JPS63264718A - Method for switching and connecting optical fiber - Google Patents

Method for switching and connecting optical fiber

Info

Publication number
JPS63264718A
JPS63264718A JP9760187A JP9760187A JPS63264718A JP S63264718 A JPS63264718 A JP S63264718A JP 9760187 A JP9760187 A JP 9760187A JP 9760187 A JP9760187 A JP 9760187A JP S63264718 A JPS63264718 A JP S63264718A
Authority
JP
Japan
Prior art keywords
optical fiber
light
optical fibers
cut
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9760187A
Other languages
Japanese (ja)
Inventor
Hisashi Murata
久 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP9760187A priority Critical patent/JPS63264718A/en
Publication of JPS63264718A publication Critical patent/JPS63264718A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3586Control or adjustment details, e.g. calibrating
    • G02B6/3588Control or adjustment details, e.g. calibrating of the processed beams, i.e. controlling during switching of orientation, alignment, or beam propagation properties such as intensity, size or shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3502Optical coupling means having switching means involving direct waveguide displacement, e.g. cantilever type waveguide displacement involving waveguide bending, or displacing an interposed waveguide between stationary waveguides
    • G02B6/3508Lateral or transverse displacement of the whole waveguides, e.g. by varying the distance between opposed waveguide ends, or by mutual lateral displacement of opposed waveguide ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • G02B6/35481xN switch, i.e. one input and a selectable single output of N possible outputs
    • G02B6/3551x2 switch, i.e. one input and a selectable single output of two possible outputs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3564Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details
    • G02B6/3582Housing means or package or arranging details of the switching elements, e.g. for thermal isolation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

PURPOSE:To safely and surely switch and connect optical fibers to each other at a high speed with a simple constitution, by practically using a light guiding sleeve, to which an optical fiber reinforcing function and leaking light condensing function are additionally added, to optical fibers in advance. CONSTITUTION:Light guiding sleeves 3a-3c having a refractive index which is equivalent to or higher than that of the clad sections of optical fibers and a function which highly efficiently guides leaking light in optical fibers 10a-10c are previously put on both sides 10a and 10b of the point of the exposed part of the optical fibers, at which they are cut off, and on the end 10c of the optical fiber 10c which is another switching destination, and alignment when the current fibers 1a-1c are cut off and reconnected is carried out while the leaking light in the optical fibers 10a-10c is monitored through the sleeves 3a-3c. Since the light guiding members cover the optical fibers in almost cylindrical states and have guidewave structures made principally of a low-loss glass material having an appropriate refractive index, most of the leaking light produced at the connecting point can be caught and efficiently guided to photoreceptor elements 7a-7c. At the same time, the stress cutting, movement, and alignment of the optical fibers can be controlled accurately by grasping the light guiding sleeves 3a-3c.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光ファイバ通信線路の一部区間の移転などに際
して、供用中の現心線を断心線に直接、機械的に短時間
で切替接続する方法に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention is capable of directly mechanically switching an existing fiber line in service to a broken fiber line in a short time when relocating a section of an optical fiber communication line. Regarding how to connect.

(従来の技術) 光ファイバ通信線路は従来のメタル通信線路に比べて桁
違いに情報伝送量が多いことから、供用心線の支障に際
して、短時間に新心線側に切替える技術が重要である。
(Conventional technology) Optical fiber communication lines transmit an order of magnitude more information than conventional metal communication lines, so it is important to have a technology that can quickly switch to the new line in the event of a problem with the service line. .

しかるに光ファイバはガラス材料から成る導波伝送路で
あるので、メタル心線の場合のように簡易な分岐接続法
を用いる切替えは不可能である。最も効果的な切替方法
は現心線(通信中)をいったん切断した後、短時間に新
心線側に接続する方法である。この際、切替えによって
通信を途絶させる時間は、当然短くなければならず、l
Qms以下に抑えることが望ましい。
However, since an optical fiber is a waveguide transmission line made of a glass material, switching using a simple branching and connecting method as in the case of a metal core wire is impossible. The most effective switching method is to disconnect the current core line (currently in communication) and then quickly connect to the new core line. In this case, the time during which communication is interrupted due to switching must naturally be short, and
It is desirable to keep it below Qms.

従来技術による切替接続の手順を第2図を用いて説明す
る。第2図(A)に示すようにあらかじめ光ファイバ心
線1の一部箇所の被覆を除去して、光ファイバ10を露
出し、心線ホルダ5a/ 、5b/ にセットする。同
時に別個の光ファイバ心線1cの端末も6b’ に並置
する。次に光ファイバ10の切断すべき箇所に傷付与刃
9を押し当てて、光ファイバ表面に傷をつける。この後
、心線ホルダ6a′を図の左方に引いて光ファイバ10
を応力切断し、さらに第2図(B)に示すように5a 
/を図の下方に高速移動して光ファイバlOaとtOC
を対向接続する。
The switching connection procedure according to the prior art will be explained using FIG. 2. As shown in FIG. 2(A), the covering of a part of the optical fiber core 1 is removed in advance to expose the optical fiber 10, and the optical fiber 10 is set in the core wire holders 5a/ and 5b/. At the same time, the ends of separate optical fiber cores 1c are also juxtaposed at 6b'. Next, the scratching blade 9 is pressed against the part of the optical fiber 10 to be cut to scratch the surface of the optical fiber. After that, pull the fiber holder 6a' to the left in the figure and insert the optical fiber 10.
5a as shown in FIG. 2(B).
/ to the bottom of the diagram at high speed and connect the optical fibers lOa and tOC.
Connect oppositely.

光ファイバ10aと100間の軸合せは最も難しい技術
である。特に単一モード光ファイバの場合は光ファイバ
クラッド外周でなく、コアの中心を合わせる必要がある
ので、コアの伝搬光の変化などをモニタして軸調心する
方法が用いられる。
Alignment between optical fibers 10a and 100 is the most difficult technique. In particular, in the case of a single mode optical fiber, it is necessary to align the center of the core rather than the outer periphery of the optical fiber cladding, so a method is used to align the axis by monitoring changes in light propagating through the core.

従来の代表的なモニタ法は第3図に示すように、接続点
でのコア間の軸ずれ、間隙などの不完全によって生じる
漏洩光成分くタララドモードなど)を検知する方法であ
る。光ファイバ10aの導波モードは接続点においてモ
ード変換を起こし、IOc中に漏洩光成分を励起する。
A typical conventional monitoring method, as shown in FIG. 3, is a method of detecting leakage light components (Tararad mode, etc.) caused by imperfections such as axis misalignment and gaps between cores at connection points. The guided mode of the optical fiber 10a undergoes mode conversion at the connection point and excites a leakage light component in IOc.

漏洩光成分はクラッド部の屈折率以上の屈折率を有する
被覆11cに捕捉され、マツチングオイル30を介して
受光素子7 c /で検知される。受光素子の出力が最
小となるとき、光ファイバ10a、 IOC間のコア軸
が合致する。
The leaked light component is captured by the coating 11c having a refractive index higher than the refractive index of the cladding portion, and is detected by the light receiving element 7c/ through the matching oil 30. When the output of the light receiving element is minimum, the core axes between the optical fiber 10a and the IOC match.

以上概説した従来法には次のような問題点かある。第1
に、光ファイバの被覆11は緩衝効果を必要とする軟質
樹脂であるので、第2図のように心線の被覆部をホルダ
に固定して光ファイバを応力切断すると、被覆のずれが
生じて心線ホルダ6a /の移動量と切断点の光ファイ
バ端面間隔との対応を制御できない。このため切断後の
光ファイバ10a。
The conventional methods outlined above have the following problems. 1st
In addition, the coating 11 of the optical fiber is a soft resin that requires a buffering effect, so if the coating of the core wire is fixed to the holder and the optical fiber is stress-cut as shown in Fig. 2, the coating may shift. It is not possible to control the correspondence between the amount of movement of the core fiber holder 6a/ and the distance between the optical fiber end faces at the cutting point. Therefore, the optical fiber 10a after cutting.

10b間の伝搬損失を制御するという高度な操作は不可
能であり、10a、 IOCの対向配置に移動した際に
も、モニタ光量に大きな偏差が生じる。また応力切断の
際、ファイバ破断に至る時間に大きな偏差が生じるので
、距離の離れた2箇所で同時に新心線側に切り替える場
合は適応困難である。この問題を避けるため、光ファイ
バ10. iocの部分まで心線ホルダ6a′、6b′
にて固定する方法が考えられている。しかし裸のファイ
バを機械的に把持すると、ファイバ表面に微細な傷が生
じ、10a、 10b。
Advanced operations such as controlling the propagation loss between 10b and 10b are impossible, and even when moving to the opposing arrangement of 10a and IOC, a large deviation occurs in the amount of monitored light. Furthermore, during stress cutting, there is a large deviation in the time required for the fiber to break, so it is difficult to adapt the method to the case where the fiber is switched to the new fiber side at the same time at two distant locations. To avoid this problem, optical fiber 10. Core wire holders 6a', 6b' up to the ioc part
A method of fixing it is being considered. However, when a bare fiber is mechanically gripped, minute scratches occur on the fiber surface.

10c部の強度が大幅に低下し、切断に際しても、切断
すべき箇所以外の不特定箇所で破断する場合も発生する
The strength of the portion 10c is significantly reduced, and even when cutting, there are cases where the material breaks at an unspecified location other than the location where it should be cut.

第2の問題はモニタの効率に関する。第3図に示すよう
な構成の場合、漏洩光成分の集光効率は極めて低いので
、受光面積が大きく、かつ低雑音の冷却型PD (ホト
ダイオード)を用い、低雑音の前置増幅器を介してよう
やく検知できる状態である。このため、受光素子をホル
ダなどに装着する場合、小型化できない、高速信号を使
えないなどにより、切替時間の目標を達成することが困
難であった。
The second issue concerns monitor efficiency. In the case of the configuration shown in Figure 3, the collection efficiency of the leaked light component is extremely low, so a cooled PD (photodiode) with a large light receiving area and low noise is used, and a low-noise preamplifier is used. It is finally detectable. For this reason, when the light receiving element is attached to a holder or the like, it is difficult to achieve the target switching time because it is not possible to downsize or use high-speed signals.

(発明が解決しようとする問題点) 本発明は、切断点の光ファイバ端面間隔の微細な制御を
可能とし、光ファイバ露出部を補強し、かつ漏洩光モニ
タの効率を大幅に向上することを可能とする新規な手段
を提供することにある。
(Problems to be Solved by the Invention) The present invention enables fine control of the distance between the optical fiber end faces at the cutting point, reinforces the exposed portion of the optical fiber, and significantly improves the efficiency of the leakage light monitor. Our goal is to provide new means to make this possible.

(問題点を解決するための手段) 本発明の方法は光ファイバ露出部の切断すべき箇所の両
側と、別の切替先の光ファイバ端とに、あらかじめ光フ
ァイバクラッド部の屈折率と同等か大きい屈折率を有し
、光ファイバ中の漏洩光を効率良く導く機能を有する導
光部材を装着しておき、その導光部材を介して光ファイ
バ中の漏洩光をモニタしながら、現心線の切断および接
続替えの時の軸合せを行う。
(Means for Solving the Problems) The method of the present invention provides a method in which a refractive index equal to that of the optical fiber cladding is applied to both sides of the exposed portion of the optical fiber to be cut and to the end of the optical fiber to be switched to another destination. A light guide member having a large refractive index and a function of efficiently guiding leakage light in the optical fiber is installed, and while monitoring the leakage light in the optical fiber through the light guide member, Perform axis alignment when disconnecting and changing connections.

前記従来の技術とは光ファイバを露出した部分にあらか
じめ導光部材を装着することによって、切断点の光ファ
イバ端面間隔の微細な制御を可能とし、光ファイバ露出
部を補強し、かつ漏洩光モニタの効率を大幅に向上して
いる点が異なるのである。本発明の方法では導光部材は
ほぼ筒状に光ファイバを覆い、適切な屈折率の低損失ガ
ラス材料を主体として、導波構造を有しているから、接
続点で発生する漏洩光の大部分を捕捉でき、効率良く受
光素子に導くことができる。同時に、導光部材を把持し
て応力切断および移動、軸合せを正確に制御することが
できる。
The above-mentioned conventional technology enables fine control of the distance between the optical fiber end faces at the cutting point by attaching a light guiding member to the exposed portion of the optical fiber in advance, reinforces the exposed portion of the optical fiber, and monitors leakage light. The difference is that the efficiency has been significantly improved. In the method of the present invention, the light guide member covers the optical fiber in a substantially cylindrical shape and has a waveguide structure mainly made of a low-loss glass material with an appropriate refractive index, so that the leakage light generated at the connection point is large. The part can be captured and efficiently guided to the light receiving element. At the same time, stress cutting, movement, and alignment can be accurately controlled by gripping the light guide member.

切断点の光ファイバ端面間隔と接続損失の関係は第4図
に示すようになる。光ファイバは波長1゜3μm用単−
単一ド光ファイバであり、パラメータn9は端面間の媒
質の屈折率、no は光ファイバコアの屈折率である。
The relationship between the distance between the optical fiber end faces at the cutting point and the splice loss is shown in FIG. Optical fiber is single-wire for wavelength 1゜3μm.
It is a single optical fiber, the parameter n9 is the refractive index of the medium between the end faces, and no is the refractive index of the optical fiber core.

本発明の目的に対しては、現心線の切断工程においては
伝送品質を劣化させないで、回線を保持していることが
望ましい。切替中の回線断の時間を、接続替えのための
移動時間のみに限定すれば、前記目標を容易に達成する
ことができるのである。このためには切断直後の接続損
失を約0.5CIB以下に抑える必要があり、第4図よ
り光ファイバ端面間隔を約60μm以下(nqζ00の
とき)または約20μm以下(n、=1のとき)に制御
する必要がある。第2図のような従来法ではこの制御は
極めて困難である。本発明では導光部材が効果的な補強
部材として作用するから:前記間隔の制御は容易である
For the purpose of the present invention, it is desirable to maintain the line without deteriorating the transmission quality in the process of cutting the existing core line. By limiting the line disconnection time during switching to only the travel time for connection switching, the above goal can be easily achieved. To achieve this, it is necessary to suppress the splice loss immediately after cutting to about 0.5 CIB or less, and as shown in Figure 4, the distance between the optical fiber end faces should be about 60 μm or less (when nqζ00) or about 20 μm or less (when n, = 1). need to be controlled. This control is extremely difficult with the conventional method as shown in FIG. Since in the present invention the light guiding member acts as an effective reinforcing member: control of said spacing is easy.

本発明の方法による漏洩光の集光効率の改善は次のよう
になる。光ファイバ接続点への入射光パワーをP。、接
続点通過後の伝搬光成分をPl、漏洩光成分をP2、漏
洩光成分の受光パワーをP3とし、接続点でのパワー伝
達係数をα(α”p+/po) 、漏洩光成分の集光効
率をk(k=P3/P2)とすると、受光パワーはP3
=P、 (1−α)kとなる。101o101o (d
B)をパラメータにし、光ファイバ間の接続損失ニー1
0101o (dB)と受光パワー/入射光パワー:1
01101o/Pa(dB)との関係を第5図に示す。
The improvement of the leakage light collection efficiency by the method of the present invention is as follows. The incident optical power to the optical fiber connection point is P. , the propagating light component after passing through the connection point is Pl, the leakage light component is P2, the received power of the leakage light component is P3, the power transfer coefficient at the connection point is α(α”p+/po), and the collection of leakage light components is If the optical efficiency is k (k=P3/P2), the received light power is P3
=P, (1-α)k. 101o101o (d
B) as a parameter, the connection loss knee between optical fibers is
0101o (dB) and received light power/incident light power: 1
The relationship with 01101o/Pa (dB) is shown in FIG.

第3図に示すような従来の構成では集光効率が低く 、
K−20〜−30dBとなってしまう。なお、光ファイ
バの種別としては単一モード光ファイバを主な対象とし
ている。通常の光ファイバ回線では、Poは高々−30
dBmであり、受光素子の感度は一70dBm程度が限
界であるから、0.5dB以下の接続損失の場合におい
ては、従来の方法では安定したS/Nの良い受光は困難
である。なお後述のように本発明の目的に対しては、現
心線の切断時に伝送品質を劣化させないためには、接続
損失を約0.5dB以下に抑える必要がある。それに対
して、本発明の構成においては、漏洩光成分を導光スリ
ーブにより効率良く受光素子に導くことができるので、
集光効率Kを一5dB程度まで高めることが可能である
The conventional configuration shown in Figure 3 has low light collection efficiency.
K-20 to -30 dB. Note that the main type of optical fiber is single mode optical fiber. In a normal optical fiber line, Po is at most -30
dBm, and the sensitivity of the light-receiving element is limited to about -70 dBm. Therefore, in the case of a connection loss of 0.5 dB or less, it is difficult to receive light with a stable S/N ratio using the conventional method. As will be described later, for the purpose of the present invention, it is necessary to suppress the connection loss to about 0.5 dB or less in order to prevent transmission quality from deteriorating when the current core wire is cut. In contrast, in the configuration of the present invention, the leaked light component can be efficiently guided to the light receiving element by the light guiding sleeve.
It is possible to increase the light collection efficiency K to about -5 dB.

すなわちKは従来の方法に比べて20dB程度改善され
ることになる。
That is, K is improved by about 20 dB compared to the conventional method.

(実施例) 第1図(A)〜(F)は本発明の一実施例の手順を示す
図であって、1. la、 lb、 lcは光ファイバ
心線、2a、 2bは被覆除去刃、3a、 3b、 3
cは導光スリーブ、4a、 4b、 4cは透明接着剤
(硬化状態) 、5a、5b、5cは透明接着剤(未硬
化) 、6a、6b、6a’ 、6b ’は心線ホルダ
、7a、 7b、 7cは受光素子、8は調心制御器、
10、10a、 10b、 10cは光7フイバ、11
は被覆である。
(Embodiment) FIGS. 1(A) to 1(F) are diagrams showing the procedure of an embodiment of the present invention. la, lb, lc are optical fiber cores, 2a, 2b are coating removal blades, 3a, 3b, 3
c is a light guide sleeve, 4a, 4b, 4c is a transparent adhesive (cured state), 5a, 5b, 5c is a transparent adhesive (uncured), 6a, 6b, 6a', 6b' is a core wire holder, 7a, 7b and 7c are light receiving elements, 8 is an alignment controller,
10, 10a, 10b, 10c are optical 7 fibers, 11
is a covering.

第1図(A)は本発明の工程に先立って、現心線の一部
箇所の被覆を除去して光ファイバを露出する方法を示す
。まず軸方向に被覆に切れ目を付け(図示せず)、次い
で被覆除去刃2a、 2bにより周方向に切れ目を付け
てから、2a、 2bを図の矢印の方向に移動させる。
FIG. 1(A) shows a method of exposing the optical fiber by removing the coating from a part of the existing core wire prior to the process of the present invention. First, a cut is made in the coating in the axial direction (not shown), and then a cut is made in the circumferential direction by the coating removal blades 2a and 2b, and then the coatings 2a and 2b are moved in the direction of the arrow in the figure.

被覆11は紫外線(tlV)硬化樹脂から成り、軟質内
層と硬質外層の2層構造であるので、外層に切れ目を付
けることによって除去することができる。
The coating 11 is made of ultraviolet (tlV) curable resin and has a two-layer structure of a soft inner layer and a hard outer layer, so that it can be removed by cutting the outer layer.

第1図(B)は現心線1の露出部と切替先心線1cの光
ファイバ端とに、導光スリーブ3a、 3b’、 3c
を装着した状態を示す。第1図(C) は心線la側を
例とする2方向の側面図である(ホルダ部は除いている
)。導光スリーブは光ファイバと同様の合成石英を主体
とする低損失ガラス材料のスリーブである。構造は図よ
り明らかなように、軸に沿ってU字形の溝を有しており
、光ファイバを緩く収容できるものである。光ファイバ
をU字溝中にセットした後、この隙間に透明なUV硬化
接着剤を充填し、t+Vライトを照射して接着剤を硬化
させ、光ファイバを導光スリーブに固定する。導光スリ
ーブ3の屈折率n2は、光ファイバクラッド部の屈折率
n、より僅かに(約2%)高く設定しており、さらに接
着剤4は透明で、その屈折率naをn、 <n・、<n
2と設定しているので、光ファイバ中の漏洩光の大部分
は導光スリーブ中に導かれる。導光スリーブの終端面は
軸に対して斜めに設定した反射面としており、第1図(
C)右に示すように、導光スリーブ中を進んだ漏洩光は
受光素子側に放出される。
In FIG. 1(B), light guide sleeves 3a, 3b', 3c are provided at the exposed portion of the current fiber 1 and the optical fiber end of the switched fiber 1c.
Shown with the . FIG. 1(C) is a side view in two directions, taking the core wire la side as an example (the holder portion is excluded). The light guiding sleeve is a sleeve made of a low-loss glass material mainly made of synthetic quartz, similar to optical fibers. As is clear from the figure, the structure has a U-shaped groove along the axis, allowing the optical fiber to be accommodated loosely. After the optical fiber is set in the U-shaped groove, the gap is filled with a transparent UV curing adhesive, the adhesive is cured by irradiation with t+V light, and the optical fiber is fixed to the light guide sleeve. The refractive index n2 of the light guide sleeve 3 is set to be slightly (about 2%) higher than the refractive index n of the optical fiber cladding part, and the adhesive 4 is transparent, and its refractive index na is set to n, <n.・,<n
2, most of the leaked light in the optical fiber is guided into the light guiding sleeve. The end surface of the light guide sleeve is a reflective surface set obliquely to the axis, as shown in Figure 1 (
C) As shown on the right, the leaked light that has traveled through the light guide sleeve is emitted toward the light receiving element.

第1図(B) はまた光ファイバ1oの中間部に超硬刃
により傷を付けた後、その傷を付けた箇所に透明なUV
硬化接着剤5aを付着させた状態を示している。同じく
切替先の光ファイバ10cの先端部にも接着剤5bを付
着させている。この状態においては、受光素子7a、 
7b、 7cからは信号は出力されていない(第1図(
B)では受信の電気系を省略している)。
Figure 1 (B) also shows that after scratching the middle part of the optical fiber 1o with a carbide blade, transparent UV light is applied to the scratched area.
A state in which a cured adhesive 5a is attached is shown. Similarly, adhesive 5b is also attached to the tip end of the optical fiber 10c to which switching is made. In this state, the light receiving element 7a,
No signals are output from 7b and 7c (see Figure 1 (
In B), the receiving electrical system is omitted).

第1図(D)は第1図(B)に続く工程であって、心線
ホルダ6aを左方に引いて光ファイバ10を応力切断し
た状態を示す。現心線の信号光が左方から右方へ伝搬し
ているとする。受光素子7b、7cからの出力信号を調
心制御器8に人力し、その変化をモニタする。光ファイ
バ10の切断と同時に光ファイバ10b内に漏洩光が励
起されるから、受光素子7bの出力が第1図(G)の点
線で示すように急激に増大する。この出力信号レベルを
あらかじめ較正して設定しておいた基準レベルを越えな
いように、調心制御器により心線ホルダ6aの位置を精
密に制御する。このとき透明接着剤5aが光ファイバ1
0a。
FIG. 1(D) is a step subsequent to FIG. 1(B), and shows a state in which the optical fiber 10 is stress-cut by pulling the core fiber holder 6a to the left. Assume that the signal light on the current core is propagating from the left to the right. The output signals from the light receiving elements 7b and 7c are input to the alignment controller 8, and changes therein are monitored. Since leakage light is excited in the optical fiber 10b at the same time as the optical fiber 10 is cut, the output of the light receiving element 7b increases rapidly as shown by the dotted line in FIG. 1(G). The alignment controller precisely controls the position of the core wire holder 6a so that the output signal level does not exceed a reference level that has been calibrated and set in advance. At this time, the transparent adhesive 5a is attached to the optical fiber 1.
0a.

10bの端面間を満たし、屈折率整合剤として作用する
ので、n、ζn、となり、端面のフレネル反射損失分0
.3dBを除外できる。また導光スリーブを介して光フ
ァイバと心線ホルダの相対位置を正確に保持しており、
光ファイバ10a、 10b間に軸ずれを生じさせない
から、端面間隔を50μm程度に広くしても、この工程
では、回線の伝送品質には影響を与えない。切断工程に
ついても、導光スリーブの補強効果により、引張応力を
印加するタイミングを正確に制御できるとともに、不特
定箇所で破断するという失敗は起こらない。
Since it fills the space between the end faces of 10b and acts as a refractive index matching agent, n, ζn, and the Fresnel reflection loss of the end face is 0.
.. 3dB can be excluded. In addition, the relative position of the optical fiber and core holder is maintained accurately through the light guide sleeve.
Since no axis misalignment is caused between the optical fibers 10a and 10b, even if the end face spacing is widened to about 50 μm, the transmission quality of the line will not be affected in this process. In the cutting process, due to the reinforcing effect of the light guide sleeve, the timing of applying tensile stress can be accurately controlled, and failures such as breakage at unspecified locations do not occur.

次いで心線ホルダ6aを高速で平行移動し、第1図(E
)の状態とする。このとき受光素子7Cの出力を検知し
ていれば、光ファイバ10aと10cが対向された瞬間
に急激に出力が増大する。その出力変化を調心制御器8
で受信し、それをもとに心線ホルダ6aの位置を微調整
して、光ファイバ10a、 toc間の精密軸合せを行
う。平行移動直後の状態では、機械精度の限界から5μ
m程度の軸ずれが存在しており、第4図の間隔による損
失に加え、約4dtlにも達する軸ずれ接続損失が生じ
ている。これに対して、受光素子7Cの出力変化を高速
検知し、その出力が極小値をとる位置に心線ホルダ6a
を調整するのである。この工程における受光素子7Cの
出力変化を例示すると、第1図(G)の実線で示すよう
になる。点線の最後のピークと実線のいくつかのピーク
が生じている間の時間は、切替のために回線の伝送品質
が劣化している時間であり、lQms程度に抑えられて
いる。軸合せの後、心線ホルダ6aを右側に移動して光
ファイバ10a、 tocの端面間隔を縮小し、突き当
てる。そこで接着剤5b部にスポット状にUVライトを
照射して硬化させると、光ファイバの接続はほぼ完了す
る。このときの受光素子7Cの出力は僅かな接続損失に
対応する一定値に収束する。この値をあらかじめ較正し
て設定している基準レベルと比較することによって、接
続損失を概略推定し、切替の成否を判定することが可能
である。接続損失は平均0.15dB程度が得られてい
る。
Next, the core wire holder 6a is moved in parallel at high speed, and as shown in FIG.
). If the output of the light receiving element 7C is detected at this time, the output will increase rapidly at the moment the optical fibers 10a and 10c are opposed to each other. The output change is measured by the alignment controller 8.
Based on this, the position of the core fiber holder 6a is finely adjusted to achieve precise alignment between the optical fibers 10a and TOC. Immediately after parallel movement, 5μ due to the limit of machine accuracy.
There is an axial misalignment of about m, and in addition to the loss due to the spacing shown in FIG. 4, there is an axial misalignment connection loss of about 4 dtl. On the other hand, the output change of the light receiving element 7C is detected at high speed, and the core wire holder 6a is placed at the position where the output takes the minimum value.
It is to adjust. An example of the change in the output of the light receiving element 7C in this step is shown by the solid line in FIG. 1(G). The time between the last peak of the dotted line and several peaks of the solid line is the time during which the transmission quality of the line is degraded due to switching, and is suppressed to about 1Qms. After alignment, the fiber holder 6a is moved to the right to reduce the distance between the end faces of the optical fibers 10a and toc, and abut them against each other. Therefore, when the adhesive 5b is irradiated with a spot of UV light and cured, the connection of the optical fibers is almost completed. At this time, the output of the light receiving element 7C converges to a constant value corresponding to a slight connection loss. By comparing this value with a reference level that has been calibrated and set in advance, it is possible to roughly estimate the connection loss and determine the success or failure of switching. An average connection loss of about 0.15 dB was obtained.

最終的には第1図(F)  に示すように、導光スリー
ブ3a、 3a間の隙間に新たな接着剤5Cを充填し固
化する。さらに補強する場合は、導光スリーブ3a。
Finally, as shown in FIG. 1(F), new adhesive 5C is filled into the gap between the light guide sleeves 3a and solidified. For further reinforcement, use the light guide sleeve 3a.

3Cおよび光ファイバ心線1a、lcの被覆部まで一体
的に半割スリーブ(図示せず)をかぶせ、隙間に接着剤
を充填して固化する方法が有効である。なお、前記手順
において、光ファイバ心線1内の信号光が右方から左方
に伝搬している場合は、受光素子7aの出力の変化のみ
を検知して、前述と同様の制御を行うことによって、全
く同じ切替接続ができることは容易に理解されよう。
An effective method is to integrally cover the coated portions of the optical fibers 3C and the coated optical fibers 1a and lc with a half sleeve (not shown), fill the gap with adhesive, and solidify the adhesive. In addition, in the above procedure, if the signal light in the optical fiber core 1 is propagating from the right to the left, only the change in the output of the light receiving element 7a is detected and the same control as described above is performed. It will be easily understood that exactly the same switching connection can be made by

(発明の効果) 以上説明したように、本発明の方法は光ファイバにあら
かじめ光ファイバの補強機能および漏洩光の集光機能を
合わせ持つ導光スリーブを活用するものであり、簡易な
構成で安全、確実に、しかも高速の切替接続ができる利
点がある。切替接続後の接続部には、微少な漏洩光を安
定にモニタできる導光スリーブが残されるので、その後
の光ファイバ回線の保守における回線信号モニタ、心線
対照などに際して効果的に使用できる。
(Effects of the Invention) As explained above, the method of the present invention utilizes a light guiding sleeve for an optical fiber, which has both the function of reinforcing the optical fiber and the function of concentrating leaked light, and is simple and safe. , it has the advantage of being able to perform reliable and high-speed switching connections. A light guide sleeve that can stably monitor minute leakage light is left at the connection after switching and connection, so it can be effectively used for line signal monitoring, core fiber comparison, etc. during subsequent maintenance of the optical fiber line.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)〜(F) は本発明の一実施例の手順を示
す図、 第1図(G) は受光素子7b、 7cの出力と時間と
の関係を示す図、 第2図(A)、(B)は従来方法を示す図、第3図は接
続点での漏洩光検知の従来方法を°示ず図、 第4図は光ファイバ端面間隔と接続損失の関係を示す図
、 第5図は集光効率をパラメータとした接続損失と受光パ
ワーの関係を示す図である。 1、1a、 lb、 IC・・・光ファイバ線2a、2
b・・・被覆除去刃  3a、 3b、 3c・・・導
光スリーブ4a、 4b、 4c・・・透明接着剤 5
a、 5b、 5c・・・透明接着剤6a、5b、5a
’ 、6b ’ 、、、心線ホルダ7a、 7b、 7
c・・・受光素子  8・・・調心制御器9・・・傷付
与刃 10、10a、 10b、 lQc・・・光ファイバ1
1.11C・・・被覆     30・・・マッチング
オイル一−N                   
         PS<          羊 第1図 (Dl /aJb、fc−=−1t7yイKl(:1fJε−−
1lAn:*り寸倉rf# /Qα、tob−・・・ 1t7pイlぐ第1図 (G) (F) 5cm−−−Eす【日月拌4(「す <           に) 脅尤へ’、7−P3/入tlf尤/ぐ7−F4  (d
B)撞芹jN失(dB)
FIGS. 1(A) to (F) are diagrams showing the procedure of an embodiment of the present invention, FIG. 1(G) is a diagram showing the relationship between the outputs of the light receiving elements 7b and 7c and time, and FIG. A) and (B) are diagrams showing the conventional method, Figure 3 is a diagram (not shown) of the conventional method of detecting leakage light at the connection point, and Figure 4 is a diagram showing the relationship between the optical fiber end face spacing and splice loss. FIG. 5 is a diagram showing the relationship between splice loss and received light power using light collection efficiency as a parameter. 1, 1a, lb, IC...optical fiber line 2a, 2
b... Cover removal blade 3a, 3b, 3c... Light guide sleeve 4a, 4b, 4c... Transparent adhesive 5
a, 5b, 5c...transparent adhesive 6a, 5b, 5a
' , 6b ', ... Core holders 7a, 7b, 7
c... Light receiving element 8... Alignment controller 9... Scratching blades 10, 10a, 10b, lQc... Optical fiber 1
1.11C...Coating 30...Matching oil-N
PS
1lAn: *Risukura rf# /Qα, tob-... 1t7pl Figure 1 (G) (F) 5cm---Esu , 7-P3/enter tlf 尤/gu7-F4 (d
B) N loss (dB)

Claims (1)

【特許請求の範囲】 1、光ファイバ心線の一部箇所の被覆を除去して光ファ
イバを露出し、その露出部で当該光ファイバを切断して
第1と第2の光ファイバ端に分割し、一方の光ファイバ
端を、個別の光ファイバ心線の端末である第3の光ファ
イバ端に接続替えを行う方法において、該露出部の切断
すべき箇所の両側と、該第3の光ファイバ端とに、あら
かじめ光ファイバクラッド部の屈折率以上の屈折率を有
し、光ファイバ中の漏洩光をその内部に導く機能を有す
る導光部材を装着して光ファイバに固定する手順と、そ
の導光部材を介して光ファイバ中の漏洩光をモニタしな
がら、該露出部の切断すべき箇所を応力切断して漏洩光
の変化を検知し、その分割された一方の光ファイバ端を
第3の光ファイバ端に対向させ、漏洩光の変化を検知す
ることにより、両光ファイバ端間の軸合せを行う手順と
を用いて、接続替えを行うことを特徴とする光ファイバ
心線切替接続方法。 2、特許請求の範囲第1項記載の光ファイバ心線切替接
続方法において、該導光部材を透明接着剤を介して光フ
ァイバに固定し、光ファイバクラッド部、透明接着剤、
導光部材の屈折率をそれぞれn_1、n_a、n_2と
するとき、n_1≦n_a≦n_2なる関係に設定する
ことを特徴とする光ファイバ心線切替接続方法。 3、特許請求の範囲第1項記載の光ファイバ心線切替接
続方法において、該露出部の切断すべき箇所と、該第3
の光ファイバ端の先端部とに、あらかじめ未硬化の透明
接着剤を付着しておくことを特徴とする光ファイバ心線
切替接続方法。
[Claims] 1. Remove the coating from a part of the optical fiber core to expose the optical fiber, and cut the optical fiber at the exposed part to divide it into first and second optical fiber ends. However, in a method of reconnecting one optical fiber end to a third optical fiber end which is the end of an individual optical fiber core wire, both sides of the exposed portion to be cut and the third optical fiber end are connected to each other. a step of attaching to the fiber end a light guide member having a refractive index higher than the refractive index of the optical fiber cladding portion and having a function of guiding leaked light in the optical fiber to the inside thereof, and fixing the light guide member to the optical fiber; While monitoring the leakage light in the optical fiber through the light guide member, stress-cut the exposed portion to be cut, detect changes in the leakage light, and cut one end of the split optical fiber. Optical fiber core wire switching connection characterized in that the connection is changed using the procedure of aligning the axes between both optical fiber ends by arranging the ends of the optical fibers to face each other and detecting a change in leakage light. Method. 2. In the optical fiber core wire switching and connecting method according to claim 1, the light guide member is fixed to the optical fiber via a transparent adhesive, and the optical fiber cladding portion, the transparent adhesive,
A method for switching and connecting optical fibers, characterized in that the relationship n_1≦n_a≦n_2 is established, where the refractive indices of the light guide members are n_1, n_a, and n_2, respectively. 3. In the optical fiber core wire switching and connecting method according to claim 1, the location where the exposed portion is to be cut and the third
An optical fiber core wire switching and connecting method characterized in that an uncured transparent adhesive is applied in advance to the tip of the optical fiber end.
JP9760187A 1987-04-22 1987-04-22 Method for switching and connecting optical fiber Pending JPS63264718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9760187A JPS63264718A (en) 1987-04-22 1987-04-22 Method for switching and connecting optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9760187A JPS63264718A (en) 1987-04-22 1987-04-22 Method for switching and connecting optical fiber

Publications (1)

Publication Number Publication Date
JPS63264718A true JPS63264718A (en) 1988-11-01

Family

ID=14196753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9760187A Pending JPS63264718A (en) 1987-04-22 1987-04-22 Method for switching and connecting optical fiber

Country Status (1)

Country Link
JP (1) JPS63264718A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0610913A1 (en) * 1993-02-10 1994-08-17 Sumitomo Electric Industries, Limited Optical fiber switching apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0610913A1 (en) * 1993-02-10 1994-08-17 Sumitomo Electric Industries, Limited Optical fiber switching apparatus

Similar Documents

Publication Publication Date Title
CA1287763C (en) Fiber optic coupler
US11960119B2 (en) Optical waveguide adapter assembly
EP0207980B1 (en) Fiber-lens optical coupler
EP0235992B1 (en) A technique for reducing fibre joint loss
EP0272911A2 (en) Data rate limiter for optical transmission system
US4618212A (en) Optical fiber splicing using leaky mode detector
EP0618467A1 (en) Optical fiber splicing chuck
US4557553A (en) Method of wavelength multiplexing in fused single-mode fiber couplers
US4431261A (en) Fiber optic splitter
JPH03100603A (en) Method of manufacturing fused optical fiber coupler
JPH0439044B2 (en)
US4645923A (en) Method and device for coupling an optical signal from a first light guide into a second light guide
US5625728A (en) Method of coupling a multi-core optical fiber to a plurality of single-core optical fibers
US7352937B2 (en) Devices, systems and methods for connecting a single mode fiber to a legacy multi-mode fiber
US4830490A (en) Apparatus for aligning optical fibers
US6959131B2 (en) Achromatic fiber-optic power splitter and related methods
JPS63264718A (en) Method for switching and connecting optical fiber
Yamada et al. Single-mode optical fiber connection to high-silica waveguide with fiber guiding-groove
JP3680565B2 (en) Mode conditioner
JPS61194411A (en) Detecting method for axial alignment of optical fiber
US20240319441A1 (en) Optical waveguide adapter assembly
JP2889241B2 (en) Optical waveguide component connection
JPS63304209A (en) Method for branching and joining optical fiber circuit and branching and joining connector
GB2149501A (en) Method and apparatus for determining optical power attenuation across an optical fibre splice
McCartney et al. Monomode Optical Fibre Splicing