0.3%未満ではCVD処理によ
って生成する炭化物の膜厚が薄く、また1、5%を越え
て含有させてもその効果は飽和し、かえって切削性を著
しく減するため、Cは0.3%以上、1.5%以下とし
た。
C: O, 3-1.5% C is an essential element for coating carbides by CVD processing, but if it is less than 0.3%, the thickness of the carbide produced by CVD processing will be thin, and 1. Even if the carbon content exceeds 5%, the effect will be saturated and the machinability will be significantly reduced, so the content of C is set to be 0.3% or more and 1.5% or less.

Si:0.1〜1.0% Stは鋼の脱酸に不可欠な元素であり、0.1%以上は
必要であるが、1.0%を越えるとじん性が劣化するた
め、0.1%以上、1.0%以下とした。
Si: 0.1-1.0% St is an essential element for deoxidizing steel, and 0.1% or more is necessary, but if it exceeds 1.0%, the toughness will deteriorate, so if it is 0.1% or more, the toughness will deteriorate. The content was set to be 1% or more and 1.0% or less.

Mn : 12.0〜35.0% Mnは鋼を非磁性とするために不可欠な元素であり、1
2.0%以上は必要であるが、35.0%を越えて含有
させてもその効果はかわらない上、切削性を劣化させる
ため、35.0%以下とした。
Mn: 12.0-35.0% Mn is an essential element to make steel non-magnetic, and 1
Although it is necessary to contain 2.0% or more, the effect does not change even if the content exceeds 35.0%, and the machinability deteriorates, so the content is set to 35.0% or less.

Cr : 1.0〜9%及びAl : 0.5〜1.5
%のうちの1種又は2種 CVD処理で生成された被膜の強度を高めるためより高
面圧が要求される金型の場合には、Crおよび/又はA
1が含有された鋼を用いることが、金型の高寿命化に有
利である。
Cr: 1.0-9% and Al: 0.5-1.5
In the case of molds that require higher surface pressure in order to increase the strength of the coating produced by CVD treatment, Cr and/or A
Using steel containing 1 is advantageous in extending the life of the mold.

また、母材が硬ければ硬いほどCVD処理で被膜を生成
した場合、金型の寿命は向上する。母材の表面の硬さを
増す方法に窒化処理があり、CrおよびAIは金属材料
の窒化処理特性を向上させ得る。
Furthermore, the harder the base material is, the longer the life of the mold will be if a film is formed by CVD treatment. Nitriding is a method of increasing the surface hardness of a base material, and Cr and AI can improve the nitriding properties of metal materials.

Cr、 AIは以上の作用効果を示すもので、各含有量
は次のとおりである。
Cr and AI exhibit the above-mentioned effects, and their contents are as follows.

Crは、生成される被膜の強度又は窒化処理の際の硬さ
を満足させるためには、1.0%以上の含有が必要であ
り、9%を越えて含有させてもそ、の効果は飽和し、か
えって熱間加工性が劣化して圧延が困難となるため、1
.0%以上、9%以下とした。
Cr must be contained in an amount of 1.0% or more in order to satisfy the strength of the produced film or the hardness during nitriding, and even if it is contained in more than 9%, its effect will not be saturated. However, on the contrary, hot workability deteriorates and rolling becomes difficult.
.. It was set to be 0% or more and 9% or less.

AIは生成される被膜の強度又は窒化処理の際の硬さを
満足させるためには、0.5%以上の含有が必要であり
、1.5%を越えて含有させてもその効果は飽和し、か
えって熱間加工性の劣化をもたらすため、0.5%以上
、1.5%以下とした。
In order to satisfy the strength of the produced film or the hardness during nitriding treatment, it is necessary to contain AI in an amount of 0.5% or more, and even if it is contained in more than 1.5%, the effect will be saturated. However, since it rather causes deterioration of hot workability, it is set to 0.5% or more and 1.5% or less.

Nb : 0.5〜2.0%およびV:0.5〜2,0
%のうちの1種又は2種 CVD処理後、時効処理により強度上昇をはかるために
不可欠な成分であるが、0.5%未満では効果はなく、
2.0%を越えて含有させてもその効果は飽和する。し
たがって含有量はそれぞれ0.5%以上、2.0%以下
とした。
Nb: 0.5-2.0% and V: 0.5-2.0
It is an essential component to increase the strength by aging treatment after CVD treatment, but it has no effect if it is less than 0.5%.
Even if the content exceeds 2.0%, the effect is saturated. Therefore, the content was set to 0.5% or more and 2.0% or less, respectively.

s:o、o3〜0.3%、Pb : 0.03〜0.3
%及びBi:0.03〜0.3%のうちの1種又は2種
以上s、pb及びBiは被削性を改善する同様の作用効
果を示し、どちらの元素も被削性改善のためには、0.
03%以上の含有が必要であり、また、0.3%を越え
ての含有は、製鋼上困難であるため、それぞれ0.03
%以上、0.3%以下とした。
s: o, o3~0.3%, Pb: 0.03~0.3
% and Bi: 0.03 to 0.3%.S, PB, and Bi exhibit similar effects to improve machinability, and both elements are used to improve machinability. is 0.
It is necessary to contain 0.03% or more, and since it is difficult to contain more than 0.3% in steel manufacturing, each
% or more and 0.3% or less.

上記の材料の母材は転炉により精錬し、ときにはRH脱
ガス処理又は、電気炉により溶製し、LRFにより精錬
した後、連続鋳造法又は造塊法により、スラブ、ビレッ
ト、ブルーム、又はインゴットを製造し、圧延(分塊圧
延含む)又は鍛造により、厚板、平鋼、棒鋼に製造する
。ついで熱処理せずに又は熱処理を施しく600″C〜
1100”C)製品とする。さらに、表面を研摩し、C
VD処理を施すことにより、耐摩耗性に優れた非磁性材
料を提供することができる。なおCVD処理は、TiC
l4: 1〜10 vo1%、CH4: 0.5〜10
 vo1%、11□:残の炉雰囲気中で、炉内温度90
0〜1100°C1保持時間1〜10時間の条件で施す
のが適当である。
The base material of the above materials is refined in a converter, sometimes RH degassed or melted in an electric furnace, refined by LRF, and then converted into slabs, billets, blooms, or ingots by continuous casting or ingot making. It is manufactured into thick plates, flat steel, and steel bars by rolling (including blooming) or forging. Then heated to 600″C without heat treatment or with heat treatment.
1100"C) product.Furthermore, the surface is polished and the C)
By applying the VD treatment, a nonmagnetic material with excellent wear resistance can be provided. Note that the CVD treatment uses TiC
l4: 1-10 vo1%, CH4: 0.5-10
vo1%, 11□: In the remaining furnace atmosphere, the furnace temperature is 90
It is appropriate to apply the treatment under conditions of 0 to 1100° C. and a holding time of 1 to 10 hours.

またCVD処理後、時効処理を施すことにより、高強度
を有する耐摩耗性に優れた非磁性材料を提供することが
できる。
Further, by performing an aging treatment after the CVD treatment, a nonmagnetic material with high strength and excellent wear resistance can be provided.

(実施例) 真空溶解により、表1に示す各組成になる50kgイン
ゴットをそれぞれ溶製し、加熱後、25n3m厚に熱間
圧延し、ついで930°Cで20分間の溶体化処理を施
した。
(Example) 50 kg ingots having each composition shown in Table 1 were melted by vacuum melting, heated, hot rolled to a thickness of 25 nm and 3 m, and then subjected to solution treatment at 930° C. for 20 minutes.

得られた熱延板から厚さ20mm、幅及び長さ各20n
+mの試験片を採取し、この試験片に1000°Cで4
時間のCVD処理(雰囲気TiC1,: 5 vo1%
、CH4: 5νof%、Hよ:残)を施した。
The obtained hot-rolled plate has a thickness of 20 mm and a width and length of 20 nm each.
+ m test piece was taken, and this test piece was heated at 1000°C for 4
CVD treatment for hours (atmosphere TiC1: 5 vo1%
, CH4: 5νof%, H: remainder) were applied.

CVD処理特性を評価するため、被膜の厚みを顕微鏡で
測定し、さらに被膜の表面にビッカース硬度計により、
各種荷重(5kg、 10kg、30kg)で圧痕を打
刻し、割れ発生の有無によって膜の強度を測定した。そ
の測定結果を表1に併記する。
In order to evaluate the CVD processing characteristics, the thickness of the film was measured using a microscope, and the surface of the film was measured using a Vickers hardness meter.
Indentations were made under various loads (5 kg, 10 kg, 30 kg), and the strength of the membrane was measured based on the presence or absence of cracks. The measurement results are also listed in Table 1.

また表1に示した試料No、2. 6.12+ 13.
14+19.20.2L 22.29.30.31.3
2.33.35および37につき、930°Cで溶体化
のなされた熱延板から厚さ20mm、幅20mm、長さ
150mmの試験片を切り出し、CVD処理と同じ熱履
歴となるように、1000°Cで4時間の熱処理を施し
た後、650°Cで5時間の時効処理を施した試験片か
ら、平行部長さ30mm、平行部径6 mmの引張試験
片を採取し、引張試験に供した。その結果を第1図に示
すように、第3゜5.7および8発明に従う発明鋼は、
時効処理前の引張強さが約60〜90kgf/mm2で
あるのに比し時効処理後の引張強さが上昇していること
がわかる。
In addition, sample No. 2 shown in Table 1. 6.12+ 13.
14+19.20.2L 22.29.30.31.3
For 2.33.35 and 37, a test piece with a thickness of 20 mm, width of 20 mm, and length of 150 mm was cut out from a hot-rolled plate that had been solution-treated at 930°C. A tensile test piece with a parallel part length of 30 mm and a parallel part diameter of 6 mm was taken from a test piece that had been heat treated at °C for 4 hours and then aged at 650 °C for 5 hours, and was subjected to a tensile test. did. As the results are shown in FIG. 1, the invention steel according to the 3.5.7 and 8 inventions is
It can be seen that the tensile strength before the aging treatment is approximately 60 to 90 kgf/mm2, but the tensile strength after the aging treatment is increased.

同様に表1に示した試料No、2. 6. 8. 9.
10゜iL 19.20.2L 22.23.25およ
び26につき、930°Cで溶体化を経て熱延板から厚
さおよび幅20mm、長さ150mmの試験片を採取し
、この試験片に窒化処理を施し、表面の硬さについて測
定した結果を、第2図に示す。同図から、発明鋼は窒化
特性にすぐれていることがわかる。
Similarly, sample No. 2 shown in Table 1. 6. 8. 9.
10゜iL 19.20.2L 22.23.For 25 and 26, a test piece with a thickness and width of 20 mm and a length of 150 mm was taken from the hot rolled sheet after solution treatment at 930°C, and this test piece was nitrided. The results of the treatment and measurement of surface hardness are shown in FIG. The figure shows that the invented steel has excellent nitriding properties.

べきであり、そこで表1に示した試料Nα3,6゜16
、1?、 18.23.24.25.26.28.31
.33および37の被削性を評価するために、表2に示
す条件で切削試験を行った。
Therefore, the sample Nα3,6°16 shown in Table 1
, 1? , 18.23.24.25.26.28.31
.. In order to evaluate the machinability of No. 33 and No. 37, a cutting test was conducted under the conditions shown in Table 2.

被削性の評価は、板厚23mmの試験片にドリルで一定
の深さの穴をあけ、1本のドリルでの穴あけが不可能と
なるまでにあけることができた穴の個数によって行った
。その結果を第3図に示すように、第5.6.7および
8発明に従う鋼の被削性が優れていることがわかる。
Machinability was evaluated by drilling holes to a certain depth in a 23 mm thick test piece using a drill, and determining the number of holes that could be drilled before it became impossible to drill with one drill. . As shown in FIG. 3, the results show that the machinability of the steels according to the inventions 5.6.7 and 8 is excellent.

表2 (発明の効果) この発明によれば、CVD処理によって炭化物層を3μ
m以上の厚さで形成する場合に、その基材に最適な特性
をそなえる非磁性鋼を提供でき、したがって被膜の高強
度化と耐摩耗性の向上を達成し得る。
Table 2 (Effects of the invention) According to this invention, the carbide layer is reduced to 3 μm by CVD treatment.
When formed to a thickness of m or more, it is possible to provide a non-magnetic steel that has properties optimal for the base material, and therefore it is possible to achieve high strength and improved wear resistance of the coating.

またC V D処理後に時効処理を施すことによって母
材自身の強度を高めることが可能で、よって型締め力を
強くしても永久変形の生じない非磁性金型の作製を実現
する。
Furthermore, by performing an aging treatment after the C VD treatment, it is possible to increase the strength of the base material itself, thereby realizing the production of a non-magnetic mold that does not cause permanent deformation even if the mold clamping force is increased.

さらにCVD処理の前処理として重要な窒化による硬化
を十分に期待でき、又金型作製時に重要な被削性も向上
し得る。
Furthermore, hardening by nitriding, which is important as a pretreatment for CVD processing, can be fully expected, and machinability, which is important when manufacturing molds, can also be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は引張強さと(Nb十V)量との関係を示すグラ
フ、 第2図は窒化硬さとCr1lとの関係を示すグラフ、第
3図は各鋼材の被削性を示すグラフである。 第1図 Nb+V童(wD;”) 第3図 5量(rwt;g)
Fig. 1 is a graph showing the relationship between tensile strength and (Nb + V) amount, Fig. 2 is a graph showing the relationship between nitriding hardness and Cr1l, and Fig. 3 is a graph showing the machinability of each steel material. . Figure 1: Nb+V (wD;'') Figure 3: 5 amount (rwt;g)

Claims (1)

【特許請求の範囲】 1、C:0.3〜1.5wt%、 Si:0.1〜1.0wt%及び Mn:12.0〜35.0wt% を含有し、残部Fe及び不可避的不純物からなるCVD
処理に適した非磁性金型用鋼。 2、C:0.3〜1.5wt%、 Si:0.1〜1.0wt%及び Mn:12.0〜35.0wt% を含み、さらにCr:1.0〜9.0wt%及びAl:
0.5〜1.5wt%のうちの1種又は2種を含有し、
残部Fe及び不可避的不純物からなるCVD処理に適し
た非磁性金型用鋼。 3、C:0.3〜1.5wt%、 Si:0.1〜1.0wt%及び Mn:12.0〜35.0wt% を含み、さらにV:0.5〜2.0wt%及びNb:0
.5〜2.0wt%のうちの1種又は2種を含有し、残
部Fe及び不可避的不純物からなるCVD処理に適した
非磁性金型用鋼。 4、C:0.3〜1.5wt%、 Si:0.1〜1.0wt%及び Mn:12.0〜35.0wt% を含み、さらにS:0.03〜0.3wt%、Pb:0
.03〜0.3wt%及びBi:0.003〜0.3w
t%のうちの1種又は2種以上を含有し、残部Fe及び
不可避的不純物からなるCVD処理に適した非磁性金型
用鋼。 5、C:0.3〜1.5wt%、 Si:0.1〜1.0wt%及び Mn:12.0〜35.0wt% を含み、さらにCr:1.0〜9.0wt%及びAl:
0.5〜1.5wt%のうちの1種又は2種とV:0.
5〜2.0wt%及びNb:0.5〜2.0wt%のう
ちの1種又は2種とを含有し、残部Fe及び不可避的不
純物からなるCVD処理に適した非磁性金型用鋼。 6、C:0.3〜1.5wt%、 Si:0.1〜1.0wt%及び Mn:12.0〜35.0wt% を含み、さらにCr:1.0〜9.0wt%及びAl:
0.5〜1.5wt%のうちの1種又は2種とS:0.
03〜0.3wt%、Pb:0.03〜0.3wt%及
びBi:0.03〜0.3wt%のうちの1種又は2種
以上とを含有し、残部Fe及び不可避的不純物からなる
CVD処理に適した非磁性金型用鋼。 7、C:0.3〜1.5wt%、 Si:0.1〜1.0wt%及び Mn:12.0〜35.0wt% を含み、さらにV:0.5〜2.0wt%及びNb:0
.5〜2.0wt%のうちの1種又は2種とS:0.0
3〜0.3wt%、pb:0.03〜0.3wt%及び
Bi:0.03〜0.3wt%のうちの1種又は2種以
上を含有し、残部Fe及び不可避的不純物からなるCV
D処理に適した非磁性金型用鋼。 8、C:0.3〜1.5wt%、 Si:0.1〜1.0wt%及び Mn:12.0〜35.0wt% を含み、さらにCr:1.0〜9.0wt%及びAl:
0.5〜1.5wt%のうちの1種又は2種とV:0.
5〜2.0wt%及びNb:0.5〜2.0wt%のう
ちの1種又は2種とS:0.03〜0.3wt%、Pb
:0.03〜0.3wt%及びBi:0.03〜0.3
wt%のうちの1種又は2種以上とを含有し、残部Fe
及び不可避的不純物からなるCVD処理に適した非磁性
金型用鋼。
[Claims] 1. Contains C: 0.3 to 1.5 wt%, Si: 0.1 to 1.0 wt%, and Mn: 12.0 to 35.0 wt%, the balance being Fe and inevitable impurities. CVD consisting of
Non-magnetic mold steel suitable for processing. 2. Contains C: 0.3 to 1.5 wt%, Si: 0.1 to 1.0 wt%, and Mn: 12.0 to 35.0 wt%, and further contains Cr: 1.0 to 9.0 wt% and Al. :
Containing one or two of 0.5 to 1.5 wt%,
A non-magnetic mold steel suitable for CVD treatment, consisting of the remainder Fe and unavoidable impurities. 3. Contains C: 0.3 to 1.5 wt%, Si: 0.1 to 1.0 wt%, and Mn: 12.0 to 35.0 wt%, and further contains V: 0.5 to 2.0 wt% and Nb. :0
.. A non-magnetic mold steel suitable for CVD treatment, containing one or two of 5 to 2.0 wt%, with the balance being Fe and unavoidable impurities. 4. Contains C: 0.3 to 1.5 wt%, Si: 0.1 to 1.0 wt%, and Mn: 12.0 to 35.0 wt%, and further includes S: 0.03 to 0.3 wt%, Pb :0
.. 03~0.3wt% and Bi:0.003~0.3w
Non-magnetic mold steel suitable for CVD treatment, containing one or more of t% and the balance being Fe and unavoidable impurities. 5. Contains C: 0.3 to 1.5 wt%, Si: 0.1 to 1.0 wt%, and Mn: 12.0 to 35.0 wt%, and further contains Cr: 1.0 to 9.0 wt% and Al. :
One or two of 0.5 to 1.5 wt% and V: 0.
5 to 2.0 wt% and one or two of Nb: 0.5 to 2.0 wt%, and the balance is Fe and inevitable impurities, and is suitable for a CVD process. 6. Contains C: 0.3 to 1.5 wt%, Si: 0.1 to 1.0 wt%, and Mn: 12.0 to 35.0 wt%, and further contains Cr: 1.0 to 9.0 wt% and Al. :
One or two of 0.5 to 1.5 wt% and S: 0.
03 to 0.3 wt%, Pb: 0.03 to 0.3 wt%, and Bi: 0.03 to 0.3 wt%, and the remainder consists of Fe and inevitable impurities. Non-magnetic mold steel suitable for CVD processing. 7. Contains C: 0.3 to 1.5 wt%, Si: 0.1 to 1.0 wt%, and Mn: 12.0 to 35.0 wt%, and further contains V: 0.5 to 2.0 wt% and Nb. :0
.. One or two of 5 to 2.0 wt% and S: 0.0
CV containing one or more of 3 to 0.3 wt%, pb: 0.03 to 0.3 wt%, and Bi: 0.03 to 0.3 wt%, with the balance consisting of Fe and inevitable impurities.
Non-magnetic mold steel suitable for D treatment. 8. Contains C: 0.3 to 1.5 wt%, Si: 0.1 to 1.0 wt%, and Mn: 12.0 to 35.0 wt%, and further contains Cr: 1.0 to 9.0 wt% and Al. :
One or two of 0.5 to 1.5 wt% and V: 0.
5 to 2.0 wt% and one or two of Nb: 0.5 to 2.0 wt% and S: 0.03 to 0.3 wt%, Pb
:0.03~0.3wt% and Bi:0.03~0.3
wt%, and the balance is Fe.
and non-magnetic mold steel suitable for CVD treatment, which contains unavoidable impurities.
JP30454787A 1986-12-24 1987-12-03 Steel for nonmagnetic mold suitable for cvd treatment Pending JPS63266042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30454787A JPS63266042A (en) 1986-12-24 1987-12-03 Steel for nonmagnetic mold suitable for cvd treatment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP61-306203 1986-12-24
JP30620386 1986-12-24
JP30454787A JPS63266042A (en) 1986-12-24 1987-12-03 Steel for nonmagnetic mold suitable for cvd treatment

Publications (1)

Publication Number Publication Date
JPS63266042A true JPS63266042A (en) 1988-11-02

Family

ID=26563949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30454787A Pending JPS63266042A (en) 1986-12-24 1987-12-03 Steel for nonmagnetic mold suitable for cvd treatment

Country Status (1)

Country Link
JP (1) JPS63266042A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009542920A (en) * 2006-07-11 2009-12-03 アルセロールミタル・フランス Method for producing iron-carbon-manganese austenitic steel sheet having excellent delayed crack resistance, and steel sheet thus produced
CN109023101A (en) * 2018-09-21 2018-12-18 江西樟树市兴隆特殊钢有限公司 A kind of nonmagnetic mould steel and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009542920A (en) * 2006-07-11 2009-12-03 アルセロールミタル・フランス Method for producing iron-carbon-manganese austenitic steel sheet having excellent delayed crack resistance, and steel sheet thus produced
US9200355B2 (en) 2006-07-11 2015-12-01 Arcelormittal France Process for manufacturing iron-carbon-manganese austenitic steel sheet with excellent resistance to delayed cracking, and sheet thus produced
US10006099B2 (en) 2006-07-11 2018-06-26 Arcelormittal Process for manufacturing iron-carbon-maganese austenitic steel sheet with excellent resistance to delayed cracking
US10131964B2 (en) 2006-07-11 2018-11-20 Arcelormittal France Iron-carbon-manganese austenitic steel sheet
CN109023101A (en) * 2018-09-21 2018-12-18 江西樟树市兴隆特殊钢有限公司 A kind of nonmagnetic mould steel and preparation method thereof

Similar Documents

Publication Publication Date Title
KR20190028782A (en) High frequency quenching steel
CN109835013A (en) A kind of high-strength wearable clad steel plate and its manufacturing method
CZ268897A3 (en) Light constructional steel and the use thereof
EP1696045A1 (en) Hot work tool steel and mold member excellent in resistance to melting
JP5181439B2 (en) Non-oriented electrical steel sheet
JPH0555585B2 (en)
JPS63266042A (en) Steel for nonmagnetic mold suitable for cvd treatment
JPS61238943A (en) High-strength non-magnetic steel excelling in rust resistance
JPH02179848A (en) Hot tool steel
JP2007002333A (en) Press die with excellent self-lubricating property
JP4462264B2 (en) Manufacturing method of cold rolled steel sheet for nitriding treatment
JP3206631B2 (en) Austenitic stainless steel with excellent roll transferability
WO1997003214A1 (en) Nitriding steel excellent in formability and nitriding characteristics and products of press forming
JP2003082445A (en) Nonmagnetic stainless steel having excellent workability
JPH0280539A (en) Steel for nitriding
JPH02285049A (en) Free-cutting die steel
JP2003001307A (en) Roll
JP2002285277A (en) Composite roll for rolling made by centrifugal casting
JPS6213332A (en) High fatigue limit ratio clad steel plate having excellent moldability
JP4852804B2 (en) Non-oriented electrical steel sheet
JP3252969B2 (en) Hot tool steel
JP2528576B2 (en) Method for manufacturing thick steel plate with excellent laser cutability
JP2004091812A (en) Hot-rolled martensitic stainless steel strip excellent in manufacturability
JPS61177358A (en) Steel for knockout pin
JPH01176060A (en) Aluminum compound coated steel material and production thereof