JPS63264873A - Manufacture of electrolyte substrate for fuel cell - Google Patents

Manufacture of electrolyte substrate for fuel cell

Info

Publication number
JPS63264873A
JPS63264873A JP62097355A JP9735587A JPS63264873A JP S63264873 A JPS63264873 A JP S63264873A JP 62097355 A JP62097355 A JP 62097355A JP 9735587 A JP9735587 A JP 9735587A JP S63264873 A JPS63264873 A JP S63264873A
Authority
JP
Japan
Prior art keywords
electrolyte
electrolyte substrate
lithium aluminate
substrate
hydrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62097355A
Other languages
Japanese (ja)
Other versions
JPH0626130B2 (en
Inventor
Yasutaka Komatsu
小松 康孝
Keizo Otsuka
大塚 馨象
Tsutomu Takahashi
務 高橋
Tadashi Takashima
正 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62097355A priority Critical patent/JPH0626130B2/en
Publication of JPS63264873A publication Critical patent/JPS63264873A/en
Publication of JPH0626130B2 publication Critical patent/JPH0626130B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0295Matrices for immobilising electrolyte melts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

PURPOSE:To make the pore size of a substrate small and to make the porosity large by preparing raw material slurry with fine powder obtained by crushing the hydrate of lithium aluminate formed by mixing gamma-lithium aluminate fine powder with water, and forming an electrolyte substrate with the slurry. CONSTITUTION:The hydrate of lithium aluminate prepared by mixing gamma-lithium aluminate fine powder with water is crushed to form fine powder, and an electrolyte substrate is formed with the fine hydrate particles. The crystal water in the hydrate is removed while a cell temperature is raised to operation temperature, and the portion where the crystal water was removed is converted into a micropore having a pore size of about 100Angstrom . Micropores 3 are formed in a lithium aluminate particle 1 in addition to a pore 2 formed between lithium aluminate particles 1. The electrolyte substrate having small pore size and large porosity can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は燃料電池用電解質基板の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing an electrolyte substrate for a fuel cell.

〔従来の技術〕[Conventional technology]

電解質をその細孔内に保持している電解質基板(電解質
板)に必要な性質は、まず材料が電解質に対して安定で
、かつ電子の不導体であることである。
The required properties of an electrolyte substrate (electrolyte plate) that holds an electrolyte in its pores are that the material be stable with respect to the electrolyte and be an electronic nonconductor.

溶融炭酸塩型の燃料電池の電解質は炭酸リチウム、炭酸
カリウム、炭酸ナトリムウの三元混合物もしくはこの中
の二つを混合した二元混合物からなり、その混合塩の融
点以上で電池は運転されている。
The electrolyte of a molten carbonate fuel cell consists of a ternary mixture of lithium carbonate, potassium carbonate, and sodium carbonate, or a binary mixture of two of these, and the cell is operated at a temperature above the melting point of the mixed salt. .

一般に電池運転温度は600から700℃と高温であり
、また、電解質は強い腐食性を有しているため、電解質
基板材料は耐熱性、耐食性を有するものでなければなら
ない。
Generally, the operating temperature of a battery is as high as 600 to 700° C., and the electrolyte is highly corrosive, so the electrolyte substrate material must have heat resistance and corrosion resistance.

更に、発生した電位が電解質基板を通して短絡しないた
め、電気絶縁性を有する必要もある。
Furthermore, it is also necessary to have electrical insulation properties so that the generated potential does not short-circuit through the electrolyte substrate.

以上のことから電解質基板材料として、リチウムアルミ
ネートが用いられている。
For the above reasons, lithium aluminate is used as the electrolyte substrate material.

また、電解質基板に必要な別の性質は、その中に形成さ
れる細孔が小さいことである。電解質を保持している電
解質基板は正極と負極との間にサンドイッチ状に挟まれ
て配置され、正極には燃料ガスとして水素が、また負極
には酸化剤ガスとして酸素と二酸化炭素との混合ガスが
供給される。
Another required property of the electrolyte substrate is that the pores formed therein be small. An electrolyte substrate holding an electrolyte is sandwiched between a positive electrode and a negative electrode, and the positive electrode contains hydrogen as a fuel gas, and the negative electrode contains a mixed gas of oxygen and carbon dioxide as an oxidant gas. is supplied.

このため、電解質基板は燃料ガスと酸化剤ガスとが混合
して燃焼するのを防ぐシール性を有する必要がある。
For this reason, the electrolyte substrate needs to have sealing properties to prevent the fuel gas and the oxidant gas from mixing and burning.

電解質基板は電解質の毛管力を利用して基板細孔中に電
解質を保持しており、その電解質によってガスがシール
されているので、基板の細孔径が小さい程電解質を保持
する能力が大きくなり望ましい。更に、電解質の保持力
が大きいと、電解質の流出も防止でき、電解質の消失に
よる性能劣化も防止できる。
The electrolyte substrate uses the capillary force of the electrolyte to hold the electrolyte in the pores of the substrate, and the gas is sealed by the electrolyte, so the smaller the pore diameter of the substrate, the greater the ability to hold the electrolyte, which is desirable. . Furthermore, when the electrolyte holding power is large, electrolyte outflow can be prevented, and performance deterioration due to loss of electrolyte can also be prevented.

更に、電解質基板はその気孔率が大きいことが必要であ
る。溶融炭酸塩型燃料電池は電解質中を炭酸イオンが移
動して電気化学的反応が進行するため、電池性能を向上
させるには電解質基板のイオン伝導抵抗を小さくする必
要がある。イオン伝導抵抗は、電解質基板の面積と厚さ
とが一定ならば、電解質基板中の電解質量すなわち基板
の気孔率に反比例する。従って、電解質基板は性能の上
で気孔率が大きい方が望ましい。
Furthermore, the electrolyte substrate needs to have a high porosity. In molten carbonate fuel cells, carbonate ions move through the electrolyte and electrochemical reactions proceed, so in order to improve cell performance it is necessary to reduce the ion conduction resistance of the electrolyte substrate. Ion conduction resistance is inversely proportional to the electrolyte mass in the electrolyte substrate, that is, the porosity of the substrate, if the area and thickness of the electrolyte substrate are constant. Therefore, it is desirable for the electrolyte substrate to have a large porosity in terms of performance.

また、電解質は電池運転中に電池構成部材の腐食2反応
ガスによる蒸散等によって消耗することから、基板の気
孔率が大きく電解質保持量が多いことは寿命の面でも望
ましい。
In addition, since the electrolyte is consumed during battery operation due to evaporation due to corrosion of the battery components and reaction gases, it is desirable for the substrate to have a high porosity and hold a large amount of electrolyte from the viewpoint of longevity.

ところで、従来の電解質基板の製造方法は特開昭60−
72172号公報に記載のように、1μ以下の粒径のγ
−リチウムアルミネート粉末と木材パルプとを原料とし
て水性スラリーを作り、それを抄造して電解質基板を成
形している。この方法によると、パルプの焼失による気
孔形成のため気孔率は十分大きくできるが、パルプの繊
維径を小さくすることが困難であるのに加え、γ−リチ
ウムアルミネートの原料粉末をいくら小さくしても水性
スラリー混線している間にリチウムアルミネートが水和
反応を起して結晶化し1粒子径が増大するため、完成し
た電解質基板の細孔径が大きくなってしまう問題点があ
った。
By the way, the conventional method for manufacturing an electrolyte substrate is disclosed in Japanese Patent Application Laid-Open No. 1986-
As described in Japanese Patent No. 72172, γ with a particle size of 1μ or less
- An aqueous slurry is made using lithium aluminate powder and wood pulp as raw materials, and the slurry is made into paper to form an electrolyte substrate. According to this method, the porosity can be sufficiently increased due to the formation of pores due to the burning of the pulp, but it is difficult to reduce the fiber diameter of the pulp, and no matter how small the raw material powder of γ-lithium aluminate is, the porosity can be sufficiently increased. However, while mixed with the aqueous slurry, lithium aluminate undergoes a hydration reaction and crystallizes, increasing the particle size, resulting in a problem in that the pore size of the completed electrolyte substrate becomes larger.

また、特開昭57−27569号公報では、γ−リチウ
ムアルミネートの微粉末とアルミナの割れ低減粒子と電
解質とを混合して、ホットプレスにより成形している。
Furthermore, in JP-A-57-27569, fine powder of γ-lithium aluminate, crack-reducing particles of alumina, and electrolyte are mixed and molded by hot pressing.

この場合製造過程で水を使用しないため、水和反応によ
る粒子の成長を防ぎ、細孔径の小さな基板となるが、粒
径の異なる粒子を混合することにより気孔率の低下につ
いては考慮されておらず、完成した電解質基板の気孔率
が小さくなる問題点があった。更に、この場合成形され
た電解質基板は空気中の水分を吸って水和反応を起して
変質するため、基板の保管方法が難しい問題もあった。
In this case, since no water is used in the manufacturing process, the growth of particles due to hydration reactions is prevented, resulting in a substrate with a small pore size, but the reduction in porosity due to mixing particles with different particle sizes is not taken into account. First, there was a problem in that the porosity of the completed electrolyte substrate was reduced. Furthermore, in this case, the molded electrolyte substrate absorbs moisture from the air and undergoes a hydration reaction, resulting in deterioration in quality, making it difficult to store the substrate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記2つの従来技術は、夫々γ−リチウムアルミネート
の水和反応による粒径の増大および異なる粒径の粒子の
混合による気孔率の低下の点について配慮されておらず
、電解質基板の細孔径を小さくすることと、気孔率を大
きくすることとの両者を同時に満足することができない
問題点があった。
The above two conventional technologies do not take into account the increase in particle size due to the hydration reaction of γ-lithium aluminate and the decrease in porosity due to the mixing of particles with different particle sizes, and the pore size of the electrolyte substrate is There was a problem in that it was not possible to satisfy both the requirements of reducing the size and increasing the porosity at the same time.

本発明は以上の点に鑑みなされたものであり、細孔径が
小さく、かつ気孔率を大きくすることを可能とした燃料
電池用電が質基板の製造方法を提供することを目的とす
るものである。
The present invention was made in view of the above points, and it is an object of the present invention to provide a method for manufacturing a conductive substrate for fuel cells that has a small pore diameter and a high porosity. be.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、リチウムアルミネートの粉末を原料とした
ものが、γ−リチウムアルミネートの微粉末と水とを混
合して作ったリチウムアルミネートの水和物を粉砕して
形成した微粉末であることにより、達成される。
The above purpose is to create a fine powder made from lithium aluminate powder by pulverizing a lithium aluminate hydrate made by mixing γ-lithium aluminate fine powder and water. This is achieved by:

〔作用〕[Effect]

まずγ−リチウムアルミネートと水とを反応させること
により水和物LizAQz・7HzOが形成される。こ
の時点では粒子径が大きくなっており、この状態のまま
電解質基板を成形しても細孔径が大きくなるため、形成
した水和物を粉砕し微粒子化する。この水和物微粒子を
原料として電解質基板を成形したので、電池を運転温度
まで昇温する過程で水和物中の結晶水が飛散し、結晶水
の飛散した跡が100人程広径微細孔となる。この結果
、リチウムアルミネート粒子間に形成される細孔に加え
て、リチウムアルミネート粒子の中にも更に微細な細孔
が形成されることになるので。
First, a hydrate LizAQz.7HzO is formed by reacting γ-lithium aluminate with water. At this point, the particle size is large, and even if the electrolyte substrate is molded in this state, the pore size will become large, so the formed hydrate is pulverized to form fine particles. Since the electrolyte substrate was formed using these hydrate fine particles as a raw material, the crystal water in the hydrate was scattered during the process of raising the temperature of the battery to the operating temperature, leaving about 100 wide-diameter fine pores with traces of scattered crystal water. becomes. As a result, in addition to the pores formed between the lithium aluminate particles, even finer pores are formed within the lithium aluminate particles.

細孔径が小さく、気孔率が大きな電解質基板を得ること
ができる。
An electrolyte substrate with small pore diameter and high porosity can be obtained.

〔実施例〕〔Example〕

以下、図示した実施例に基づいて本発明を説明する。第
1図には本発明の一実施例が示されている。同図に示さ
れているようにリチウムアルミネートの粉末を原料とし
たもので原料スラリーを作り、次いでこの原料スラリー
を製板化し、電解質基板とする燃料電池用電解質基板の
製造方法で。
The present invention will be explained below based on the illustrated embodiments. FIG. 1 shows an embodiment of the invention. As shown in the figure, a raw material slurry is made using lithium aluminate powder as a raw material, and then this raw material slurry is made into a plate to form an electrolyte substrate.This is a method for manufacturing an electrolyte substrate for a fuel cell.

本実施例ではリチウムアルミネートの粉末を原料とした
ものを、γ−リチウムアルミネートの微粉末と水とを混
合して作ったリチウムアルミネートの水和物を粉砕して
形成した微粉末とした。このようにすることにより電解
質基板の細孔径が小さく、かつ気孔率が大きくなって、
細孔径が小さく、かつ気孔率を大きくすることを可能と
した燃料電池用電解質基板の製造方法を得ることができ
る。
In this example, lithium aluminate powder was used as a raw material, and fine powder was formed by crushing a lithium aluminate hydrate made by mixing γ-lithium aluminate fine powder and water. . By doing this, the pore diameter of the electrolyte substrate becomes smaller and the porosity becomes larger.
It is possible to obtain a method for manufacturing an electrolyte substrate for a fuel cell, which allows the pore diameter to be small and the porosity to be large.

すなりちまず、γ−リチウムアルミネートの微粉末を水
中に入れ、室温で150から200時間反応させて水和
物を作った。使用したγ−リチウムアルミネートは平均
粒子径0.1μ、比表面積23 rrr/ gのもので
ある。粒子径が大きく比表面積の小さい粒子を用いるこ
とも可能であるが、水和反応時間が長くなるため、比表
面積の大きなものの方が望ましい1作成した水和物は鱗
片状を呈しており、結晶化による粒径の成長がみられた
ため、ボールミルを使用して粒子径が0.1μ程度にな
るように粉砕した。この水和物の微粉末を用いて次に述
べる手順により電解質基板を成形した。
First, fine powder of γ-lithium aluminate was placed in water and reacted at room temperature for 150 to 200 hours to form a hydrate. The γ-lithium aluminate used had an average particle size of 0.1μ and a specific surface area of 23 rrr/g. Although it is possible to use particles with a large particle size and a small specific surface area, it is preferable to use particles with a large specific surface area because the hydration reaction time will be longer.1 The prepared hydrate has a scaly shape and is crystalline. Since a growth in particle size due to chemical reaction was observed, the powder was ground using a ball mill to a particle size of approximately 0.1 μm. An electrolyte substrate was molded using the fine powder of this hydrate according to the procedure described below.

まず溶剤としてトリクロロエチレン、テトラクロロエチ
レン、n−ブチルアルコールを夫々体積比で60.2 
:17.O: 22.8  に混合した溶液1.8Q 
をボールミルに入れ、電解質基板の補強用のアルミナ繊
維を370g加え攪拌して繊維を分散させた。このボー
ルミルに、上述の溶剤と同組成の混合液4.8Q に可
塑剤としてブチルフタリルグリコール酸ブチルを195
mff1、バインダーとしてポリビニルブチラールを6
05g加えて攪拌溶解させたものを加え混合した。更に
、リチウムアルミネートの水和物粉末を1.92kgと
First, trichlorethylene, tetrachloroethylene, and n-butyl alcohol were used as solvents, each at a volume ratio of 60.2.
:17. O: 1.8Q of solution mixed with 22.8
was placed in a ball mill, and 370 g of alumina fibers for reinforcing the electrolyte substrate were added and stirred to disperse the fibers. In this ball mill, 195% butyl phthalyl glycolate was added as a plasticizer to 4.8Q of a mixed solution having the same composition as the above-mentioned solvent.
mff1, polyvinyl butyral as a binder 6
05g was added and stirred and dissolved, and then mixed. Furthermore, 1.92 kg of lithium aluminate hydrate powder.

上述のアルミナ繊維をリチウム化するための炭酸リチウ
ム269gを加えてよく混練した後、減圧脱気を行い粘
度を調節して原料スラリーとした。
After adding 269 g of lithium carbonate for lithiumizing the above-mentioned alumina fibers and thoroughly kneading, deaeration was performed under reduced pressure to adjust the viscosity to obtain a raw material slurry.

この有機性スラリーをドクターブレード法により製板化
し、電解質基板とした。
This organic slurry was made into a plate by the doctor blade method to obtain an electrolyte substrate.

このように本実施例では有機性スラリーを用いたが、水
和物の粒子を原料としているため、水に対しても安定で
あり、水性スラリーとすることも可能である。電解質基
板は成形後に電解質を塗布し、電池に組込まれ、電池の
運転温度に昇温される過程で溶剤、バインダー、結晶水
が除去されることによって成形された細孔に電解質がし
み込んで完了する。このため成形した電解質基板が電池
作動温度の650℃でどのような細孔特性を示すかを調
べるため、成形後のシートを650℃で焼成し、溶剤、
バインダーおよび結晶水を飛散させた。焼成後の電解質
基板を従来例による電解質基板共々電子顕微鏡で比較I
l察したが9本実施例のa察結果が第2図に、従来例の
それが第3図に示。
As described above, an organic slurry was used in this example, but since hydrate particles are used as a raw material, it is stable in water and can also be made into an aqueous slurry. The electrolyte substrate is coated with electrolyte after molding, is assembled into a battery, and as the temperature is raised to the operating temperature of the battery, the solvent, binder, and water of crystallization are removed, and the electrolyte soaks into the molded pores, completing the process. . Therefore, in order to investigate what kind of pore characteristics the formed electrolyte substrate exhibits at the battery operating temperature of 650°C, the formed sheet was fired at 650°C, and a solvent,
The binder and crystallization water were splashed off. Comparison of electrolyte substrates after firing with conventional electrolyte substrates using an electron microscope I
The results of this experiment are shown in Figure 2, and those of the conventional example are shown in Figure 3.

されている。has been done.

これら両図から明らかなように第3図に示されている水
和物にしていないリチウムアルミネート微粉末で成形し
た従来例の電解質基板の構造と比較すると、約0.1μ
 の粒径をもつリチウムアルミネート粒子1と、その粒
子1間にできる粒子間細孔2とは寸法的にほぼ等しいが
、本実施例の水和物を用いたものは、リチウムルミネー
ト粒子1の中に、結晶水が飛散した跡にできたと考えら
れる0、005  から0.01μ程度の粒子内組孔3
が存在しているのが認められた。
As is clear from these two figures, when compared with the structure of the conventional electrolyte substrate molded from unhydrated lithium aluminate fine powder shown in Figure 3, it is approximately 0.1μ
The lithium aluminate particles 1 having a particle size of There are intraparticle pores 3 with sizes ranging from 0.005 to 0.01μ, which are thought to have been formed as a result of scattering of crystal water.
was recognized to exist.

また、本実施例の焼成後の電解質基板の細孔特性を従来
例の電解質基板と水銀ポロシメータで比較測定したが、
従来例の測定結果が第4図に、本実施例のそれが第5図
に示されている。これら両図は共に、縦軸に累積細孔溶
植、微分狽孔容積をとり、横軸に細孔直径をとって細孔
直径と累積細孔容積、微分細孔容積との関係を示したも
のである。
In addition, the pore characteristics of the fired electrolyte substrate of this example were compared with those of the conventional electrolyte substrate using a mercury porosimeter.
The measurement results of the conventional example are shown in FIG. 4, and those of the present example are shown in FIG. Both of these figures show the relationship between pore diameter, cumulative pore volume, and differential pore volume, with cumulative pore engraftment and differential pore volume plotted on the vertical axis, and pore diameter plotted on the horizontal axis. It is something.

これら両図から明らかなように、水和しない粒子を用い
“た第4図の従来例の基板は微分細孔容積のピークが細
孔直径103人(0,1μ)付近に存在するだけである
が、水和物を用いた第5図の本実施例の電解質基板は、
細孔直径が103人 と10”人 との付近に2つのピ
ークが存在しているのが認められた。また、電解質基板
の気孔率と関係の深い累積細孔容積の最大値は、水和し
ない従来例の基板の場合約0.5cc/g、水和した本
実施例の基板の場合約Q、7cc/g であるのが認め
られた。このように気孔率も累積細孔容積とほぼ同じ比
率(30〜40%)で向上し、水和物を用いた本実施例
の電解質基板が良好な細孔特性を有していることが確認
できた。
As is clear from both of these figures, in the conventional substrate shown in Figure 4, which uses non-hydrated particles, the peak of the differential pore volume only exists around the pore diameter of 103 mm (0.1μ). However, the electrolyte substrate of this example shown in FIG. 5 using a hydrate is as follows.
It was observed that two peaks existed near the pore diameters of 103mm and 10"mm. Also, the maximum value of cumulative pore volume, which is closely related to the porosity of the electrolyte substrate, was determined by hydration. It was observed that the porosity was approximately 0.5 cc/g for the conventional substrate without hydration, and approximately 7 cc/g for the hydrated substrate of this example. It was confirmed that the electrolyte substrate of this example using a hydrate had good pore characteristics with the same ratio (30 to 40%).

このように本実施例によれば電解質基板の細孔径を小さ
く、かつ気孔率を大きくできるので、電解質保持力が大
きくなって、燃料ガスと酸化剤ガスとの分離性が良好に
なると共に、電解質の消失量も少なくなり、fi!池の
信頼性向上と長寿命化とに効果がある。また、1!解質
保持量が多くなるので電解質のイオン伝導抵抗低減のた
めの電池性能向上および電解質消失による電池の寿命を
延長することができる。更に、電解質基板が水に対して
安定となり、除湿雰囲気で保管する必要がなく、保管が
容易になる。そしてリチウムアルミネート水和物中の結
晶水の除去を電池の昇温と兼ねて行うため、製造工数を
少なくすることができる。
In this way, according to this embodiment, the pore diameter of the electrolyte substrate can be made small and the porosity can be made large, so that the electrolyte holding power is increased, the separation of fuel gas and oxidant gas is improved, and the electrolyte The amount of loss of fi! This is effective in improving the reliability and extending the life of the pond. Also, 1! Since the amount of electrolyte retained increases, battery performance can be improved by reducing the ionic conduction resistance of the electrolyte, and battery life can be extended due to electrolyte disappearance. Furthermore, the electrolyte substrate becomes stable against water and does not need to be stored in a dehumidified atmosphere, making storage easier. Since the removal of crystallized water in the lithium aluminate hydrate is also performed at the same time as raising the temperature of the battery, the number of manufacturing steps can be reduced.

本発明の他の実施例を次に述べる。上述の実施例と同様
な方法で作成した水和物の微粉末を焼成して結晶水を除
去した粉末を作成し、それを原料に前述の実施例と同様
な方法で電解質基板を成形した。
Other embodiments of the invention will now be described. A fine powder of hydrate prepared in the same manner as in the above-mentioned example was fired to obtain a powder from which water of crystallization had been removed, and an electrolyte substrate was formed using the powder as a raw material in the same manner as in the above-mentioned example.

原料粉末の結晶水除去温度を650℃、800”C,9
00℃の3種類に変化させたところ、成形した電解質基
板を650℃に焼成した時の細孔容積に変化があった。
The crystal water removal temperature of the raw material powder was set to 650℃, 800"C, 9
When the temperature was changed to three different temperatures at 00°C, there was a change in pore volume when the molded electrolyte substrate was fired at 650°C.

100人付近の細孔径の気孔すなわち粒子的細孔による
細孔容積が650℃の時上述の実施例とほぼ同じO、1
6cc/ g 、800℃の時0.10cc/g、90
0℃の時0.07ω/gと結晶水除去温度の上昇と共に
細孔容積が減少した。上述の実施例の場合は結晶水を電
池昇温過程で除去するため、除去温度が電池作動温度で
ある65’O℃に限定されるが、本実施例によると結晶
水の除去温度を電池運転温度以上で任意に選ぶことがで
き、それによって直径100人付近の細孔容積をコント
ロールすることができる。これは電解質基板のクリープ
特性、電極等の構成部材との組合せによっては気孔率を
減少させる必要がある場合等に有効である。
When the pore volume of pores with a pore diameter of around 100 pores, that is, the pore volume due to particle pores, is 650°C, O, 1 is almost the same as in the above example.
6cc/g, 0.10cc/g at 800℃, 90
The pore volume decreased to 0.07 ω/g at 0°C as the crystal water removal temperature increased. In the case of the above embodiment, the removal temperature is limited to 65'O ℃, which is the battery operating temperature, because the crystal water is removed during the battery temperature rising process, but according to this embodiment, the crystal water removal temperature is The temperature can be arbitrarily selected and the pore volume of around 100 pores in diameter can be controlled thereby. This is effective when it is necessary to reduce the porosity depending on the creep characteristics of the electrolyte substrate and the combination with constituent members such as electrodes.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明は電解質基板の細孔径が小さく、か
つ気孔率が大きくなって、細孔径が小さく、かつ気孔率
を大きくすることを可能とした燃料電池用電解質基板の
製造方法を得ることができる。
As described above, the present invention provides a method for producing an electrolyte substrate for a fuel cell, in which the pore size of the electrolyte substrate is small and the porosity is large, thereby making it possible to have a small pore size and a large porosity. Can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の燃料電池用電解質基板の製造方法の一
実施例のフローチャート図、第2図は同じく一実施例に
よる電解質基板の構造を示す説明図、第3図は従来の燃
料電池用電解質基軸の製造方法による電解質基板の構造
を示す説明図、第4図は同じ〈従来の製造方法による電
解質基板の細孔直径と累積細孔容積、微分廁孔容積との
関係を示す特性図、第5図は本発明の燃料電池用電解質
基板の製造方法の一実施例による電解質基板の細孔直径
と累積細孔容積、微分細孔容積との関係を示す特性図で
ある。 1・・・リチウムアルミネート粒子、2・・・粒子間細
孔、第 ID 第2図 3−Q子内車田Jし 第4図 N8孔直掻〔A1 第5g 手続補正書(自発) 昭和62年 9月 2鳩
FIG. 1 is a flowchart of an embodiment of the method for manufacturing an electrolyte substrate for fuel cells according to the present invention, FIG. 2 is an explanatory diagram showing the structure of an electrolyte substrate according to an embodiment, and FIG. An explanatory diagram showing the structure of an electrolyte substrate produced by the electrolyte base manufacturing method, and FIG. 4 are the same. FIG. 5 is a characteristic diagram showing the relationship between the pore diameter, cumulative pore volume, and differential pore volume of an electrolyte substrate according to an embodiment of the method for manufacturing an electrolyte substrate for a fuel cell according to the present invention. 1... Lithium aluminate particles, 2... Interparticle pores, ID Fig. 2 3-Q Konai Kurumada J and Fig. 4 N8 hole direct scratch [A1 5g Procedural amendment (voluntary) 1988 September 2 pigeons

Claims (1)

【特許請求の範囲】 1、リチウムアルミネートの粉末を原料としたもので原
料スラリーを作り、次いでこの原料スラリーを製板化し
、電解質基板とする燃料電池用電解質基板の製造方法に
おいて、前記リチウムアルミネートの粉末を原料とした
ものが、γ−リチウムアルミネートの微粉末と水とを混
合して作つたリチウムアルミネートの水和物を粉砕して
形成した微粉末であることを特徴とする燃料電池用電解
質基板の製造方法。 2、前記リチウムアルミネートの水和物を粉砕して形成
した微粉末が、前記水和物を焼成し、結晶水の少なくと
も一部を除去した水和物が粉砕されたものである特許請
求の範囲第1項記載の燃料電池用電解質基板の製造方法
[Scope of Claims] 1. A method for manufacturing an electrolyte substrate for a fuel cell, in which a raw material slurry is prepared using lithium aluminate powder as a raw material, and then this raw material slurry is made into a plate to form an electrolyte substrate. A fuel characterized in that the raw material is a fine powder formed by pulverizing a lithium aluminate hydrate made by mixing a fine powder of γ-lithium aluminate and water. A method for manufacturing an electrolyte substrate for a battery. 2. The fine powder formed by pulverizing the hydrate of lithium aluminate is a pulverized hydrate obtained by firing the hydrate and removing at least a part of the crystal water. A method for producing an electrolyte substrate for a fuel cell according to item 1.
JP62097355A 1987-04-22 1987-04-22 Method for manufacturing electrolyte plate for molten carbonate fuel cell Expired - Fee Related JPH0626130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62097355A JPH0626130B2 (en) 1987-04-22 1987-04-22 Method for manufacturing electrolyte plate for molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62097355A JPH0626130B2 (en) 1987-04-22 1987-04-22 Method for manufacturing electrolyte plate for molten carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPS63264873A true JPS63264873A (en) 1988-11-01
JPH0626130B2 JPH0626130B2 (en) 1994-04-06

Family

ID=14190184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62097355A Expired - Fee Related JPH0626130B2 (en) 1987-04-22 1987-04-22 Method for manufacturing electrolyte plate for molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPH0626130B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03112065A (en) * 1989-09-26 1991-05-13 Youyuu Tansanengata Nenryo Denchi Hatsuden Syst Gijutsu Kenkyu Kumiai Electrolyte plate of molten carbonate fuel cell
JPH06290799A (en) * 1992-09-30 1994-10-18 Hitachi Ltd Manufacture of electrolytic sheet for fused carbonate type fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03112065A (en) * 1989-09-26 1991-05-13 Youyuu Tansanengata Nenryo Denchi Hatsuden Syst Gijutsu Kenkyu Kumiai Electrolyte plate of molten carbonate fuel cell
JPH06290799A (en) * 1992-09-30 1994-10-18 Hitachi Ltd Manufacture of electrolytic sheet for fused carbonate type fuel cell

Also Published As

Publication number Publication date
JPH0626130B2 (en) 1994-04-06

Similar Documents

Publication Publication Date Title
CN108475787B (en) Skeleton-forming agent and negative electrode using same
US20030160215A1 (en) Coated carbonaceous particles particularly useful as electrode materials in electrical storage cells, and methods of making the same
US20230303407A1 (en) Ternary cathode material, preparation method and application thereof
KR20210094623A (en) Silicon-oxygen composite anode material, manufacturing method thereof, and lithium ion battery
KR101324729B1 (en) Solid electrolyte composition for lithium secondary battery and method of forming the same
CN110474098B (en) Garnet type solid electrolyte material, composite material coated by garnet type solid electrolyte material, preparation method and application
CN115188939A (en) Core-shell structure micron silicon-carbon composite material, preparation method, electrode and battery
JPH08506212A (en) Molten carbonate-Method for manufacturing fuel cell
JP3331313B2 (en) Electrolyte matrix for molten carbonate fuel cells
CN113745500B (en) Preparation method of high-nickel ternary positive electrode material
CN114188601A (en) Preparation method and application of solid electrolyte
KR20200134476A (en) Preparation Method of Porous Si for anode material of lithium-ion battery
CN112952075A (en) Composite negative electrode material, preparation method thereof, negative electrode material and lithium ion battery
CN116143200B (en) High-compaction micron monocrystal lithium-rich manganese-based positive electrode material, preparation method and lithium battery
JPS63264873A (en) Manufacture of electrolyte substrate for fuel cell
US5399443A (en) Fuel cells
CN116230879A (en) Positive electrode material, preparation method thereof and lithium ion battery
JP5158743B2 (en) Slurry composition for forming electrolyte holding plate, green sheet for forming electrolyte holding plate, and production method thereof
JPS58129781A (en) Fused salt type fuel cell
JPH06290799A (en) Manufacture of electrolytic sheet for fused carbonate type fuel cell
JPH0261095B2 (en)
KR100884646B1 (en) Method for manufacturing mcfc cathode using nano sized cobalt oxide powder
KR102209433B1 (en) Layered lithium nickel oxide, process for producing the same and lithium secondary cell employing it
US11817570B2 (en) Method of manufacturing a solid-state lithium battery and a battery manufactured by the method
JPS63294668A (en) Matrix for fused carbonate fuel cell

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees