JPS6326478B2 - - Google Patents

Info

Publication number
JPS6326478B2
JPS6326478B2 JP58099438A JP9943883A JPS6326478B2 JP S6326478 B2 JPS6326478 B2 JP S6326478B2 JP 58099438 A JP58099438 A JP 58099438A JP 9943883 A JP9943883 A JP 9943883A JP S6326478 B2 JPS6326478 B2 JP S6326478B2
Authority
JP
Japan
Prior art keywords
bubble
ion implantation
implanted
ion
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58099438A
Other languages
Japanese (ja)
Other versions
JPS59227080A (en
Inventor
Keiichi Betsui
Tsutomu Myashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58099438A priority Critical patent/JPS59227080A/en
Publication of JPS59227080A publication Critical patent/JPS59227080A/en
Publication of JPS6326478B2 publication Critical patent/JPS6326478B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)

Description

【発明の詳細な説明】 発明の技術分野 本発明はイオン注入バブルデバイスの作製法に
関し、特に大きな誘起異方性磁界が得られる作製
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a method for manufacturing an ion implantation bubble device, and particularly to a method for manufacturing an ion implantation bubble device that can obtain a large induced anisotropic magnetic field.

技術の背景 最近、磁気バブルメモリにおいて、そのバブル
転送路をイオン注入法により形成し記憶密度を高
度化する方法が用いられている。このイオン注入
法によるイオン注入バブルデバイスは第1図aの
平面図及び第1図bの断面図に示す如く、ガドリ
ニウム・ガリウム・ガーネツト基板1の上にバブ
ル用結晶となる磁性薄膜2を液相エピタキシヤル
成長法により形成し、この磁性薄膜2に対し、パ
ターン3以外の領域4に水素、ネオン、ヘリウム
等のイオンを注入するのである。このようにパタ
ーン3を形成した素子はイオンを注入された領域
4の磁化容易軸方向が矢印aの如く面内方向と一
致し、パターン3の非イオン注入領域の磁化容易
軸方向は矢印bの如くもとのままで面内方向と垂
直である。従つてバイアス磁界及び回転磁界を印
加することによりバブル5はパターン3の周縁に
沿つて矢印cの如く転送される。そしてこのパタ
ーンは円形や4角形をその一部が重なるようにし
て列状に並べた形状であり、従来のパーマロイパ
ターンの如くギヤツプを必要としないため寸法精
度が緩くとも良く、従つてパターンが小さくでき
高密度化が実現される。
Background of the Technology Recently, in magnetic bubble memories, a method has been used to improve the storage density by forming bubble transfer paths by ion implantation. In the ion implantation bubble device using this ion implantation method, as shown in the plan view of FIG. It is formed by an epitaxial growth method, and ions such as hydrogen, neon, helium, etc. are implanted into the region 4 of the magnetic thin film 2 other than the pattern 3. In the device in which pattern 3 is formed in this way, the direction of the easy magnetization axis of the ion-implanted region 4 coincides with the in-plane direction as shown by arrow a, and the direction of the easy magnetization axis of the non-ion implanted region of pattern 3 coincides with the in-plane direction as shown by arrow b. It remains perpendicular to the in-plane direction as it was. Therefore, by applying a bias magnetic field and a rotating magnetic field, the bubble 5 is transferred along the periphery of the pattern 3 as shown by the arrow c. This pattern has a shape in which circles and squares are arranged in a row so that some of them overlap, and unlike conventional permalloy patterns, it does not require a gap, so the dimensional accuracy does not need to be loose, and therefore the pattern is small. This results in higher density.

従来技術と問題点 従来このイオン注入バブル素子のイオン注入層
の誘起異方性磁界ΔHkを増大させるためにはH+
イオン注入量を多くする方法と、SiO2スペーサ
を高基板温度でスパツタリングする方法とがあ
る。しかし前者はイオン注入に長時間を要すると
いう欠点があり、後者は基板にSiO2膜の形成を
ともなうため、その必要がない場合にもSiO2
が形成されるという欠点があつた。
Conventional technology and problems Conventionally, in order to increase the induced anisotropic magnetic field ΔHk of the ion-implanted layer of this ion-implanted bubble device, H +
There are two methods: increasing the amount of ion implantation, and sputtering SiO 2 spacers at a high substrate temperature. However, the former method has the disadvantage that ion implantation takes a long time, and the latter method involves the formation of a SiO 2 film on the substrate, resulting in the formation of an SiO 2 film even when this is not necessary.

発明の目的 本発明は前記従来の欠点に鑑み、誘起異方性磁
界の大きなイオン注入バブルデバイスを高基板温
度で作成する作製法を提供することを目的とする
ものである。
OBJECTS OF THE INVENTION In view of the above-mentioned conventional drawbacks, it is an object of the present invention to provide a manufacturing method for manufacturing an ion implantation bubble device with a large induced anisotropic magnetic field at a high substrate temperature.

発明の構成 そしてこの目的は本発明によれば、バブル用結
晶にイオン注入法によつてバブル転送路を形成す
るイオン注入バブルデバイスの作製法において、
イオン注入後のバブル用結晶を高周波スパツタリ
ング装置に挿入し、該バブル用結晶のバブル転送
路が形成された面にはターゲツト物質が成膜せ
ず、プラズマのみがまわり込める状態に支持して
高周波スパツタリングを行なうことを特徴とする
イオン注入バブルデバイスの作製法を提供するこ
とによつて達成される。
Structure of the Invention According to the present invention, the present invention provides a method for manufacturing an ion implantation bubble device in which a bubble transfer path is formed in a bubble crystal by an ion implantation method.
The bubble crystal after ion implantation is inserted into a high-frequency sputtering device, and high-frequency sputtering is performed while supporting the bubble crystal in such a way that only plasma can pass around it without forming a film of the target material on the surface of the bubble crystal on which the bubble transfer path is formed. This is achieved by providing a method for manufacturing an ion implantation bubble device characterized by performing the following steps.

発明の実施例 以下、本発明実施例を図面によつて詳述する。Examples of the invention Embodiments of the present invention will be described in detail below with reference to the drawings.

第2図は本発明によるイオン注入バブルデバイ
スの作製法を説明するための図である。同図にお
いて、10は一般的な高周波スパツタリング装
置、11はその真空容器、12はターゲツト電
極、13はターゲツト、14はウエハーホルダ、
15はウエハー、16は真空排気口、17はAr
ガス導入口、18は高周波電源をそれぞれ示す。
FIG. 2 is a diagram for explaining a method for manufacturing an ion implantation bubble device according to the present invention. In the figure, 10 is a general high frequency sputtering device, 11 is its vacuum container, 12 is a target electrode, 13 is a target, 14 is a wafer holder,
15 is wafer, 16 is vacuum exhaust port, 17 is Ar
A gas inlet port and 18 indicate a high frequency power source, respectively.

本実施例はターゲツト13に例えばSiO2を用
い、バブル用結晶のウエハー15をウエハーホル
ダー14上に載置して高周波スパツタリングを行
なうのであるが、このときウエハー15は第3図
に示す如く裏面15bをターゲツト13に向けて
置き、ウエハー表面(イオン注入によりバブル転
送路を形成した面)15aにもプラズマが回り込
むようにウエハー下面にすき間(数mm)を開けて
おく。この状態で高周波をターゲツト13とウエ
ハーホルダー14間に印加すると、ウエハー15
は裏面からの高周波電力により昇温し、裏面15
bにはターゲツト物質が付着する。しかし表面1
5aにはプラズマは廻り込むが、ターゲツト物質
は付着しない。ウエハー温度は高周波電力、ター
ゲツト、ウエハーホルダー間の距離を変えて制御
し、該ウエハー温度が250〜450℃となるようにし
て高周波スパツタリングする。
In this embodiment, for example, SiO 2 is used as the target 13, and a wafer 15 of bubble crystal is placed on the wafer holder 14 to perform high frequency sputtering. is placed facing the target 13, and a gap (several mm) is left at the bottom of the wafer so that the plasma can also flow around the wafer surface 15a (the surface on which the bubble transfer path is formed by ion implantation). When high frequency is applied between the target 13 and the wafer holder 14 in this state, the wafer 15
is heated by high frequency power from the back side, and the back side 15
A target substance is attached to b. But surface 1
Although the plasma circulates around 5a, the target substance does not adhere to it. The wafer temperature is controlled by changing the high frequency power and the distance between the target and the wafer holder, and high frequency sputtering is performed so that the wafer temperature is between 250 and 450°C.

第4図はNe+イオンを200KeVで注入した試料
を本発明の方法で処理した後の誘起異方性磁界
ΔHkのNe+注入量依存性を示した図である。同
図において曲線Aは本発明法による場合を示し、
比較のために従来の高温スパツタリング法を曲線
Bで、スパツタリングを行なわない場合を曲線C
で示した。図から従来の高温スパツタリング法よ
りも本発明の方が大きなΔHkを誘起しているこ
とがわかる。しかも従来の方法では注入による損
傷が大きくΔHkが減少する4×1014Ne+/cm2の注
入量に対しても大きなΔHkが誘起されている。
FIG. 4 is a diagram showing the dependence of the induced anisotropic magnetic field ΔHk on the amount of Ne + implanted after processing a sample into which Ne + ions were implanted at 200 KeV by the method of the present invention. In the figure, curve A shows the case according to the method of the present invention,
For comparison, curve B represents the conventional high-temperature sputtering method, and curve C represents the case without sputtering.
It was shown in It can be seen from the figure that the present invention induces a larger ΔHk than the conventional high temperature sputtering method. Moreover, in the conventional method, a large ΔHk is induced even for an implantation dose of 4×10 14 Ne + /cm 2 where the damage caused by implantation is large and the ΔHk decreases.

発明の効果 以上、詳細に説明したように本発明によるイオ
ン注入バブルデバイスの作製法は、プラズマが基
板表面にまわり込み、かつ該表面にはターゲツト
物質が成膜しない状態で高周波スパツタリングを
行なうことにより、時間を要する水素イオン注入
を用いることなく大きな誘起異方性磁界を得るこ
とができ、イオン注入バブルデバイスの作製時間
を短縮できるといつた効果大なるものである。
Effects of the Invention As explained above in detail, the method for manufacturing an ion implantation bubble device according to the present invention is to perform high frequency sputtering in a state where plasma wraps around the surface of the substrate and no target material is formed on the surface. The present invention has great effects in that it is possible to obtain a large induced anisotropic magnetic field without using time-consuming hydrogen ion implantation, and to shorten the manufacturing time of ion-implanted bubble devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のイオン注入バブルデバイスを説
明するための図、第2図及び第3図は本発明によ
るイオン注入バブルデバイスの作製法を説明する
ための図、第4図はNe+イオンを200KeVで注入
した試料を本発明の方法で処理した後の誘起異方
性磁界のNe+注入量依存性を従来例と比較して示
した図である。 図面において、10は高周波スパツタリング装
置、11は真空容器、12はターゲツト電極、1
3はターゲツト、14はウエハーホルダー、15
はウエハーをそれぞれ示す。
FIG. 1 is a diagram for explaining a conventional ion-implanted bubble device, FIGS. 2 and 3 are diagrams for explaining the method for manufacturing an ion-implanted bubble device according to the present invention, and FIG. 4 is a diagram for explaining a conventional ion - implanted bubble device. FIG. 3 is a diagram showing the dependence of the induced anisotropic magnetic field on the amount of Ne + implanted after processing a sample implanted at 200 KeV by the method of the present invention in comparison with a conventional example. In the drawing, 10 is a high frequency sputtering device, 11 is a vacuum container, 12 is a target electrode, 1
3 is the target, 14 is the wafer holder, 15
indicate wafers, respectively.

Claims (1)

【特許請求の範囲】 1 バブル用結晶にイオン注入法によつてバブル
転送路を形成するイオン注入バブルデバイスの作
製法において、イオン注入後のバブル用結晶を高
周波スパツタリング装置に挿入し、該バブル用結
晶のバブル転送路が形成された面にはターゲツト
物質が成膜せずプラズマのみがまわり込める状態
に支持して高周波スパツタリングを行なうことを
特徴とするイオン注入バブルデバイスの作製法。 2 前記バブル用結晶の温度が250〜450℃となる
ように前記高周波スパツタリングを行なうことを
特徴とする特許請求の範囲第1項記載のイオン注
入バブルデバイスの作製法。
[Claims] 1. In a method for manufacturing an ion-implanted bubble device in which a bubble transfer path is formed in a bubble crystal by an ion implantation method, the bubble crystal after ion implantation is inserted into a high-frequency sputtering device, and the bubble transfer path is A method for producing an ion-implanted bubble device characterized by performing high-frequency sputtering on the surface of a crystal on which a bubble transfer path is formed, with no target material being formed and the crystal being supported in a state where only plasma can go around it. 2. The method of manufacturing an ion implantation bubble device according to claim 1, wherein the high frequency sputtering is performed so that the temperature of the bubble crystal is 250 to 450°C.
JP58099438A 1983-06-06 1983-06-06 Manufacture of ion implanting bubble device Granted JPS59227080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58099438A JPS59227080A (en) 1983-06-06 1983-06-06 Manufacture of ion implanting bubble device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58099438A JPS59227080A (en) 1983-06-06 1983-06-06 Manufacture of ion implanting bubble device

Publications (2)

Publication Number Publication Date
JPS59227080A JPS59227080A (en) 1984-12-20
JPS6326478B2 true JPS6326478B2 (en) 1988-05-30

Family

ID=14247414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58099438A Granted JPS59227080A (en) 1983-06-06 1983-06-06 Manufacture of ion implanting bubble device

Country Status (1)

Country Link
JP (1) JPS59227080A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528518A (en) * 1978-08-17 1980-02-29 Fujitsu Ltd Control method of magnetic bubble steady existence magnetic field for magnetic bubble memory element
JPS57170510A (en) * 1981-04-15 1982-10-20 Hitachi Ltd Method of ion implantation
JPS57186284A (en) * 1981-05-11 1982-11-16 Hitachi Ltd Manufacture of magnetic bubble memory element
JPS5877222A (en) * 1981-11-04 1983-05-10 Hitachi Ltd Manufacture of magnetic bubble element
JPS5899438A (en) * 1981-12-07 1983-06-13 Nippon Tokushu Noyaku Seizo Kk 2-halogenopropionic acid ester and its preparation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528518A (en) * 1978-08-17 1980-02-29 Fujitsu Ltd Control method of magnetic bubble steady existence magnetic field for magnetic bubble memory element
JPS57170510A (en) * 1981-04-15 1982-10-20 Hitachi Ltd Method of ion implantation
JPS57186284A (en) * 1981-05-11 1982-11-16 Hitachi Ltd Manufacture of magnetic bubble memory element
JPS5877222A (en) * 1981-11-04 1983-05-10 Hitachi Ltd Manufacture of magnetic bubble element
JPS5899438A (en) * 1981-12-07 1983-06-13 Nippon Tokushu Noyaku Seizo Kk 2-halogenopropionic acid ester and its preparation

Also Published As

Publication number Publication date
JPS59227080A (en) 1984-12-20

Similar Documents

Publication Publication Date Title
US5858180A (en) Magnetic field generator, coating method and apparatus including same, and devices having coating aligned therewith
US4767516A (en) Method for making magnetic recording media
GB1516887A (en) Magnetic bubble domain chip fabrication
JPH0358530B2 (en)
JPS6274073A (en) Sputtering device
JPH0157488B2 (en)
JPS5787119A (en) Manufacture of semiconductor device
JPS6326478B2 (en)
JPH035641B2 (en)
JPS6360475B2 (en)
JP2906163B2 (en) Sputtering equipment
US4624858A (en) Process for the production by catalysis of a layer having a high magnetic anisotropy in a ferrimagnetic garnet
JPS6360476B2 (en)
JPS6242390A (en) Method of increasing induced anisotropic magnetic field
JP3273978B2 (en) Double-sided simultaneous etching equipment
JPS58100410A (en) Manufacture of ion-implanted magnetic bubble memory element
US4360893A (en) Magnetic devices and method of manufacture
JPS61123010A (en) Production for amorphous thin film magnetic head
CN113571634A (en) Method for improving tungsten plug defect of post-connection process in thermal annealing
JPS622623A (en) Forming method for high density plasma
JP2690909B2 (en) Magnetron sputtering apparatus and film forming method using the apparatus
JPH01268009A (en) Formation of composite film of magnetic garnet
JPS59151378A (en) Manufacture of magnetic bubble element
JPS6046017A (en) Manufacture of magnetic bubble element
JPS63168893A (en) Production of magnetic bubble memory