JPS63266036A - Ni based alloy - Google Patents

Ni based alloy

Info

Publication number
JPS63266036A
JPS63266036A JP10010087A JP10010087A JPS63266036A JP S63266036 A JPS63266036 A JP S63266036A JP 10010087 A JP10010087 A JP 10010087A JP 10010087 A JP10010087 A JP 10010087A JP S63266036 A JPS63266036 A JP S63266036A
Authority
JP
Japan
Prior art keywords
alloy
based alloy
less
ductility
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10010087A
Other languages
Japanese (ja)
Inventor
Akiji Fujita
明次 藤田
Tatsuyoshi Matsumoto
松本 辰喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10010087A priority Critical patent/JPS63266036A/en
Publication of JPS63266036A publication Critical patent/JPS63266036A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce an Ni based alloy having excellent ductility at the ordinary temp. and high temp. by adding specific ratios of metallic elements such as B, Hf, etc., to the alloy consisted essentially of Ni and Al and formed the structure of Ni3Al as intermetallic compounds. CONSTITUTION:The base metal 7 of the Ni based alloy contg., by atom., 75.4-79% Ni, 7-12% Al, 0.5-4% Hf, <0.5% B, <0.9% C, 4.5-11% Fe or Co and one or more kinds among the elements selected from the group of each <=3% Mo, W, Nb, Ta, Zr and V and having the structure composed mainly of the intermetallic compound Ni3Al is charged to a crucible 6 made of alumina, is gradually descended in transparent quartz glass 1 provided with a heating element 5 made of carbon, is melted at the part of the exothermic body 5 and is gradually cooled at the part provided with glass fibers 4 of a heat-insulating material to turn the base metal into the alloy having a one way solidified structure in which crystals are grown downwards. By this method, the Ni based alloy having excellent ductility and strength at the ordinary temp. and high temp. of 400-800 deg.C can be obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はN1 基合金に関し、特にガスタービンの主要
部品であるディスク、ベーン、ノズル、ブレード等やジ
ェットエンジン、高温バルブ、高温ガス炉、過給機など
の高温に長時間さらされるN1基合金構造材料に関する
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to N1-based alloys, and is particularly applicable to main parts of gas turbines such as disks, vanes, nozzles, blades, etc., jet engines, high-temperature valves, high-temperature gas furnaces, and This invention relates to N1-based alloy structural materials that are exposed to high temperatures for long periods of time, such as in feeders.

〔従来の技術] ガスタービンやジェットエンジン、高温パルプ、高温ガ
ス炉など高温に長時間さらされる構造材料としてはN1
 基超合金が利用されている。
[Conventional technology] N1 is a structural material that is exposed to high temperatures for long periods of time, such as gas turbines, jet engines, high-temperature pulp, and high-temperature gas furnaces.
Base superalloys are used.

このN1基超合金の場合、金属間化合物のr′相(Hl
s(ムt、’ri)]などf 60 vol、1以上析
出させることにより高温強度の強化を図り、ま九、N1
のマトリックス相であるr′相で延性、靭性を生み出し
ている。
In the case of this N1-based superalloy, the r' phase (Hl
The high temperature strength is strengthened by precipitating 1 or more f 60 vol, such as Maku, N1
The r' phase, which is the matrix phase, provides ductility and toughness.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、これらの材料の場合、マトリックスf;cNi
相で構成されるため、高温において著しく強度が低下し
てしまう欠点がある。
However, for these materials, the matrix f; cNi
Since it is composed of phases, it has the disadvantage that its strength decreases significantly at high temperatures.

これに対し、N1 超超合金の主要強化相であおる金属
間化合物のNi3A/、i!湿温度高くなるなど強さが
増すという特異な性質を有するが、単独で用いると延性
、靭性がなく、引張試験を行うと伸びが全くないという
状態で構造材としては成り立たないものであり、この材
料を高温用の構造材料として利用することは長い間の大
きな課題であった。最近にな9、このNi1、AlK 
B13 vrt%以下添加すると常温延性が改善できる
との提案が行われている(I!l?願昭53−13(1
765)。しかし、このB1に添加したNi、、Alは
常温および常温近傍では十分な延性は得られるが、高温
、特に400〜800℃では延性は零に等しく実用に供
する構造材料としては不適当である。また、高温強度も
十分なものではない。
In contrast, the intermetallic compound Ni3A/, i! is the main reinforcing phase of the N1 superalloy. It has the unique property of increasing its strength as the humidity and temperature rise, but when used alone it lacks ductility and toughness, and when subjected to a tensile test it shows no elongation at all, making it unsuitable as a structural material. The use of materials as structural materials for high temperatures has long been a major challenge. Recently 9, this Ni1, AlK
It has been proposed that room temperature ductility can be improved by adding B13 vrt% or less (I!L?
765). However, although Ni and Al added to B1 have sufficient ductility at and near room temperature, the ductility is zero at high temperatures, particularly from 400 to 800°C, making them unsuitable as a structural material for practical use. Moreover, high temperature strength is also not sufficient.

〔発明の目的] 本発明は、高温における高い強度と高い延性を有するN
i5、Al系金属間化合物で構成される新規な耐熱N1
 基合金を提供しようとするものである。
[Object of the invention] The present invention is directed to N having high strength and high ductility at high temperatures.
i5, a new heat-resistant N1 composed of Al-based intermetallic compounds
The aim is to provide a base alloy.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、 (1)  原子百分率でNi;75.4〜79%、、A
l; 7〜129&、 Hf  ; (L5〜4%、B
;115係以下、C;Q、99b以下、Pe及び/又は
CO;45〜11%、各に3%以下(Z)MO,W。
The present invention provides: (1) Ni in atomic percentage; 75.4 to 79%; A
l; 7~129&, Hf; (L5~4%, B
; 115 or less, C; Q, 99b or less, Pe and/or CO; 45 to 11%, each 3% or less (Z) MO, W.

Wb、Ta、Zr及びV よりなる群から選ばれた元素
の1種以上を含み、金属組織が主として金属間化合物で
ある高温で延性の優れた耐熱N1基合金及び (2)原子百分率でNi;75.4〜79%、、Al;
7〜12僑、llf  ;α5〜4113;α5暢以下
、C;α9%以下、We及び/又はCo;45〜11俤
、各々5係以下のMo、W。
A heat-resistant N1-based alloy with excellent ductility at high temperatures, containing one or more elements selected from the group consisting of Wb, Ta, Zr, and V, and whose metal structure is mainly an intermetallic compound, and (2) Ni in atomic percent; 75.4-79%, Al;
7-12 children, llf; α5-4113; α5 smooth or less, C; α9% or less, We and/or Co; 45-11 yen, Mo, W, each of 5 or less.

Wb、Ta、Zr及びV よりなる群から選ばれた元素
の1種以上を含み、金属組織が主として金属間化合物で
あって一方向凝固組織を有する高温で延性の優れた耐熱
N1基合金・である。
A heat-resistant N1-based alloy containing one or more elements selected from the group consisting of Wb, Ta, Zr, and V, and whose metal structure is mainly an intermetallic compound and has a unidirectional solidification structure and has excellent ductility at high temperatures. be.

〔作用コ 本発明によればNi3Al合金に種々の添加元素を組み
合わせることにより、又さらに一方向凝固を用いること
により強度、延性がともに優れたN1g、Al系金属間
化合物を主とする材料が得られる。
[Function] According to the present invention, by combining various additive elements to the Ni3Al alloy and further using unidirectional solidification, a material mainly composed of N1g and Al intermetallic compounds with excellent strength and ductility can be obtained. It will be done.

以下に本発明合金における成分組成限定理由について述
べる。以下、成分の優は全てat、96である。
The reasons for limiting the composition of the alloy of the present invention will be described below. Hereinafter, the predominant component is at, 96.

Ni  i  Niは本発明合金の主要元素の1つであ
り、A4 とともにL工2型金属間化合物を構成する。
Ni i Ni is one of the main elements of the alloy of the present invention, and together with A4 constitutes an L-type 2 intermetallic compound.

本発明合金の基本的な構造は、このM、金属間化合物で
あり、Ni3A/、 t−ペースとしてB、Cを除く他
の元素が、Alt友はN1に代ってその原子位置に入る
、いわゆる置換型の方式により固溶することにより構成
される。
The basic structure of the alloy of the present invention is that M is an intermetallic compound, in which other elements other than Ni3A/, B and C serve as t-pastes, and the Alt group replaces N1 at its atomic position. It is constructed by forming a solid solution using a so-called substitution method.

このN1 は、もともとの金属間化合物N1.、Alで
は構造式から見ると明らかなようにN1と、AlO比が
3:1、つまり全体では75憾を占めるものである。た
だし、 Ni−ムを二元状態図から明らかなことである
が、75優N1の前後(ムtでみれば25%ht  )
に約4%程度の幅を有する。
This N1 is the original intermetallic compound N1. As is clear from the structural formula, the ratio of N1 to AlO is 3:1, that is, the ratio of Al is 75% in total. However, it is clear from the binary phase diagram that Ni-mu is around 75%N1 (25%ht in terms of Mut).
It has a width of about 4%.

このNi、、Al1ftヘースとして、他の添加元素を
種々加えた多元N1z、Al系金属間化合物では、強度
や延性はこのN1 の含有量に大きく影響を受ける。し
たがって本発明合金におけるNi量は特に重要なポイン
トである。Ni量が7&4鳴未満では、延性は全くなく
、構造材料として成り立たない。また、Ni 量が79
憾を越えるものでは、延性はあるが、十分な強度が得ら
れない。したがって7a4〜79鴫のNi量が必要であ
る。
In a multi-element N1z, Al-based intermetallic compound in which various other additive elements are added to the Ni, Al1ft base, the strength and ductility are greatly affected by the N1 content. Therefore, the amount of Ni in the alloy of the present invention is a particularly important point. If the Ni content is less than 7&4, there is no ductility at all and the material cannot be used as a structural material. In addition, the amount of Ni is 79
If it exceeds the limit, it will have ductility but will not have sufficient strength. Therefore, an amount of Ni of 7a4 to 79 is required.

kl  ;  、AlFiNi  とともにL工茸型金
属間化合物を形成するのに不可欠な元素であり、その必
要な組成範囲は7〜12%である。7%未満ではAjは
母相に固溶しL1茸型金属間化合物を形成しない、tた
、12%以上ではL1茸型金属間化合物は形成するが、
他の添加元素との関係上十分な強度や延性が得られない
kl; is an essential element to form an L-type intermetallic compound together with AlFiNi, and its necessary composition range is 7 to 12%. At less than 7%, Aj dissolves in the matrix and does not form an L1 mushroom-type intermetallic compound; at 12% or more, an L1 mushroom-type intermetallic compound is formed, but
Sufficient strength and ductility cannot be obtained due to the relationship with other additive elements.

B; Bは常温および常温近傍の活性改善に効果がある
。Bは本発明合金では主に粒界に析出し、粒界を強化す
る働きを示す、a59j以下の添加で有効であるがII
L5%を越える添加では延性改善に効果がなく逆に脆く
なる。
B; B is effective in improving activity at and near room temperature. In the alloy of the present invention, B mainly precipitates at the grain boundaries and acts to strengthen the grain boundaries, and is effective when added below a59j, but II
If L exceeds 5%, it will not be effective in improving ductility and will instead become brittle.

C; CもBと同様粒界に析出し、粒界の強化をする働
きがあり、延性改善に効果がある。
C: Like B, C also precipitates at grain boundaries, has the function of strengthening grain boundaries, and is effective in improving ductility.

CL9%以下の添加で有効であるが、α9係を越える添
加は逆に脆化させてしまう。
Addition of CL of 9% or less is effective, but addition of more than α9 will cause embrittlement.

Hf  :  HfKは2つの作用があり、本発明合金
の重要な添加元素である。1つ目の作用は、HfはB、
Cと同様粒界強化元素としての効果であり、Ni5、A
l系金属間化合物の延性改善に大きく寄与する。特にそ
の効果は、高温でも有効であり、従来のN15、AlK
 Bを添加し念だけの金属間化合物で望めなかった40
0℃〜800℃における延性の確保を可能にした。
Hf: HfK has two functions and is an important additive element in the alloy of the present invention. The first effect is that Hf is B,
Like C, this is an effect as a grain boundary strengthening element, and Ni5, A
It greatly contributes to improving the ductility of l-based intermetallic compounds. In particular, the effect is effective even at high temperatures, and the conventional N15, AlK
40 that could not be expected due to the addition of B and an intermetallic compound just in case
This made it possible to ensure ductility at temperatures between 0°C and 800°C.

2つ目の作用は、固溶強化の効果であり、Hfが主に、
Alサイトに置換して固溶することにより、マトリック
ス全体の強度を向上させるように働く。0.5%未満で
はその効果はなく、4%を越える量を添加すると固溶強
化作用はお9強度を改善するが、活性を低下させてしま
う。
The second effect is the effect of solid solution strengthening, in which Hf mainly
By substituting at Al sites and forming a solid solution, it works to improve the strength of the entire matrix. If the amount is less than 0.5%, there is no effect, and if the amount exceeds 4%, the solid solution strengthening effect improves the strength, but the activity decreases.

Fe及び/又はco;IF8及び/又はcoは81g、
Al系金属間化合物の延性改善に効果がある。
Fe and/or co; IF8 and/or co is 81 g,
It is effective in improving the ductility of Al-based intermetallic compounds.

金属間化合物のN13ムtは、セラミックスなどの材料
で見られる共有結合性と金属材料の結合様式である金属
結合の2種類の原子結合様式の中間に位置するような結
合状態となっている。共有結合性が強くなるとセラミッ
クスのように脆くなり、また、金FI7A結合性が強く
なると通常の純金稿のようにねばいものとなる。
The intermetallic compound N13 has a bonding state that is located between two types of atomic bonding modes: covalent bonding found in materials such as ceramics, and metallic bonding that is the bonding mode of metal materials. If the covalent bonding becomes strong, it becomes brittle like ceramics, and if the gold FI7A bonding becomes strong, it becomes sticky like ordinary pure gold.

このため、Ni、A4系金属間化合物の延性を改善する
には、金属結合性を増加させればよい。
Therefore, in order to improve the ductility of Ni and A4-based intermetallic compounds, it is sufficient to increase the metal bonding properties.

遷移金属のFeやcoはNi1、Al系金属間化合物に
おいて金属結合性を増加させることに効果がある。We
、Ooiたはそれらの合計が4.5幅以下ではその効果
は十分でなく、また、11憾を越えるtを添加しても延
性改善に対する効果には変わりはないが、高温強度を低
下させてしまう。したがって45〜11%が適当である
Transition metals such as Fe and co are effective in increasing metal bonding properties in Ni1 and Al-based intermetallic compounds. We
, Ooi, or their total width is less than 4.5, the effect is not sufficient, and even if t is added in excess of 11, the effect on improving ductility remains the same, but it reduces the high temperature strength. Put it away. Therefore, 45 to 11% is appropriate.

Mo、 W、 Nb、 Ta、 Zr、 V ;  こ
れらの元素は固溶強化元素であり、主として、Alサイ
トに置換して固溶し、マトリックス全体の強度を改善す
る。各元素のNi1A4に対する固溶限Fi34以上あ
るが、1つの元素を単独で多量に添加するよりも多種類
の元素を適値添加した方が固溶強化は顕著に現われる。
Mo, W, Nb, Ta, Zr, V; These elements are solid solution strengthening elements, and are mainly substituted in Al sites to form a solid solution and improve the strength of the entire matrix. Although each element has a solid solubility limit Fi of 34 or more for Ni1A4, solid solution strengthening is more pronounced when appropriate amounts of various elements are added than when a large amount of one element is added alone.

特に3%以下に制限してこれらの元素を添加すると固溶
強化は著しく、高温強度は大幅に改善される。したがっ
て各元素3係以下とした。
In particular, when these elements are added in a limited amount of 3% or less, solid solution strengthening is remarkable and high temperature strength is significantly improved. Therefore, each element was set to 3 or less.

〔実施例〕〔Example〕

本発明を実施例により具体的に説明する。 The present invention will be specifically explained with reference to Examples.

第1表および第2表に試験に供した合金の成分を示す。Tables 1 and 2 show the components of the alloys tested.

試験材はNa17のインコネル75.3 C(AM85
3910)を除き、アルゴン雰囲気の非消耗アーク溶解
炉にて溶用したものおよび同消耗ア一り溶解炉にて母合
金を作製後第1図に模式的に示す一方向凝固炉にて再溶
解したものである。
The test material was Inconel 75.3C (AM85
Except for 3910), those were melted in a non-consumable arc melting furnace in an argon atmosphere, and after the master alloy was prepared in the same consumable arc melting furnace, it was remelted in a one-way solidification furnace schematically shown in Figure 1. This is what I did.

第1図は一方向凝固炉を模式的に示す図であり、第1図
において、1は透明石英ガラス、2゜3はアルミナ製保
持具、4はガラス繊維、5はカーボン製発熱体、6はア
ルミナ製ルツボ、7は溶解前の母合金(アーク溶解炉に
より製造したもの)、8は溶融している試料、9は一方
向凝固組織の試料、10は高周波コイルである。
FIG. 1 is a diagram schematically showing a one-way solidification furnace. In FIG. 1, 1 is transparent quartz glass, 2.3 is an alumina holder, 4 is glass fiber, 5 is a carbon heating element, 6 1 is an alumina crucible, 7 is a master alloy before melting (manufactured in an arc melting furnace), 8 is a molten sample, 9 is a sample with a unidirectionally solidified structure, and 10 is a high frequency coil.

アーク溶解炉により製造した溶解前の母合金である試料
7はルツボ6内に収納され、ルツボ6ごと透明石英ガラ
ス1よりなる炉(該炉はアルゴンガスでみたされている
)中を下方へ向けて一定速度で移動する。こ\で熱源が
カーボン製発熱体5に限られるため、溶融する部分は試
料7に限られ該試料は溶融している試料8となる。した
がってゆっくりとルツボ6を下方へ移動させることによ
り下方向に結晶が伸びたインゴット、すなわち一方向凝
固組織の試料9が得られる。
A sample 7, which is a master alloy before melting produced in an arc melting furnace, is placed in a crucible 6, and the crucible 6 is directed downward through a furnace made of transparent quartz glass 1 (the furnace is filled with argon gas). move at a constant speed. In this case, since the heat source is limited to the carbon heating element 5, the portion that melts is limited to the sample 7, which becomes the molten sample 8. Therefore, by slowly moving the crucible 6 downward, an ingot with crystals extending downward, that is, a sample 9 having a unidirectional solidification structure is obtained.

−1〜Il&116については溶製後1050℃で50
時間の均一化処理を施した後試験に供した。
-1~Il&116: 50 at 1050℃ after melting
After being subjected to time equalization treatment, it was subjected to a test.

一方、Na17のインコネル75.3Cについては市販
のものを試験に供した。なおへ1〜−16は成分量を原
子百分率で示したが、へ17のみは重量百分率で示しで
ある。
On the other hand, a commercially available Inconel 75.3C with Na17 was tested. In addition, although the component amounts for F1 to -16 are shown in atomic percentages, only F17 is shown in weight percentages.

第5表に600℃で行った引張試験の結果を示す。本発
明材の強度は比較材に比べ高く、また伸び、絞りの値も
高く延性にも優れていることがわかる。本発明材料はア
ーク溶解材でも比較材よりも優れた材料性質を示すが、
一方向凝固を行い、結晶の成長方向が引張試験の引張軸
に一致させたものはアーク溶解材よりも高い強度をもつ
Table 5 shows the results of the tensile test conducted at 600°C. It can be seen that the strength of the material of the present invention is higher than that of the comparative material, and the elongation and reduction of area values are also high, and the material has excellent ductility. Although the material of the present invention exhibits superior material properties as an arc melting material than comparative materials,
Materials that undergo unidirectional solidification so that the direction of crystal growth matches the tensile axis of the tensile test have higher strength than arc melted materials.

第2図に室温から1000℃までの温度で行った引張試
験結果を、本発明のアーク溶解材でおるNa11及びア
ーク溶解材である比較例の−14と−17について示す
。このグラフより明らかなように、本発明のアーク溶解
材は比較材よりも高い強度を有することがわかる。
FIG. 2 shows the results of a tensile test conducted at temperatures from room temperature to 1000° C. for Na11, which is an arc melting material of the present invention, and -14 and -17, which are arc melting materials of comparative examples. As is clear from this graph, it can be seen that the arc melting material of the present invention has higher strength than the comparative material.

又、第3図には室温から1000℃までの温度で行った
引張試験結果について本発明のアーク溶解、一方向凝固
組織である−11及び比較材である一方向凝固組織の比
較材−14及び比較材Na17について示す。このグラ
フより明らかなように本発明材の強度は市販のN1基超
合金よりも遥かに優れていることがわかる。
Furthermore, Fig. 3 shows the results of tensile tests conducted at temperatures from room temperature to 1000°C for the arc-melted, unidirectionally solidified structure of the present invention -11, and the comparative materials -14 and unidirectionally solidified structures. The comparative material Na17 will be shown. As is clear from this graph, the strength of the material of the present invention is far superior to that of commercially available N1-based superalloys.

〔発明の効果〕〔Effect of the invention〕

本発明材は高温における強度、活性が優れているため、
ガスタービン、ジェットエンジン、高温バルブ、高温ガ
ス炉、過給機等長時間高温にさらされる主要な構造材に
適用でき、このなめ従来よりも高い温度でのプラント等
の運転が可能となり、高効率化を図ることができる。
Since the material of the present invention has excellent strength and activity at high temperatures,
It can be applied to major structural materials that are exposed to high temperatures for long periods of time, such as gas turbines, jet engines, high-temperature valves, high-temperature gas furnaces, and superchargers. It is possible to aim for

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一方向凝固組織にするための一方向凝固炉の模
式図であり、第2図及び第3図は本発明材のN1基合金
の強度の優れていることを示すグラフである。
FIG. 1 is a schematic diagram of a unidirectional solidification furnace for forming a unidirectional solidification structure, and FIGS. 2 and 3 are graphs showing the superior strength of the N1-based alloy of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)原子百分率でNi;75.4〜79%、Al;7
〜12%、Hf;0.5〜4%、B;0.5%以下、C
;0.9%以下、Fe及び/又はCo;4.5〜11%
、各々3%以下のMo、W、Nb、Ta、Zr及びVよ
りなる群から選ばれた元素の1種以上を含み、金属組織
が主として金属間化合物であることを特徴とする高温で
延性の優れた耐熱Ni基合金。
(1) Ni; 75.4-79%, Al; 7 in atomic percentage
~12%, Hf; 0.5-4%, B; 0.5% or less, C
; 0.9% or less, Fe and/or Co; 4.5 to 11%
, each containing 3% or less of one or more elements selected from the group consisting of Mo, W, Nb, Ta, Zr, and V, and is ductile at high temperatures characterized by a metal structure mainly consisting of intermetallic compounds. Excellent heat-resistant Ni-based alloy.
(2)原子百分率でNi:75.4〜79%、Al;7
〜12%、Hf;0.5〜4%、B;0.5%以下、C
;0.9%以下、Fe及び/又はCo;4.5〜11%
、各々3%以下のMo、W、Nb、Ta、Zr及びVよ
りなる群から選ばれた元素の1種以上を含み、金属組織
が主として金属間化合物であつて一方向凝固組織を有す
ることを特徴とする高温で延性の優れた耐熱Ni基合金
(2) Ni: 75.4-79%, Al: 7 in atomic percentage
~12%, Hf; 0.5-4%, B; 0.5% or less, C
; 0.9% or less, Fe and/or Co; 4.5 to 11%
, each containing 3% or less of one or more elements selected from the group consisting of Mo, W, Nb, Ta, Zr, and V, and the metal structure is mainly an intermetallic compound and has a unidirectional solidification structure. A heat-resistant Ni-based alloy with excellent ductility at high temperatures.
JP10010087A 1987-04-24 1987-04-24 Ni based alloy Pending JPS63266036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10010087A JPS63266036A (en) 1987-04-24 1987-04-24 Ni based alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10010087A JPS63266036A (en) 1987-04-24 1987-04-24 Ni based alloy

Publications (1)

Publication Number Publication Date
JPS63266036A true JPS63266036A (en) 1988-11-02

Family

ID=14264979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10010087A Pending JPS63266036A (en) 1987-04-24 1987-04-24 Ni based alloy

Country Status (1)

Country Link
JP (1) JPS63266036A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586431A (en) * 1991-03-04 1993-04-06 General Electric Co <Ge> Ductility-improved nial intermetallic compound microalloyed with iron
JPH0892725A (en) * 1994-09-26 1996-04-09 Agency Of Ind Science & Technol Improvement of workability of intermetallic compound by surface treatment
US5539514A (en) * 1991-06-26 1996-07-23 Hitachi, Ltd. Foreign particle inspection apparatus and method with front and back illumination
EP3445881A4 (en) * 2016-04-20 2019-09-04 Arconic Inc. Fcc materials of aluminum, cobalt, iron and nickel, and products made therefrom

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586431A (en) * 1991-03-04 1993-04-06 General Electric Co <Ge> Ductility-improved nial intermetallic compound microalloyed with iron
US5539514A (en) * 1991-06-26 1996-07-23 Hitachi, Ltd. Foreign particle inspection apparatus and method with front and back illumination
JPH0892725A (en) * 1994-09-26 1996-04-09 Agency Of Ind Science & Technol Improvement of workability of intermetallic compound by surface treatment
EP3445881A4 (en) * 2016-04-20 2019-09-04 Arconic Inc. Fcc materials of aluminum, cobalt, iron and nickel, and products made therefrom
US10480051B2 (en) 2016-04-20 2019-11-19 Arconic Inc. Fcc materials of aluminum, cobalt, iron and nickel, and products made therefrom

Similar Documents

Publication Publication Date Title
US4582548A (en) Single crystal (single grain) alloy
JP2881626B2 (en) Single crystal nickel-based superalloy
JP2753148B2 (en) Nickel-based single crystal superalloy
CA2062026C (en) Ductility microalloyed nial intermetallic compounds
JPH026820B2 (en)
JP2011231403A (en) Cobalt-nickel superalloy, and related article
JPS6343459B2 (en)
JPH0323613B2 (en)
US5196162A (en) Ti-Al type lightweight heat-resistant materials containing Nb, Cr and Si
JPS5858242A (en) Single crystal nickel base superalloy, product and manufacture
GB2278850A (en) Columnar grain superalloy articles
JPS60155637A (en) Alloy for single crystal casting manufacture
JP6833029B2 (en) Titanium-free superalloys, powders, methods and parts
US5338379A (en) Tantalum-containing superalloys
JPH0239573B2 (en)
JP3084764B2 (en) Method for manufacturing Ni-based superalloy member
CA2080964A1 (en) Nickel aluminide base single crystal alloys and method
JPH01255632A (en) Ti-al intermetallic compound-type alloy having toughness at ordinary temperature
JPH0429728B2 (en)
CZ291048B6 (en) Single crystal hot corrosion resistant nickel-based superalloy and single crystal casting made therefrom
JPS6140024B2 (en)
JPS63266036A (en) Ni based alloy
US4226644A (en) High gamma prime superalloys by powder metallurgy
US7306682B2 (en) Single-crystal Ni-based superalloy with high temperature strength, oxidation resistance and hot corrosion resistance
JPH1121645A (en) Ni-base superalloy having heat resistance, production of ni-base superalloy having heat resistance, and ni-base superalloy parts having heat resistance