JPS6326549A - Method and instrument for automatic measurement of specific gravity of foamed particle - Google Patents

Method and instrument for automatic measurement of specific gravity of foamed particle

Info

Publication number
JPS6326549A
JPS6326549A JP17068586A JP17068586A JPS6326549A JP S6326549 A JPS6326549 A JP S6326549A JP 17068586 A JP17068586 A JP 17068586A JP 17068586 A JP17068586 A JP 17068586A JP S6326549 A JPS6326549 A JP S6326549A
Authority
JP
Japan
Prior art keywords
foamed
volume
pressure
pressurized air
specific gravity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17068586A
Other languages
Japanese (ja)
Inventor
Akio Takahashi
明男 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP17068586A priority Critical patent/JPS6326549A/en
Publication of JPS6326549A publication Critical patent/JPS6326549A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the true specific gravity of foamed particles with good accuracy in a short period by packing the foamed particles which is preliminarily measured of the weight into one of two hermetic vessels and determining the volume of the foamed particles from a pressure change by a decrease of the inside volume. CONSTITUTION:A pressurized air supply port 2 and a pressurized air discharge port 4 are connected to a pressurized vessel 1 which is one of the hermetic vessels. A foamed particle supply port 10 and a foamed particle discharge port 11 are connected to a volume measuring vessel 9 which is the other hermetic vessel. The volume measuring vessel 9 is connected via a pressure equalizing port 3 to the pressurized vessel 1. Pressurized air is first fed from the pressurized air supply port 2 to the vessel 1 and after the pressure is increased up to the specified pressure, the foamed particles which are preliminarily measured of the weight are supplied through the foamed particle supply port 10 into the volume measuring vessel 9. A pressure equalizing valve 6 is then opened to equalize the pressures in the volume measuring vessel 9 and the pressurized vessel 1 and after the pressure is measured, a foamed particle discharge valve 13 is opened to discharge the foamed particles through the foamed particle discharge port 11 to the outside of the system. The volume of the foamed particle is thereupon determined from the pressure change and further the true specific gravity is calculated by using the prescribed equation from the resulted volume and the preliminarily measured weight.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は型内発泡成形に用いる予備発泡粒子の自動比重
測定方法及び装置に関するものであり、更に詳しくは短
時間に精度よく発泡粒子の真比重を測定するための方法
及び装置に関するものである。
Detailed Description of the Invention "Field of Industrial Application" The present invention relates to an automatic specific gravity measurement method and device for pre-expanded particles used in in-mold foam molding. The present invention relates to a method and apparatus for measuring specific gravity.

「従来技術と問題点」 従来から、ポリスチレン、ポリエチレン、ポリプロピレ
ンの予備発泡粒子を用いて、型内発泡成形が行われてき
た。上記型内発泡成形は予備発泡粒子を金型内に充填し
、加熱融着させた後、冷却し、型内より取り出して成形
品を得るのが一般的である。
"Prior Art and Problems" Conventionally, in-mold foam molding has been performed using pre-expanded particles of polystyrene, polyethylene, and polypropylene. In the above-mentioned in-mold foam molding, pre-expanded particles are generally filled into a mold, heated and fused, and then cooled and taken out from the mold to obtain a molded product.

ところで、これら予備発泡工程や成形工程において、予
備発泡粒子の比重のコントロールや成形体の比重のコン
トロールが、成形品の品質やコストと密接な関係がある
のにもかかわらず、従来からなされている方法は必ずし
も満足し得るものとは言い難い。
By the way, in these pre-foaming and molding processes, control of the specific gravity of the pre-expanded particles and the specific gravity of the molded product has not been done in the past, despite the fact that it is closely related to the quality and cost of the molded product. The method is not necessarily satisfactory.

例えば特開昭56−53612号には予備発泡粒子の見
掛比重自動測定方法が開示されているが、この方法は一
定の容積の容器にすりきり一杯入れた予備発泡粒子の重
量を測定する事により見掛比重を算出するため、充填の
度合や粒子の形状によりバラツキが大きいという欠点が
ある。
For example, JP-A No. 56-53612 discloses a method for automatically measuring the apparent specific gravity of pre-expanded particles. Since the apparent specific gravity is calculated, there is a drawback that there is large variation depending on the degree of filling and the shape of the particles.

一方、真比重を測定する方法としては、予め予備発泡粒
子の重量を測定した後、水没法により予備発泡粒子の体
積を測定し、換算する方法等が通常行われているが、水
没法による予備発泡粒子の測定は操作が煩雑であり、又
、測定した予備発泡粒子が水で濡れてしまうため、予備
発泡粒子が装置にくっついたりして、後始末に手間が掛
かるばかりでなく−、予備発泡粒子の再使用もできない
等の問題を包蔵している。
On the other hand, as a method for measuring the true specific gravity, a method is usually used in which the weight of the pre-expanded particles is measured in advance, the volume of the pre-expanded particles is measured by the submersion method, and the volume is converted. Measuring expanded particles is a complicated operation, and since the measured pre-expanded particles get wet with water, the pre-expanded particles may stick to the equipment, which not only takes time and effort to clean up afterwards, but also prevents the pre-expanded particles from getting wet. This includes problems such as the inability to reuse the particles.

「問題点を解決するための手段」 本発明は上記の如き問題点を解消するために完成された
ものである。
"Means for Solving the Problems" The present invention has been completed in order to solve the above problems.

即ち、本発明の第1は、2個の密閉容器の内圧を測定し
、一方の密閉容器内に予め重量を測定した発泡粒子を充
填することにより該密閉容器の内容積が減少することに
よる圧力変化を検知して前記発泡粒子の体積を求め、該
発泡粒子の真比重を測定することを特徴とする発泡粒子
の自動比重測定方法を、本発明の第2は均圧弁を備えた
均圧管により連結された2個の密閉容器からなり、一方
の密閉容器は上部には発泡粒供給口と発泡粒供給弁を、
下部には発泡粒排出口と発泡粒排出弁を備え、他方の密
閉容器は加圧空気供給口と加圧空気供給弁、及び加圧空
気排出口と加圧空気排出弁とを備え、且つ圧力記録計を
備えてなる発泡粒子の自動比重測定装置をそれぞれ内容
とするものである。
That is, the first aspect of the present invention is to measure the internal pressure of two closed containers, and to calculate the pressure caused by reducing the internal volume of one of the closed containers by filling the foamed particles whose weight has been measured in advance into one of the closed containers. The second aspect of the present invention is an automatic specific gravity measurement method for foamed particles, which is characterized in that the volume of the foamed particles is determined by detecting a change, and the true specific gravity of the foamed particles is measured. It consists of two connected sealed containers, one of which has a foamed grain supply port and a foamed grain supply valve at the top.
The lower part is equipped with a foamed grain discharge port and a foamed grain discharge valve, and the other sealed container is equipped with a pressurized air supply port and a pressurized air supply valve, a pressurized air discharge port and a pressurized air discharge valve, and Each of these includes an automatic specific gravity measuring device for foamed particles equipped with a recorder.

以下、本発明に用いられる装置の実施態様を示す図面に
基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of an apparatus used in the present invention will be explained based on the drawings.

第1図において、一方の密閉容器である加圧槽(1)に
は加圧空気供給口(2)、均圧管(3)及び加圧空気排
気口(4)が接続され、それぞれ加圧空気供給弁(5)
、均圧弁(6)、及び加圧空気排気弁(7)を備えてい
る。(8)は圧力記録計である。他方の密閉容器である
体積測定槽(9)には上部に発泡粒供給口(10)及び
下部に発泡粒排出口(11)が接続され、それぞれ発泡
粒供給弁(12) 、同排出弁(13)を備えている。
In Fig. 1, a pressurized air supply port (2), a pressure equalization pipe (3), and a pressurized air exhaust port (4) are connected to a pressurized tank (1), which is one of the closed containers. Supply valve (5)
, a pressure equalization valve (6), and a pressurized air exhaust valve (7). (8) is a pressure recorder. The volume measuring tank (9), which is the other airtight container, is connected to a foam grain supply port (10) at the top and a foam grain discharge port (11) at the bottom. 13).

又、体積測定槽(9)は前記均圧管(3)を通して加圧
槽(1)に接続されている。加圧槽(1)及び体積測定
槽(9)の形状は特に制限されないが、体積測定槽(9
)は体積測定終了後の予備発泡粒子の排出を容易にする
ために円錐形にしておくのが好ましい。又、容量に関し
ても特に限定されないが、加圧槽(1)、体積測定槽(
9)ともに0.2〜30j!程度が実用的である。両槽
は同一容積であっても異なる容積であっても良い。
Further, the volume measuring tank (9) is connected to the pressurizing tank (1) through the pressure equalizing pipe (3). The shapes of the pressure tank (1) and the volume measurement tank (9) are not particularly limited;
) is preferably formed into a conical shape to facilitate discharge of the pre-expanded particles after volume measurement. In addition, there are no particular limitations on the capacity, but there may be a pressurized tank (1), a volume measuring tank (
9) Both 0.2-30j! The degree is practical. Both tanks may have the same volume or different volumes.

上記装置を用いて発泡粒の比重を測定するには、まず第
1ステツプは加圧槽(1)の加圧で、均圧弁(6)及び
排気弁(7)を閉として、加圧空気供給弁(5)を開は
加圧空気供給口(2)から加圧槽(1)内に加圧空気を
送り込み一定の圧力まで昇圧した後、該供給弁(5)を
閉じる。この時の加圧槽内の圧力をp、mmAq、、G
とする。
To measure the specific gravity of foamed particles using the above device, the first step is to pressurize the pressure tank (1), close the pressure equalization valve (6) and exhaust valve (7), and supply pressurized air. When the valve (5) is opened, pressurized air is fed into the pressurized tank (1) from the pressurized air supply port (2) and the pressure is increased to a constant pressure, and then the supply valve (5) is closed. The pressure inside the pressurized tank at this time is p, mmAq,,G
shall be.

第2ステツプとして、発泡粒の体積測定槽(9)への供
給で、即ち、発泡粒排出弁(13)が閉、発泡粒供給弁
(12)が開の状態で、予め重量測定された発泡粒が発
泡粒供給口(10)を通じて体積測定槽(9)内へ供給
された後、発泡粒供給弁(12)が閉じられる。
As a second step, the foamed grains are fed to the volume measuring tank (9), that is, with the foamed grain discharge valve (13) closed and the foamed grain supply valve (12) open, the foamed grains are weighed in advance. After the grains have been fed into the volumetric tank (9) through the foamed grain supply port (10), the foamed grain supply valve (12) is closed.

第3ステツプは体積測定槽(9)と加圧槽(1)との均
圧化と圧力測定で、均圧弁(6)が開になり、圧力記録
計(8)には両槽の均圧化により圧力P、mmAq、G
が表示される。
The third step is to equalize and measure the pressure in the volume measuring tank (9) and pressurizing tank (1).The pressure equalizing valve (6) opens and the pressure recorder (8) shows the equalizing pressure in both tanks. The pressure P, mmAq, G
is displayed.

第4ステツプは体積測定槽(9)内から発泡粒の排出と
大気圧力の測定で、発泡粒排出弁(13)が開かれ体積
測定槽(9)内の発泡粒は発泡粒排出口(13)を通じ
て系外に排出される。その後、排気弁(5)が開かれ圧
力記録計(8)が大気圧P、mmAq、Gを測定表示す
る。
The fourth step is to discharge the foamed grains from the volume measuring tank (9) and measure the atmospheric pressure.The foamed grain discharge valve (13) is opened and the foamed grains in the volume measuring tank (9) are discharged from the foamed grain outlet (13). ) is discharged to the outside of the system. Thereafter, the exhaust valve (5) is opened and the pressure recorder (8) measures and displays atmospheric pressures P, mmAq, and G.

上記一連のステップ終了後は、再び加圧槽(1)内への
加圧空気の供給で、前記した第1ステツプ以下を繰り返
し、次の測定が行われる。尚、上記第1〜第4のステッ
プはその順序まで拘束するものではなく、適宜前後入れ
かえても良い。
After the series of steps described above is completed, pressurized air is supplied into the pressurized tank (1) again, and the steps from the first step described above are repeated to perform the next measurement. Note that the order of the first to fourth steps described above is not restricted, and may be rearranged as appropriate.

上記測定値から発泡粒の体積(Vx)は気体の体積と圧
力の関係式(1) V X =  ((P+V++PtVz)−h(V++
Vz)l  /(P!   h)   (1)(但し、
V、は加圧槽の容積、v2は体積測定槽の容積)より求
められ、発泡粒の真比重(ρ)は次式(2)%式%(2
1 (但し、Wは測定に用いた発泡粒の重量)により求めら
れる。
From the above measurement values, the volume (Vx) of the expanded beads is determined by the relational expression (1) between gas volume and pressure: V X = ((P+V++PtVz)-h(V++
Vz)l /(P!h) (1) (However,
V is the volume of the pressurized tank, v2 is the volume of the volumetric tank), and the true specific gravity (ρ) of the foamed grains is calculated from the following formula (2)% formula% (2
1 (where W is the weight of the expanded beads used in the measurement).

第2図は発泡粒のサンプリングから計重までのシステム
の一例を示す概要図である。
FIG. 2 is a schematic diagram showing an example of a system from sampling foam beads to weighing them.

発泡粒(21)のサンプリングの方法は、サンプリング
場所から計重機設置場所迄2方弁(22)を設けたサン
プリング管(23)によって接続される。この2方弁(
22)の役割はサンプリング槽(24)が充満する少し
前に発泡粒吸入から大気吸入に切替えて、サンプリング
管(23)に発泡粒が充満してブロッキング閉塞するの
−を防止することにある。2方弁(22)の発泡粒吸入
から大気吸入への切替えのタイミングは実状に合わせて
設定される。又、切替えの制御はタイマー(図示せず)
によって行われる。サンプリング槽(24)は円錐付円
筒形で容積は数101で上端付近に約1flの金網(2
5)が設けられている。この金!(25)は発泡粒と同
伴空気との分離に用いられる。排気ブロワ−(29)の
能力はサンプリング管長及び口径によって決定される。
The foamed grains (21) are sampled by connecting the sampling location to the weighing machine installation location via a sampling pipe (23) equipped with a two-way valve (22). This two-way valve (
The role of 22) is to switch from foamed grain suction to atmospheric suction shortly before the sampling tank (24) is filled, to prevent the sampling tube (23) from being filled with foamed grains and causing a blocking blockage. The timing of switching the two-way valve (22) from foamed particle suction to atmospheric suction is set according to the actual situation. Also, the switching is controlled by a timer (not shown).
carried out by The sampling tank (24) has a cylindrical shape with a cone, has a volume of several 101, and has a wire mesh (2 fl) near the top end.
5) is provided. This money! (25) is used to separate expanded particles from entrained air. The capacity of the exhaust blower (29) is determined by the length and diameter of the sampling pipe.

サンプリング槽(24)に受は入れられた発泡粒はサン
プル出口弁(27)よりサンプリング受器(30)に供
給される。サンプル出目弁(27)の作動タイミングは
計重機及び第1図に示した如き体積測定システムにより
実状に合わせて設定される。
The foamed particles received in the sampling tank (24) are supplied to the sampling receiver (30) through the sample outlet valve (27). The operation timing of the sample outlet valve (27) is set according to the actual situation using a weighing machine and a volume measuring system as shown in FIG.

又、サンプル出口弁(27)が作動している時 。Also, when the sample outlet valve (27) is operating.

点では排気プロワ−(29)が作動すると発泡粒のサン
プル受器(30)への供給が出来ないので “、排気プ
ロワ−(29)の作動を制御するシステム(図示せず)
が別に設けられている。サンプル受器(30)は実容積
が200 cc〜201程度のもので、下部に発泡粒排
出用のバタフライ弁(31)が設けられている。サンプ
ル受器(30)は2個以上で、サンプリング槽(24)
の直下部でサンプル出口弁(27)が作動して発泡粒が
供給されて、重量自動測定器(40)の直上に移動でき
るよに回転円板(32)にて支持され、回転機(33)
によって回転駆動されている。尚、回転円板(32)は
発泡粒が外部に逸散しないように円周に立上り部を設け
ると共に、回転円板(32)にこぼれ落ちた発泡粒は余
剰粒排出管(34)を経由して排出ブロワ−(35)に
より、返送される。
At this point, if the exhaust blower (29) is activated, foam particles cannot be supplied to the sample receiver (30), so a system (not shown) for controlling the operation of the exhaust blower (29) is installed.
is provided separately. The sample receiver (30) has an actual volume of about 200 cc to 201 cc, and is provided with a butterfly valve (31) at the bottom for discharging foam particles. There are two or more sample receivers (30), and a sampling tank (24).
The sample outlet valve (27) is operated directly below the foamed pellets, which are supported by the rotating disk (32) so that they can be moved directly above the automatic weighing device (40). )
It is rotationally driven by. The rotating disk (32) is provided with a rising part on its circumference to prevent the foam particles from escaping to the outside, and the foam particles spilled onto the rotating disk (32) are discharged via the excess particle discharge pipe (34). and is returned by the discharge blower (35).

発泡粒を供給されたサンプリング受器(30)が計重用
受器(36)の直上に移動すると、バタフライ弁(31
)が開いて計重用受器(36)に落下して供給される。
When the sampling receiver (30) supplied with foam particles moves directly above the weighing receiver (36), the butterfly valve (31)
) opens and falls into the weighing receiver (36) and is supplied.

このバラフライ弁(31)の作動制御はリミントスイッ
チとタイマー(図示せず)によって行われる。
The operation of the butterfly valve (31) is controlled by a rimming switch and a timer (not shown).

計重用受器(36)に供給された発泡粒は重量自動測定
機(40)により計重され信号として保持される。計重
が終了すると、直進シリンダー(38)が移動し計重用
受器(36)は計重用受器ホルダー(37)によってク
ランプされ、直進シリンダー(38)が元の位置に復帰
する。直進シリンダー(38)の元の位置とは計重用受
器(36)の直下に体積測定槽用ホッパー(41)があ
る位置である。
The foamed grains supplied to the weighing receiver (36) are weighed by an automatic weighing machine (40) and held as a signal. When weighing is completed, the linear cylinder (38) moves, the weighing receiver (36) is clamped by the weighing receiver holder (37), and the linear cylinder (38) returns to its original position. The original position of the linear cylinder (38) is the position where the volume measuring tank hopper (41) is located directly below the weighing receiver (36).

計重用受器(36)が元の位置に復帰すると同時に、計
重用受器(36)は回転シリンダー(39)によって1
80℃回転し、発泡粒は体積測定槽用ホッパー(41)
に落下し供給される。
At the same time that the weighing receiver (36) returns to its original position, the weighing receiver (36) is rotated by the rotating cylinder (39).
Rotates at 80℃, and the foamed particles are placed in the hopper for volume measurement tank (41)
It falls and is supplied.

この計重された発泡粒は前記の如く体積測定槽(9)内
に発泡粒供給弁(12)により供給され、体積測定が自
動的に行われる。
The weighed foamed beads are supplied into the volume measuring tank (9) by the foamed grain supply valve (12) as described above, and the volume is automatically measured.

「作用・効果」 本発明によれば、従来の水没法に比し、短時間で精度よ
く発泡粒の真比重を測定することが可能である。
"Action/Effect" According to the present invention, it is possible to measure the true specific gravity of expanded beads in a shorter time and more accurately than with the conventional submersion method.

「実施例」 以下、本発明を実施例を挙げて説明するが、本発明はこ
れらにより何ら制限を受けないことは勿論である。
"Examples" The present invention will be described below with reference to Examples, but it goes without saying that the present invention is not limited in any way by these.

実施例1 下記の要領にて、ポリプロピレン発泡粒の真比重を測定
した; (1)測定試料:ポリプロピレン発泡粒(2)測定装置
:第1図に示したもの ■電子秤:長秤製作所製J P −3000W型、測定
精度10mIIIg) ■加圧槽;w4製耐圧容器 ■体積測定槽:wII製耐圧容器 ■圧力計:マノスターゲージ型(杉原計器製W−O型、
測定精度IQmo+Aq、)(3)測定方法: ■加圧槽の容積を水張り法で測定: V + (cc)
■体積測定槽を水張り法で測定:Vz(cc)■発泡粒
の重量を計重:W(g) ■加圧槽の加圧時の圧力を測定: P + (mmAq
、G)■測定槽を加圧しない時の圧力(大気圧):P 
z−0(mmAq、G) ■発泡粒の入った測定槽が密閉された状態から加圧槽と
均圧された時の圧力の測定:Pコ(llllAQ、G) (4)測定結果; V+ −10,OOO(c c) 比較例1 下記の要領にて水没法による測定を行った;(1)測定
試料;ポリプロピレン発泡粒(実施例1と同じ) (2)測定装置 ■電子秤;実施例1で用いたもの ■メスシリンダー:最大200cc 、最小2cc■発
泡粒押さえ金具(詳細は第3図に示す。
Example 1 The true specific gravity of foamed polypropylene granules was measured in the following manner; (1) Measurement sample: foamed polypropylene granules (2) Measuring device: as shown in Figure 1 ■Electronic balance: J manufactured by Nagabin Seisakusho P-3000W type, measurement accuracy 10mIIIg) ■Pressure tank: W4 pressure container ■Volume measurement tank: WII pressure container ■Pressure gauge: Manostar gauge type (Sugihara Keiki W-O type,
Measurement accuracy IQmo+Aq, ) (3) Measurement method: ■Measure the volume of the pressurized tank using the water filling method: V + (cc)
■Measure the volume measurement tank using the water filling method: Vz (cc) ■Weigh the foamed grains: W (g) ■Measure the pressure when pressurizing the pressure tank: P + (mmAq)
, G) ■ Pressure when the measurement tank is not pressurized (atmospheric pressure): P
z-0 (mmAq, G) ■Measurement of the pressure when the measurement tank containing expanded beads is equalized with the pressurized tank from a sealed state: Pco (llllAQ, G) (4) Measurement result; V+ -10, OOO (c c) Comparative Example 1 Measurement was carried out using the submersion method as follows: (1) Measurement sample: polypropylene foam granules (same as Example 1) (2) Measuring device ■Electronic scale; implementation Items used in Example 1 ■ Graduated cylinder: maximum 200 cc, minimum 2 cc ■ Foam grain presser (details are shown in Figure 3).

図中(50)はメスシリンダー、(51)は発泡粒押さ
え金具、(52)は発泡粒、(53)は水面である) (3)測定方決: ■発泡粒の重量を測定:W (g) ■メスシリンダーに水を約100cc入れ、発泡粒押さ
え金具の頭部を約1cm水面下に没入した状態で水量を
測定:V、((、C)■上記■で計重した発泡粒をメス
シリンダーに入れ、押さえ金具の頭部が水面下約1cm
になるように押さえ込み水量測定:Vz(cc)■発泡
粒の真比重(ρ) ρ−W/  (Vz  −V+  )  (g/cc)
(4)測定結果: 発泡粒の真比重ρの測定値: X −0,0307(g /cc) σ−0,0016
In the figure, (50) is a measuring cylinder, (51) is a foam grain presser, (52) is a foam grain, and (53) is a water surface.) (3) Measuring method: ■Measure the weight of foam grains: W ( g) ■Pour approximately 100cc of water into a graduated cylinder, and measure the amount of water with the head of the foam grain presser immersed approximately 1cm below the water surface: V, ((, C) ■The foam beads weighed in ■ above. Place it in a measuring cylinder, and make sure the head of the presser is about 1cm below the water surface.
Press down and measure the amount of water so that: Vz (cc) True specific gravity of foamed grains (ρ) ρ-W/ (Vz -V+) (g/cc)
(4) Measurement results: Measured value of true specific gravity ρ of expanded beads: X -0,0307 (g/cc) σ -0,0016

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の装置の実施態様を示す概要図、第2図
は発泡粒のサンプリングから計重を含めたシステムの一
例を示す概要図、第3図は比較例1で用いた水没法によ
る測定装置の概要図である。 1・・・加圧槽、    2・・・加圧空気供給口3・
・・均圧管、   4・・・加圧空気排出口5・・・加
圧空気供給弁、 6・・−均圧弁7・・・加圧空気排気
弁、 8・・・圧力記録計9・・・体積測定槽、 10
・・・発泡粒供喰口11・・・発泡粒排出口、 12・
・・発泡粒供給弁13・・・発泡粒排出弁 弗3図
Fig. 1 is a schematic diagram showing an embodiment of the apparatus of the present invention, Fig. 2 is a schematic diagram showing an example of a system including sampling and weighing of expanded beads, and Fig. 3 is a submersion method used in Comparative Example 1. FIG. 1 is a schematic diagram of a measuring device according to. 1... Pressurized tank, 2... Pressurized air supply port 3.
... Pressure equalization pipe, 4 ... Pressurized air outlet 5 ... Pressurized air supply valve, 6 ... - Pressure equalization valve 7 ... Pressurized air exhaust valve, 8 ... Pressure recorder 9 ...・Volume measurement tank, 10
... Foamed grain feeding port 11... Foamed grain discharge port, 12.
...Foamed grain supply valve 13...Foamed grain discharge valve 3 diagram

Claims (1)

【特許請求の範囲】 1、2個の密閉容器の内圧を測定し、一方の密閉容器内
に予め重量を測定した発泡粒子を充填することにより該
密閉容器の内容積が減少することによる圧力変化を検知
して前記発泡粒子の体積を求め、該発泡粒子の真比重を
測定することを特徴とする発泡粒子の自動比重測定方法
。 2、均圧弁を備えた均圧管により連結された2個の密閉
容器からなり、一方の密閉容器は上部には発泡粒供給口
と発泡粒供給弁を、下部には発泡粒排出口と発泡粒排出
弁を備え、他方の密閉容器は加圧空気供給口と加圧空気
供給弁、及び加圧空気排出口と加圧空気排出弁とを備え
、且つ圧力記録計を備えてなる発泡粒子の自動比重測定
装置。
[Claims] Measure the internal pressure of one or two closed containers, and fill one of the closed containers with foamed particles whose weight has been measured in advance to reduce the internal volume of the closed container. 1. A method for automatically measuring the specific gravity of foamed particles, characterized in that the volume of the foamed particles is determined by detecting the volume of the foamed particles, and the true specific gravity of the foamed particles is measured. 2. Consists of two sealed containers connected by a pressure equalizing pipe equipped with a pressure equalizing valve; one sealed container has a foamed grain supply port and foamed grain supply valve at the top, and a foamed grain outlet and foamed grains at the bottom. the other closed container is equipped with a pressurized air supply port and a pressurized air supply valve, a pressurized air discharge port and a pressurized air discharge valve, and is equipped with a pressure recorder. Specific gravity measuring device.
JP17068586A 1986-07-18 1986-07-18 Method and instrument for automatic measurement of specific gravity of foamed particle Pending JPS6326549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17068586A JPS6326549A (en) 1986-07-18 1986-07-18 Method and instrument for automatic measurement of specific gravity of foamed particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17068586A JPS6326549A (en) 1986-07-18 1986-07-18 Method and instrument for automatic measurement of specific gravity of foamed particle

Publications (1)

Publication Number Publication Date
JPS6326549A true JPS6326549A (en) 1988-02-04

Family

ID=15909494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17068586A Pending JPS6326549A (en) 1986-07-18 1986-07-18 Method and instrument for automatic measurement of specific gravity of foamed particle

Country Status (1)

Country Link
JP (1) JPS6326549A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015056461A1 (en) * 2013-10-18 2015-04-23 株式会社カネカ Bulk-density measuring device for pre-expanded particles and method for manufacturing pre-expanded particles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838176A (en) * 1971-09-14 1973-06-05
JPS5117471A (en) * 1974-08-03 1976-02-12 Koji Iizuka Kukiatsunyoru taisekisokuteiho
JPS5920814A (en) * 1982-07-28 1984-02-02 Shimadzu Corp Method and apparatus for measuring volume

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838176A (en) * 1971-09-14 1973-06-05
JPS5117471A (en) * 1974-08-03 1976-02-12 Koji Iizuka Kukiatsunyoru taisekisokuteiho
JPS5920814A (en) * 1982-07-28 1984-02-02 Shimadzu Corp Method and apparatus for measuring volume

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015056461A1 (en) * 2013-10-18 2015-04-23 株式会社カネカ Bulk-density measuring device for pre-expanded particles and method for manufacturing pre-expanded particles
US10131076B2 (en) 2013-10-18 2018-11-20 Kaneka Corporation Bulk-density measuring device for pre-expanded particles and method for manufacturing pre-expanded particles

Similar Documents

Publication Publication Date Title
EP0034459B1 (en) Cereal grain moisture content measuring apparatus
US3822866A (en) Feeding, weighing and mixing apparatus
US3744306A (en) Method and apparatus for measuring the ullage of a vessel
FI69704C (en) METHODS OF ORDERING FOR THE PURPOSE OF MATERIALS MASS AND HARD MATERIAL FLOW
US2720375A (en) Filling machine
CA2293903C (en) Method and apparatus for determining real time liquid and gas phase flow rates
US5058442A (en) Apparatus for measuring liquid vapor adsorption and desorption characteristics of a sample
JPS6326549A (en) Method and instrument for automatic measurement of specific gravity of foamed particle
US3566260A (en) Method and apparatus for measuring the moisture content of a particulate material including material flow control
US3045717A (en) Method and apparatus for preparing measured charges of material and dispensing them ito cavities
US3788125A (en) Method and apparatus for measuring the bulk density of a material under pressure
US4581934A (en) Method of and apparatus for measurement of the gas loading of a liquid synthetic-resin component
US4565085A (en) Method of and apparatus for measuring the degree of gas charge in a liquid synthetic resin component
US2687271A (en) Weighing and filling machine
JPH0136887B2 (en)
CN110895160A (en) Liquid quality measuring device and measuring method thereof
CZ88594A3 (en) Process and apparatus for volumetric feeding of flowing matters
HU222672B1 (en) Volumetric batch dosing device and method
CN217879246U (en) Alumina apparent density and repose angle measuring device
JPH0680816A (en) Apparatus for automatic determination of expansion ratio
GB1166332A (en) Control of Material-Reduction Operations.
JP2693340B2 (en) Device for controlling the expansion ratio of pre-expanded resin particles
JPH05112666A (en) Apparatus for automatic determination of expansion ratio of pre-expanded bead
PL348458A1 (en) Method and device for filling containers
GB2155645A (en) Filling bags