JPS63264633A - Production of polyarylene sulfide - Google Patents

Production of polyarylene sulfide

Info

Publication number
JPS63264633A
JPS63264633A JP62096166A JP9616687A JPS63264633A JP S63264633 A JPS63264633 A JP S63264633A JP 62096166 A JP62096166 A JP 62096166A JP 9616687 A JP9616687 A JP 9616687A JP S63264633 A JPS63264633 A JP S63264633A
Authority
JP
Japan
Prior art keywords
alkali metal
sulfide
polymer
hydrosulfide
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62096166A
Other languages
Japanese (ja)
Inventor
Riichi Kato
利一 加藤
Hiroshi Inoue
洋 井上
Tetsushi Hogo
蓬郷 哲史
Tokuaki Emura
江村 徳昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOUSOO SASUTEIILE KK
Toso Susteel Co Ltd
Tosoh Corp
Original Assignee
TOUSOO SASUTEIILE KK
Toso Susteel Co Ltd
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOUSOO SASUTEIILE KK, Toso Susteel Co Ltd, Tosoh Corp filed Critical TOUSOO SASUTEIILE KK
Priority to JP62096166A priority Critical patent/JPS63264633A/en
Publication of JPS63264633A publication Critical patent/JPS63264633A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

PURPOSE:To obtain the title compound having a high melt viscosity, excellent heat stability and low coloration, by polymerizing a heated and dehydrated mixture of a hydration water-containing alkali metal sulfide with an alkali metal hydrosulfide with a dihaloaromatic compound. CONSTITUTION:A hydration water-containing alkali metal sulfide (A) (e.g., sodium sulfide) is mixed with an alkali metal hydrosulfide (B) (e.g., sodium hydrosulfide) in an organic polar solvent (e.g., N-methylpyrrolidone) at a molar ratio of 1:0.005-0.05, and this mixture is heated to 180-230 deg.C and dehydrated until the molar ratio of the alkali metal sulfide to the water is 1:0.5-2.0, and polymerized with 0.9-1.1mol., per mol. of the alkali metal sulfide (C), of a dihaloaromatic compound (e.g., p-dichlorobenzene) at 180-300 deg.C for 0.5-20hr.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は溶融粘度が高く、熱安定性に優れたポリアリー
レンスルフィドの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing polyarylene sulfide having high melt viscosity and excellent thermal stability.

更に、着色が少なく、強度の優れた成形品な与えるポリ
アリーレンスルフィドの製造方法に関するものである。
Furthermore, the present invention relates to a method for producing polyarylene sulfide that provides molded products with little coloring and excellent strength.

ポリアリーレンスルフィドはその優れた耐熱性。Polyarylene sulfide has excellent heat resistance.

耐薬品性をいかして、電気・電子機器部材、自動車機器
部材として注目を集めている。また、射出成形、押出成
形、プレス成形等により各種エンジニアリング部品、フ
ィルム、シート、繊維等に成形可能であり、耐熱性の要
求される分野に幅広く用いられている。
Due to its chemical resistance, it is attracting attention as a material for electrical/electronic equipment and automobile equipment. Furthermore, it can be molded into various engineering parts, films, sheets, fibers, etc. by injection molding, extrusion molding, press molding, etc., and is widely used in fields where heat resistance is required.

ポリアリーレンスルフィドの代表的な例としては、ポリ
フェニレンスルフィド(p p s )カ挙ケられる。
A typical example of polyarylene sulfide is polyphenylene sulfide (pps).

〔従来の技術〕[Conventional technology]

ポリアリーレンスルフィドの製造方法としては、特公昭
45−5568号に、N−メチルピロリドン等の有機極
性溶媒中でポリハロゲン化芳香族化合物とアルカリ金属
硫化物とを反応させる方法が開示されている。
As a method for producing polyarylene sulfide, Japanese Patent Publication No. 45-5568 discloses a method in which a polyhalogenated aromatic compound and an alkali metal sulfide are reacted in an organic polar solvent such as N-methylpyrrolidone.

即ち、重合に先だってNa1S 1モルに対し9モルの
水和水を持つ硫化す) IJウムやほぼ60〜62重f
fi%のNamBとほぼ38〜40重量%の水和水とを
もつ硫化ナトリウムなN−メチルピロリドン溶媒中で窒
素を泡出させながら加熱脱水を行い、ポリハロゲン化芳
香族化合物と反応させポリマーを得る方法である。
That is, prior to polymerization, sulfuric acid containing 9 moles of water of hydration per 1 mole of Na1S) or about 60 to 62 F
Fi% of NamB and approximately 38-40% by weight of water of hydration are heated and dehydrated with nitrogen bubbling in a sodium sulfide N-methylpyrrolidone solvent, and the polymer is reacted with a polyhalogenated aromatic compound. This is the way to get it.

しかし、この方法により得られたポリマーの溶融粘度は
低いため、そのまま射出成形等の用途には使用できず、
この低溶融粘度ポリマーを空気中で加熱酸化架橋させる
ことにより、成形加工用途に供されてきたが、このよう
にして得られたポリマー及び成形品は、熱安定性が悪く
、強く着色し、かつ強度の低いものであった。
However, because the melt viscosity of the polymer obtained by this method is low, it cannot be used directly for applications such as injection molding.
This low melt viscosity polymer has been used for molding processing by heating and oxidative crosslinking in air, but the polymers and molded products obtained in this way have poor thermal stability, are strongly colored, and The strength was low.

また、重合反応により高分子量ポリアリーレンスルフィ
ドを得る方法が提案されている。代表的な例としては、
特公昭52−12240号に開示されているように重合
助剤としてアルカリ金属カルボン酸塩を用い、その存在
下で重合反応を行う方法である。とのよ5Klて得られ
た高分子量ポリマーは加熱酸化架橋工程を必要としない
為、ポリマー及び成形品の着色が少ないと考えられるが
、多量のアルカリ金属カルボン酸塩の添加を必要とする
為工業的には大幅なコスト高となるという問題を有して
いる。
Furthermore, a method for obtaining high molecular weight polyarylene sulfide through a polymerization reaction has been proposed. A typical example is
As disclosed in Japanese Patent Publication No. 52-12240, this is a method in which an alkali metal carboxylate is used as a polymerization aid and the polymerization reaction is carried out in its presence. Since the high molecular weight polymer obtained by Tonoyo 5Kl does not require a heating oxidation crosslinking process, it is thought that the polymer and molded product will have less coloring, but it is difficult to produce an industrial product because it requires the addition of a large amount of alkali metal carboxylate. However, there is a problem in that the cost is significantly high.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は重合後のポリマーの溶融粘度が高く、更にポリ
マーを加熱酸化架橋させた後においても、熱安定性に優
れ、かつ着色が少なく、強度の優れた成形品を与えるポ
リアリーレンスルフィドを安定に、そして安価に製造す
る方法を提供するものである。
The present invention provides a stable polyarylene sulfide that has a high melt viscosity after polymerization, and even after the polymer is crosslinked by heating and oxidation, it has excellent thermal stability, has little coloring, and provides molded products with excellent strength. , and provides a method for manufacturing it at low cost.

点 〔開放解決する為の手段〕 即ち、本発明は、ポリアリーレンスルフィドを製造する
Kあたり、水利水を有するアルカリ金属硫化物とアルカ
リ金属水硫化物とを1:α005〜α05(モル比)の
比率で有機極性溶媒中、混合、加熱、脱水した後、ジハ
ロゲン化芳香族化合物と重合させることを特徴とするポ
リアリーレンスルフィドの製造方法である。
Point [Means for solving the problem] That is, the present invention uses an alkali metal sulfide having an irrigation water and an alkali metal hydrosulfide at a molar ratio of 1:α005 to α05 per K for producing polyarylene sulfide. This is a method for producing polyarylene sulfide, which is characterized by mixing, heating and dehydrating in an organic polar solvent at the same ratio, followed by polymerization with a dihalogenated aromatic compound.

本発明によって得られたポリアリーレンスルフィドは加
熱酸化架橋処理を行った後においても、熱安定性が優れ
、かつ着色が少なく強度の優れた成形品が得られる。
The polyarylene sulfide obtained by the present invention has excellent thermal stability even after being subjected to heat oxidation crosslinking treatment, and molded articles with little coloring and excellent strength can be obtained.

本発明の作用機構は明らかではないが、水和水を含むア
ルカリ金属硫化物を有機極性溶媒中で脱水する際のアル
カリ金属硫化物の分解反応が関与しているものと考えら
れる。
Although the mechanism of action of the present invention is not clear, it is thought that the decomposition reaction of the alkali metal sulfide during dehydration of the alkali metal sulfide containing water of hydration in an organic polar solvent is involved.

即ち、アルカリ金属硫化物を有機極性溶媒中で脱水する
際下式 %式% (Mニアルカリ金属) に従い硫化水素及びアルカリ金属水酸化物が生成し、生
成した過剰のアルカリ金属水酸化物がアルカリ金属硫化
物とジハロゲン化芳香族化合物との重合反応において、
副反応などの悪影響を与え、得られたポリマーは熱安定
性の悪いものとなるが、アルカリ金属硫化物を調整され
た看のアルカリ金属水硫化物と共に有機極性溶媒中で脱
水することにより、脱水後に存在する過剰のアルカリ金
属水酸化物の量を低減でき、副反応を押えることができ
る為、溶融粘度の高い、熱安定性の優れたポリマーが得
られると考える。
That is, when an alkali metal sulfide is dehydrated in an organic polar solvent, hydrogen sulfide and alkali metal hydroxide are generated according to the following formula % (M Ni-alkali metal), and the excess alkali metal hydroxide produced is alkali metal hydroxide. In the polymerization reaction between sulfide and dihalogenated aromatic compound,
This can lead to adverse effects such as side reactions, resulting in poor thermal stability of the resulting polymer. It is believed that because the amount of excess alkali metal hydroxide present afterwards can be reduced and side reactions can be suppressed, a polymer with high melt viscosity and excellent thermal stability can be obtained.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明で用いる水和水を有するアルカリ金属硫化物とし
ては、硫化リチウム、硫化ナトリウム。
Examples of the alkali metal sulfide having water of hydration used in the present invention include lithium sulfide and sodium sulfide.

硫化カリウムおよびこれらの混合物が含まれる。Includes potassium sulfide and mixtures thereof.

また、アルカリ金属水硫化物とアルカリ金属水酸化物と
を混合して、その場でアルカリ金属硫化物を生成させる
ことも可能である。
It is also possible to mix an alkali metal hydrosulfide and an alkali metal hydroxide to generate an alkali metal sulfide on the spot.

アルカリ金属硫化物に含有する水和水の量は、特に制限
されるものではないが、工業的に入手できるアルカリ金
属硫化物は通常、アルカリ金属硫化物1モルに対して2
.6〜9モルの水和水を有している。
The amount of hydration water contained in the alkali metal sulfide is not particularly limited, but industrially available alkali metal sulfides usually contain 2 to 1 mole of alkali metal sulfide.
.. It has 6 to 9 moles of water of hydration.

本発明でいうアルカリ金属水硫化物とは、アルカリ金属
硫化物中に不純物とし【存在するアルカリ金属水硫化物
を含むものであり、例えば、水硫化リチウム、水硫化ナ
トリウム、水硫化カリウムなどが挙げられる。
The alkali metal hydrosulfide as used in the present invention includes alkali metal hydrosulfide present as an impurity in the alkali metal sulfide, such as lithium hydrosulfide, sodium hydrosulfide, potassium hydrosulfide, etc. It will be done.

また、その量は、加熱脱水時に分解発生する硫化水素量
に応じて適宜調整可能であり、通常アルカリ金属硫化物
1モル当りα005モル未満モルの範囲のアルカリ金属
水硫化物を脱水前の系中に存在させるように添加するこ
とが必要である。
In addition, the amount can be adjusted as appropriate depending on the amount of hydrogen sulfide decomposed and generated during thermal dehydration, and usually less than α005 mol of alkali metal hydrosulfide per 1 mol of alkali metal sulfide is added to the system before dehydration. It is necessary to add it so that it is present in

アルカリ金属水硫化物の量がα005モル未満であると
、得られたポリマーは溶融粘度が低く、熱安定性が悪い
為加熱酸化架橋して得られたポリマーを用いて成形品と
した場合強く着色し、強度も低いものとなるので好まし
くない。また、105モルより多いアルカリ金属水硫化
物が存在する場合、得られるポリマーの収量、および溶
融粘度の低下が見られるので好ましくない。
If the amount of alkali metal hydrosulfide is less than α005 mol, the obtained polymer will have a low melt viscosity and poor thermal stability, so if the polymer obtained by thermal oxidation crosslinking is used to make a molded product, it will be strongly colored. However, the strength is also low, which is not preferable. Further, if more than 105 moles of alkali metal hydrosulfide is present, the yield and melt viscosity of the obtained polymer will decrease, which is not preferable.

本発明に使用する有機極性溶媒は、非プロトン系のもの
でかつ高温で安定な有機極性溶媒が好ましい。例えば、
N、N−ジメチルアセトアミド、N−エチル−2−ピロ
リドン、N−メチル−2−ピロリドン、ヘキサメチルホ
スホルアミド、テトラメチル尿素、1,3−ジメチル−
2−イミダゾリジノン等のアミドおよび尿素、スルホラ
ン、ジメチルスルホラン等のスルホラン類およびメチル
フェニルケトン等のケトン類およびこれら混合物があげ
られる。
The organic polar solvent used in the present invention is preferably an aprotic organic polar solvent that is stable at high temperatures. for example,
N,N-dimethylacetamide, N-ethyl-2-pyrrolidone, N-methyl-2-pyrrolidone, hexamethylphosphoramide, tetramethylurea, 1,3-dimethyl-
Examples include amides such as 2-imidazolidinone, sulfolanes such as urea, sulfolane, dimethylsulfolane, ketones such as methylphenyl ketone, and mixtures thereof.

また、その使用する量は、アルカリ金属硫化物1モル当
り1〜10モルの範囲であることが必要である。1モル
未満では、得られるポリマーの収量及び溶融粘度の低下
が見られるので好ましくない。また、10モルより多い
場合は、経済的見地より好ましくない。
Further, the amount used needs to be in the range of 1 to 10 moles per mole of alkali metal sulfide. If it is less than 1 mol, the yield and melt viscosity of the resulting polymer will decrease, which is not preferable. Moreover, when it is more than 10 moles, it is not preferable from an economical point of view.

本発明で使用するジハロゲン化芳香族化合物は、芳香核
に直接ハロゲン原子が2個結合したものであり、例えば
、p−ジクロルベンゼン、0−ジクロルベンゼン m 
Mロルベンゼン、ジブロムベンゼン、ショートベンゼン
、ジクロルナフタリン。
The dihalogenated aromatic compound used in the present invention has two halogen atoms bonded directly to an aromatic nucleus, such as p-dichlorobenzene, 0-dichlorobenzene m
M-lorbenzene, dibromobenzene, shortbenzene, dichlornaphthalene.

ジブロムナフタリン、ショートナフタリン、ジクロルビ
フェニル、ジブロムビフェニール、ショートビフェニー
ル、ジクロルジフェニルスルホン。
Dibromnaphthalene, short naphthalene, dichlorbiphenyl, dibrombiphenyl, short biphenyl, dichlordiphenyl sulfone.

シフロムジフェニルスルホン、ショードジフヱニルスル
ホン、ジクロルベンゾフェノン、シフロムベンゾフェノ
ン、ショートベンゾフェノン、ジクロムシフェニルエー
テル、ジブロムジフェニルエーテル、ジクロルジフェニ
ルスルフィド、ジブロムジフェニルスルフィド、ショー
トジフェニルスルフィド等およびこれらの混合物が挙げ
られるが、通常p−ジクロルベンゼンが用いられる。
Cyfurom diphenyl sulfone, SHOD diphenyl sulfone, dichlorobenzophenone, sifurom benzophenone, short benzophenone, dichrome diphenyl ether, dibromidiphenyl ether, dichlordiphenyl sulfide, dibromidiphenyl sulfide, short diphenyl sulfide, etc., and mixtures thereof. are mentioned, but p-dichlorobenzene is usually used.

さらに、ポリマーの線状性を侵さない範囲において、ト
リハロゲン以上のポリハロゲン化芳香族化合物、例えば
、トリクロルベンゼン、lJフ0ムベンゼン、トリヨー
ドベンゼン、テトラクロルベンゼン、トリクロルナフタ
リン、テトラクロルナフタリン等を組み合せて使用する
こともできる。
Furthermore, polyhalogenated aromatic compounds of trihalogen or higher, such as trichlorobenzene, lJ fluorobenzene, triiodobenzene, tetrachlorobenzene, trichlornaphthalene, tetrachloronaphthalene, etc., may be added within a range that does not affect the linearity of the polymer. They can also be used in combination.

ジハロゲン化芳香族化合物の量は、通常アルカリ金属硫
化物1モル当り、α9〜1.1モルの範囲で用いられる
The amount of the dihalogenated aromatic compound is usually used in the range of α9 to 1.1 mol per mol of the alkali metal sulfide.

また、ポリマーを更に高分子量化するために、有機アル
カリ金属カルボン酸塩などの助剤を添加することも可能
である。
Further, in order to further increase the molecular weight of the polymer, it is also possible to add an auxiliary agent such as an organic alkali metal carboxylate.

本発明における加熱脱水は、通常、内部温度が180〜
230℃の温度範囲に到達するまで行われる。内部温度
が180°より低い場合は、系中の残存水が多くなる為
好ましくない。また230℃を超える場合は、脱水液中
の標品の含有量が多くなるため好ましくない。
In the heating dehydration in the present invention, the internal temperature is usually 180-180°C.
This is done until a temperature range of 230°C is reached. If the internal temperature is lower than 180°, it is not preferable because a large amount of water remains in the system. Further, if the temperature exceeds 230°C, the content of the standard product in the dehydrated solution increases, which is not preferable.

また、通常脱水後のアルカリ金属硫化物:水のモル比は
1:α5〜2.0の範囲とすることが好ましい。
Further, it is usually preferable that the molar ratio of alkali metal sulfide to water after dehydration is in the range of 1:α5 to 2.0.

本発明における重合は、通常180〜300℃、好まし
くは200〜270℃の温度範囲で15〜20時間攪拌
下に行われる。重合温度が180℃より低いと重合速度
が著しく遅く実用的でない。
The polymerization in the present invention is usually carried out at a temperature of 180 to 300°C, preferably 200 to 270°C, with stirring for 15 to 20 hours. If the polymerization temperature is lower than 180° C., the polymerization rate is extremely slow and is not practical.

また、300℃より高い温度で重合を行うとポリマーの
分解がみられ好ましくない。
Furthermore, polymerization at a temperature higher than 300°C is undesirable because decomposition of the polymer occurs.

このようにして得られた反応混合物からのポリアリーレ
ンスルフィドの回収は、従来の通常の技術を使用すれば
よく、例えば溶媒を蒸留、フラッシング等により回収し
た後、ポリマーを有機溶剤。
The polyarylene sulfide can be recovered from the reaction mixture thus obtained by using conventional techniques, for example, after the solvent is recovered by distillation, flashing, etc., the polymer is treated with an organic solvent.

水で洗浄し回収する方法や、反応混合物を濾過し溶媒を
回収した後、ポリマーを洗浄し、回収する方法等が挙げ
られる。
Examples include a method in which the polymer is washed with water and recovered, and a method in which the reaction mixture is filtered to recover the solvent, and then the polymer is washed and recovered.

本発明により得られるポリアリーレンスルフィドの具体
例としては、ポリフェニレンスルフィド士@−S→「が
代表例として挙げられるが、他にもポリフェニレンスル
フィドスルホンポリジフェニレンスルフィド÷@−@−
8→Tやこれらの繰り返し単位を2つ以上含んだ共重合
体も挙げられる。
As a specific example of the polyarylene sulfide obtained by the present invention, polyphenylene sulfide @-S → " is mentioned as a typical example, but there are also polyphenylene sulfide sulfone polydiphenylene sulfide ÷ @-@-
Also included are 8→T and copolymers containing two or more of these repeating units.

また、本発明により得られたポリアリーレンスルフィド
は、加熱処理または未処理で単独またはガラス繊維、炭
素繊維、アルミナ繊維等のセラミック繊維、アラミド繊
維、全芳香族ポリエステル繊維、金属繊維、チタン酸カ
リウム等のウィスカー等の補強用充填剤や炭酸カルシウ
ム、マイカ。
In addition, the polyarylene sulfide obtained by the present invention can be heat-treated or untreated and used alone or in ceramic fibers such as glass fibers, carbon fibers, and alumina fibers, aramid fibers, wholly aromatic polyester fibers, metal fibers, potassium titanate, etc. reinforcing fillers such as whiskers, calcium carbonate, and mica.

タルク、シリカ、硫酸バリウム、硫酸カルシウム。Talc, silica, barium sulfate, calcium sulfate.

カオリン、クレー、パイロフェライト、ベントナイト、
セリサイト、ゼオライト、ネフェリンシナイト、アタル
パジャイト、ウオラストナイト。
Kaolin, clay, pyroferrite, bentonite,
Sericite, zeolite, nephelinsinite, atalpagite, wollastonite.

PM?、7エライト、ケイ酸カルシウム、炭酸マグネシ
ウム、三酸化アンチモン、酸化亜鉛、酸化チタン、酸化
マグネシウム、酸化鉄、二硫化モリブデン、黒鉛9石こ
う、ガラスピーズ、ガラスパウダー、ガラスバルーン、
石英等の無機光てん剤や有機、無機顔料を配合して使用
することも可能である。
PM? , 7 elite, calcium silicate, magnesium carbonate, antimony trioxide, zinc oxide, titanium oxide, magnesium oxide, iron oxide, molybdenum disulfide, graphite 9 gypsum, glass peas, glass powder, glass balloon,
It is also possible to mix and use inorganic brighteners such as quartz and organic and inorganic pigments.

また、可塑剤、離型剤、シラン系およびチタネート系の
カップリング剤、滑剤、耐熱安定剤、耐候性安定剤、結
晶核剤9発泡剤、イオントラップ剤、難燃剤、難燃助剤
等を必要に応じて添加してもよい。
In addition, plasticizers, mold release agents, silane-based and titanate-based coupling agents, lubricants, heat-resistant stabilizers, weather-resistant stabilizers, crystal nucleating agents, blowing agents, ion trapping agents, flame retardants, flame retardant aids, etc. It may be added as necessary.

さらに必要に応じてポリエチレン、ポリブタジェン、ポ
リインプレン、ポリクロロプレン、ポリスチレン、ポリ
ブテン、ポリα−メチルスチレン。
Furthermore, polyethylene, polybutadiene, polyimprene, polychloroprene, polystyrene, polybutene, polyα-methylstyrene, if necessary.

ポリ酢酸ビニル、ポリ塩化ビニル、ポリアクリル酸エス
テル、ボリメタクThエステル、ポリアクリロニトリル
、fイロン6、ナイロン66、fイロン610.ナイロ
ン12.ナイロン46等のポリアミド、ポリエチレンテ
レフタレート、ポリブチレンテレフタレート、ボリアリ
レート等のポリエステル、ポリウレタン、ポリアセター
ル、ポリカーボネート、ポリフェニレンオキシド、ポリ
スルホン、ポリエーテルスルホン、ポリアリルスルホン
、ポリエーテルケトン、ポリエーテルエーテルケトン、
ポリイミド、ポリアミドイミド、シリコーン樹脂、フェ
ノキシ樹脂、フッ素樹脂などの単独重合体、ランダムま
たはブロック、グラフト共重合体の一種以上を混合して
使用することもできる。
Polyvinyl acetate, polyvinyl chloride, polyacrylic acid ester, polymethac Th ester, polyacrylonitrile, f-ylon 6, nylon 66, f-ylon 610. Nylon 12. Polyamide such as nylon 46, polyester such as polyethylene terephthalate, polybutylene terephthalate, polyarylate, polyurethane, polyacetal, polycarbonate, polyphenylene oxide, polysulfone, polyether sulfone, polyallyl sulfone, polyether ketone, polyether ether ketone,
It is also possible to use a mixture of one or more of homopolymers, random, block, and graft copolymers such as polyimide, polyamideimide, silicone resin, phenoxy resin, and fluororesin.

〔実施例〕〔Example〕

以下、本発明を実施例により詳細に説明するが、本発明
は、これらの実施例のみに限定されるものではない。
EXAMPLES Hereinafter, the present invention will be explained in detail with reference to Examples, but the present invention is not limited only to these Examples.

以下の実施例及び比較例でのポリアリーレンスルフィド
の溶融粘度の測定は、高化式フローテスター(ダイス:
φ−0.5鴎、L−2騙)を使用し、300℃、107
t9荷重で測定した。
The melt viscosity of polyarylene sulfide in the following Examples and Comparative Examples was measured using a Koka flow tester (dice:
300℃, 107
Measured with t9 load.

また、得られたポリアリレーンスルフィドにガラス繊維
40vt%混合して射出成形を行い、成形品の色調を目
視で、曲げ強度なA8TM−D790に従い測定した。
Further, 40% by volume of glass fiber was mixed into the obtained polyarylene sulfide, injection molding was performed, and the color tone of the molded product was visually measured according to A8TM-D790 for bending strength.

実施例1 攪拌機、脱水塔およびジャケットを装備する内容積53
0tの反応器にN−メチルピロリドン110t、硫化ナ
トリウム(純度; Na、S 59.9wtL Na5
H−(Ll 5wt%) 61.7jcpおよび水硫化
ナトリウム(純度+ Na5H70Wtl)4569を
仕込み、攪拌下ジャケットにより加熱し、内温か210
℃に到達するまで脱水塔を通じて脱水を行った。この際
、1a4tの主として水からなる留出液及び14.4モ
ルのH,Sが留出した。
Example 1 Internal volume 53 equipped with stirrer, dehydration tower and jacket
In a 0t reactor, 110t of N-methylpyrrolidone, sodium sulfide (purity; Na, S 59.9wtL Na5
H-(Ll 5wt%) 61.7jcp and sodium hydrosulfide (purity + Na5H70Wtl) 4569 were charged and heated with a jacket while stirring to bring the internal temperature to 210
Dehydration was carried out through a dehydration tower until the temperature reached ℃. At this time, 1a4t of a distillate mainly consisting of water and 14.4 moles of H and S were distilled out.

次いで、p−ジクロルベンゼン7(LOkgとN−メチ
ルピロリドン48tを添加し、1時間20分かけて25
0℃まで昇温した。反応は、発熱反応であるので暴走反
応を避ける為、昇温速度がなるべく等速になるよう制御
して昇温を行りた。さらに250℃で3時間反応した。
Next, 7 kg of p-dichlorobenzene (LO kg) and 48 t of N-methylpyrrolidone were added, and the
The temperature was raised to 0°C. Since the reaction is an exothermic reaction, in order to avoid a runaway reaction, the heating rate was controlled to be as constant as possible. The reaction was further carried out at 250°C for 3 hours.

この際圧力は90に9/citまで上昇した。At this time, the pressure rose to 90.9/cit.

反応終了後、反応混合液を攪拌機、ジャケットおよび減
圧ラインを装備する溶媒回収器に移液した。この際、N
−メールピロリドン35/、を追加した。次いで、減圧
下、加熱攪拌して主としてN−メチルピロリドンからな
る留出液195tを留去した。
After the reaction was completed, the reaction mixture was transferred to a solvent recovery vessel equipped with a stirrer, a jacket, and a vacuum line. At this time, N
- Added mer pyrrolidone 35/. Next, 195 t of a distillate mainly consisting of N-methylpyrrolidone was distilled off by heating and stirring under reduced pressure.

次いで水200tを添加して水スラリーとし、80℃、
15分間加熱攪拌した後、遠心分離機を用いてポリマー
を回収した。
Next, 200 tons of water was added to make a water slurry, and the mixture was heated at 80°C.
After heating and stirring for 15 minutes, the polymer was recovered using a centrifuge.

更にポリマーを溶媒回収器にもどし、水200tを添加
し、175℃、1時間加熱攪拌を行い、冷却後遠心分離
機でポリマーを回収した。
Furthermore, the polymer was returned to the solvent recovery vessel, 200 tons of water was added, and the mixture was heated and stirred at 175°C for 1 hour, and after cooling, the polymer was recovered using a centrifuge.

次いで、ポリマーをジャケット付きりポンプレンダ−に
移し、空気気流下、内温か150℃に到達するまで乾燥
を行った。
The polymer was then transferred to a jacketed pump blender and dried under a stream of air until the internal temperature reached 150°C.

乾燥後のポリマーを一部サンプリングし、溶融粘度を測
定したところ33 Pa−5であった。
A portion of the dried polymer was sampled and its melt viscosity was measured to be 33 Pa-5.

更に内温を250℃まで昇温し、250℃、4時間加熱
酸化架橋(硬化)を行い、48に90PPBを得た。
Further, the internal temperature was raised to 250° C., and heating oxidation crosslinking (curing) was performed at 250° C. for 4 hours to obtain 90 PPB in 48.

このポリマーの溶融粘度は295 Pa・8 であった
The melt viscosity of this polymer was 295 Pa·8.

得られたポリマーにガラス繊維を混合した成形結果を第
1表に示す。
Table 1 shows the molding results obtained by mixing the obtained polymer with glass fiber.

品の色調は、淡褐色であった。The color of the product was light brown.

実施例2 硫化ナトリウムと水硫化ナトリウムとの仕込量を第1表
に示すように変更したこと以外は、実施例1と同様の操
作を行った。
Example 2 The same operation as in Example 1 was performed except that the amounts of sodium sulfide and sodium hydrosulfide were changed as shown in Table 1.

結果を第1表に示す。The results are shown in Table 1.

実施例3 水硫化ナトリウムの含有量の多い硫化す) IJウム(
純度i Na2S  59.1 wt%、 NaEIH
α81 wt%)6’)−3に9を用い、水硫化ナトリ
ウムを別に添加しなかったこと以外は実施例1と同様の
操作を行った。
Example 3 Sulfide with a high content of sodium hydrosulfide) IJum (
Purity i Na2S 59.1 wt%, NaEIH
The same operation as in Example 1 was performed except that 9 was used for α81 wt%)6')-3 and sodium hydrosulfide was not separately added.

結果を第1表に示す。The results are shown in Table 1.

比較例1 実施例1に使用した硫化す) +Jウム6’)−4に9
を添加し、水硫化ナトリウムを添加しなかった。また、
硬化時間を3時間とした。
Comparative Example 1 Sulfide used in Example 1) + Jum 6') - 4 to 9
was added and no sodium bisulfide was added. Also,
The curing time was 3 hours.

比較例2 硫化ナトリウムと水硫化ナトリウムとの仕込量を第1表
に示すように変更し、硬化条件を255℃、5時間とし
た。
Comparative Example 2 The amounts of sodium sulfide and sodium hydrosulfide charged were changed as shown in Table 1, and the curing conditions were 255° C. for 5 hours.

結果を第1表に示す。The results are shown in Table 1.

第1表の実施例1〜3.比較例1.2の結果から明らか
なように水和水を有する硫化ナトリウムを調整された量
の水硫化す) IJウムの存在下で、混合、加熱脱水を
行うことにより、重合後のポリマー溶融粘度は高くなり
、また、硬化処理を行った後のポリマーを用いて得られ
た成形品は着色が少なく、強度が優れていることが明ら
かである。
Examples 1 to 3 in Table 1. As is clear from the results of Comparative Example 1.2, the polymer melt after polymerization can be reduced by mixing and heating dehydration in the presence of sodium sulfide with adjusted amount of sodium sulfide having water of hydration. It is clear that the viscosity is higher and that the molded articles obtained using the cured polymer have less coloring and are superior in strength.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように本発明によれば、重合後
のポリマー溶融粘度が高く、更にポリマーを加熱酸化架
橋させた後においても熱安定性に優れ、かつ着色が少な
く強度の優れた成形品を与えるポリアリーレンスルフィ
ドを安定に、安価に製造することができる。
As is clear from the above description, according to the present invention, the polymer has a high melt viscosity after polymerization, has excellent thermal stability even after the polymer is crosslinked by heating and oxidation, and has a molded product with little coloring and excellent strength. It is possible to stably and inexpensively produce polyarylene sulfide that provides

Claims (1)

【特許請求の範囲】[Claims] 1)ポリアリーレンスルフィドを製造するにあたり、水
和水を有するアルカリ金属硫化物とアルカリ金属水硫化
物とを1:0.005〜0.05(モル比)の比率で有
機極性溶媒中、混合、加熱、脱水した後、ジハロゲン化
芳香族化合物と重合させることを特徴とするポリアリー
レンスルフィドの製造方法。
1) In producing polyarylene sulfide, an alkali metal sulfide having water of hydration and an alkali metal hydrosulfide are mixed in an organic polar solvent at a ratio of 1:0.005 to 0.05 (molar ratio), A method for producing polyarylene sulfide, which comprises heating and dehydrating the product and then polymerizing it with a dihalogenated aromatic compound.
JP62096166A 1987-04-21 1987-04-21 Production of polyarylene sulfide Pending JPS63264633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62096166A JPS63264633A (en) 1987-04-21 1987-04-21 Production of polyarylene sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62096166A JPS63264633A (en) 1987-04-21 1987-04-21 Production of polyarylene sulfide

Publications (1)

Publication Number Publication Date
JPS63264633A true JPS63264633A (en) 1988-11-01

Family

ID=14157750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62096166A Pending JPS63264633A (en) 1987-04-21 1987-04-21 Production of polyarylene sulfide

Country Status (1)

Country Link
JP (1) JPS63264633A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039462A (en) * 2000-07-19 2002-02-06 Petroleum Energy Center Liquid feed pipe and method of manufacturing polyallylene sulfide using the same
WO2020044819A1 (en) * 2018-08-29 2020-03-05 株式会社クレハ Continuous dehydration method and method for producing polyarylene sulfide

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039462A (en) * 2000-07-19 2002-02-06 Petroleum Energy Center Liquid feed pipe and method of manufacturing polyallylene sulfide using the same
WO2020044819A1 (en) * 2018-08-29 2020-03-05 株式会社クレハ Continuous dehydration method and method for producing polyarylene sulfide
JPWO2020044819A1 (en) * 2018-08-29 2020-12-17 株式会社クレハ Continuous dehydration method and method for producing polyarylene sulfide
CN112513143A (en) * 2018-08-29 2021-03-16 株式会社吴羽 Continuous dehydration method and method for producing polyarylene sulfide
KR20210041084A (en) * 2018-08-29 2021-04-14 가부시끼가이샤 구레하 Continuous dehydration method and method for producing polyarylene sulfide
US11155682B2 (en) 2018-08-29 2021-10-26 Kureha Corporation Continuous dehydration method and method for producing polyarylene sulfide

Similar Documents

Publication Publication Date Title
US5350833A (en) Process for production of polyarylene sulfides
EP0226998B1 (en) Process for production of high molecular-weight polyarylene sulfides
JP3564754B2 (en) Method for producing polyarylene sulfide polymer
JP2002212292A (en) Manufacturing method of polyarylene sulfide resin
JPH03195734A (en) Production of granular polyarylenesulfide having high molecular weight
JPH1180355A (en) Purification of polyarylene sulfide
JPH08157718A (en) Polyarylene sulfide resin composition
EP0323723B1 (en) Process for producing poly (para-phenylene-sulfide)
US4840986A (en) Process for producing a polyarylene sulfide
US4868275A (en) Preparation of poly (arylene sulfide) from dihalo aromatic hydroxyl compound
JPH0643492B2 (en) Production of aromatic sulfide / ketone polymers
JPS63264633A (en) Production of polyarylene sulfide
JP3023924B2 (en) Method for producing carboxyl group-containing arylene sulfide copolymer
EP0320142A2 (en) Preparation of poly (arylene sulfide)
US5097003A (en) Process for producing polyphenylene sulfide ketone polymers
EP0325061B1 (en) Process for producing poly (para-phenylene-sulfide)
JPH06248079A (en) Production of polyarylene sulfide and resin composition
JPH0741560A (en) Production of aminated arylene sulfide copolymer
US5032672A (en) Process for preparing polyl(phenylene sulfide)
JP3473780B2 (en) High strength polyarylene sulfide and method for producing the same
JP2792653B2 (en) Method for producing polyphenylene sulfide
JPS6262820A (en) Production of polyarylene sulfide
JPH01311124A (en) Polyphenylene sulfide ketone polymer and production thereof
JP2529708B2 (en) Method for producing poly (p-phenylene sulfide)
JPH01167335A (en) Treatment of polyphenylene sulfide