JPS6326332B2 - - Google Patents

Info

Publication number
JPS6326332B2
JPS6326332B2 JP981682A JP981682A JPS6326332B2 JP S6326332 B2 JPS6326332 B2 JP S6326332B2 JP 981682 A JP981682 A JP 981682A JP 981682 A JP981682 A JP 981682A JP S6326332 B2 JPS6326332 B2 JP S6326332B2
Authority
JP
Japan
Prior art keywords
sample
discharge
anode
section
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP981682A
Other languages
Japanese (ja)
Other versions
JPS58127150A (en
Inventor
Takao Oosawa
Hiroshi Ishijima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEIKO DENSHI KOGYO KK
Original Assignee
SEIKO DENSHI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEIKO DENSHI KOGYO KK filed Critical SEIKO DENSHI KOGYO KK
Priority to JP981682A priority Critical patent/JPS58127150A/en
Publication of JPS58127150A publication Critical patent/JPS58127150A/en
Publication of JPS6326332B2 publication Critical patent/JPS6326332B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • G01N21/67Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence using electric arcs or discharges

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

【発明の詳細な説明】 この発明はグロー放電装置に関し、特に、陰極
部に装着された試料の成分分析を迅速に小さい誤
差範囲内で決定するための新規な改良に関するも
ので、その実現のため放電室内の電子密度を増大
させたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a glow discharge device, and in particular, to a novel improvement for quickly determining the component analysis of a sample attached to a cathode part within a small error range. This increases the electron density within the discharge chamber.

従来、用いられていたこの種の装置においては
特公昭49−21680号公報において示されるように、
被測定試料が装着される陰極部と絶縁された陽極
部との間に電圧を印加して放電発光を起こさせる
構成であつた。
As shown in Japanese Patent Publication No. 49-21680, in this type of device that has been used in the past,
The structure was such that a voltage was applied between the cathode section on which the sample to be measured was attached and the insulated anode section to cause discharge light emission.

しかしながら、このような装置においては材料
の成分又はその成分分布を複雑な操作を必要とせ
ずに迅速に小さい誤差範囲内で決定することがで
きなければならない。ところで、このような分析
に対してはグロー放電発生用の動作ガスとして一
般に希ガス、特にアルゴンガスが使用される。こ
の動作ガスイオンの衝撃によつて連続的に飛散さ
れた試料原子は、励起されて分光器により計測さ
れ、定量分析されるが、その分析精度は光の強度
に比例する。従つて試料原子の励起度は、それに
衝撃を与える電子密度と共に高くなり、それに併
なつて分析精度が向上する。
However, in such a device it must be possible to determine the component of the material or its component distribution quickly and within a small error range without requiring complicated operations. Incidentally, for such analysis, a rare gas, particularly argon gas, is generally used as the operating gas for generating glow discharge. The sample atoms that are continuously scattered by the impact of the working gas ions are excited, measured by a spectrometer, and quantitatively analyzed, and the accuracy of the analysis is proportional to the intensity of the light. Therefore, the degree of excitation of sample atoms increases with the density of electrons bombarding them, and analysis accuracy improves accordingly.

このように強く励起するためグロー放電管に大
電流の低電圧放電を付加する試みは既に各種実施
されているものである。
Various attempts have already been made to apply a large current, low voltage discharge to a glow discharge tube in order to achieve strong excitation.

その一つとして、補助放電により放電室内の電
子密度、従つて分析試料電子と電子との衝突数が
増大する方法がある。しかし、補助放電部分を設
けると、グロー放電管に2個の補助電極が必要と
なり、構造および制御が複雑となる。
One method is to use an auxiliary discharge to increase the electron density in the discharge chamber and, therefore, the number of collisions between analysis sample electrons and electrons. However, providing the auxiliary discharge portion requires two auxiliary electrodes in the glow discharge tube, which complicates the structure and control.

又、放電室内の電子密度を増大する方法として
放電室に軸方向の磁場を作る装置を設け、電子の
螺旋運動によつて走る距離を長くし、分析試料原
子と電子との衝突数を増大させる方法が実施され
ている。しかし、分析試料が磁性体か非磁性体か
よつてグロー放電を起こさせた後の表面形状が大
きく変化するという欠点があつた。
In addition, as a method of increasing the electron density in the discharge chamber, a device is installed in the discharge chamber to create an axial magnetic field, which increases the distance the electrons travel due to their spiral motion and increases the number of collisions between the electrons and the atoms in the analysis sample. method is implemented. However, it has the disadvantage that the surface shape after glow discharge changes greatly depending on whether the sample to be analyzed is magnetic or non-magnetic.

この発明は放電室内の電子密度を高くするた
め、効果的な手段を提供することを目的とするも
ので、特に、被測定試料が装着される陰極部と絶
縁された陽極部との間に独立した他の電極部を設
けるようにした構成である。
The purpose of this invention is to provide an effective means for increasing the electron density within the discharge chamber, and in particular, it is an object of the present invention to provide an effective means for increasing the electron density within the discharge chamber. This is a configuration in which another electrode section is provided.

以下、図面と共にこの発明によるグロー放電装
置の好適な実施例について詳細に説明する。図面
は本発明によるグロー放電装置の断面を示すもの
で、全体に円筒型で必要な透穴は同一面に表現し
てある図面において符号1で示されるものは絶縁
体であり、この絶縁体1に形成された孔部2の上
部には石英窓体3が載置されていると共に、この
孔部2の一端にはアルゴンガス導入管4が連設さ
れている。
Hereinafter, preferred embodiments of the glow discharge device according to the present invention will be described in detail with reference to the drawings. The drawing shows a cross section of the glow discharge device according to the present invention, and the entire structure is cylindrical and the necessary through holes are shown on the same plane. A quartz window 3 is placed above the hole 2 formed in the hole 2, and an argon gas introduction pipe 4 is connected to one end of the hole 2.

前記絶縁体1の下部には陽極部5が設けられ、
この陽極部5内には前記孔部2が延設されている
と共に、この孔部2に連設して陽極部5の一端に
は第1排気管6が設けられている。さらに、前記
陽極部5の下部には絶縁部7及び電極部8が積層
されて設けられており、この電極部8の中心部は
円筒状に下方にかつ前記孔部2と同軸に延設され
た延長部8aが形成されている。
An anode section 5 is provided at the bottom of the insulator 1,
The hole 2 extends into the anode portion 5, and a first exhaust pipe 6 is provided at one end of the anode portion 5 in a continuous manner with the hole 2. Furthermore, an insulating part 7 and an electrode part 8 are provided in a laminated manner under the anode part 5, and the center part of the electrode part 8 is arranged in a cylindrical shape extending downward and coaxially with the hole part 2. An extended portion 8a is formed.

この電極部8の下部には絶縁部9および陰極部
10が装着され、この絶縁部9の一端には第2排
気管11が形成されると共に、前記陰極部10の
下部位置には試料12が添設されている。この試
料12と電極部8の延長部8aとの間の間隔Dは
約0.1〜0.3mmでありり、電極部8の内径すなわち
試料12の放電スパツタ面積は直径4.0〜8.0mmで
ある。
An insulating part 9 and a cathode part 10 are attached to the lower part of the electrode part 8, a second exhaust pipe 11 is formed at one end of the insulating part 9, and a sample 12 is installed at the lower part of the cathode part 10. It is attached. The distance D between the sample 12 and the extension 8a of the electrode section 8 is approximately 0.1 to 0.3 mm, and the inner diameter of the electrode section 8, that is, the discharge sputter area of the sample 12 is 4.0 to 8.0 mm in diameter.

以上のような構成において、この発明によるグ
ロー放電装置を作動させる場合について説明する
と、アルゴンガス導入管4からアルゴンガスを放
電室としての孔部2に導入し、孔部2内の圧力を
一定に保つための排気管6および11からアルゴ
ンガスが外部に導出されている。
In the above configuration, when operating the glow discharge device according to the present invention, argon gas is introduced from the argon gas introduction tube 4 into the hole 2 serving as a discharge chamber, and the pressure inside the hole 2 is kept constant. Argon gas is led out from exhaust pipes 6 and 11 for maintenance.

このような状態で、陽極部5と試料12の陰極
部10との間に電圧を付加すると、一定のガス圧
条件により、まず陽極部5と電極部8との間に発
生する空間電荷により電離された陽イオンの分布
密度が濃くなり、試料12に対して初期の加速励
起がなされる。次に安定放電状態では、電極部8
の下部、すなわち試料12の表面に近い空間でグ
ロー放電を呈する。しかしこの放電で望まれるこ
とは、前述したように濃い電子密度であり、放電
現象としては異常グロー放電の領域である。この
状態における電極部8と陰極部10との間の電圧
は激しく変動する。つまり定電流化の機能を示
す。しかしこの拘束領域はそれほど広くなく、低
ければ励起不足となり、上限を越えるとアーク放
電など不安定となる。これを安定領域に制御する
のが本発明の特徴とする構造である。すなわち、
陽極部5と電極部8とは孔部2内で静電容量によ
る結合条件を保ち、その電極間隔は前述した試料
12と延長部8aとの間隔Dよりも広い、このよ
うな条件のもとで、安定グロー放電状態での両電
極は、上記した異常グロー放電と異なり、それよ
り電子密度を粗にした領域を形成する。この領域
の機能はあたかも定電圧放電管に等しい、従つて
電極部8は陽極部5から電圧安定化の作用を受
け、一方試料12に対しては濃い電子密度で作用
する2つの機能を備えている。次に、本発明の構
造から生じる特有の空間電荷効果について述べ
る。それは共通の放電空間における電子密度の自
動制御にある。つまり試料12に作用する電子密
度とその上部にある陽極部8との間に作用する電
子密度は、互いに相補する関係を備えている。こ
の動作は、電極部8が陽極側にリークバイアスさ
れた3極真空管の電荷制御グリツドの作用に似て
いる。この制御により放電のための付加電圧は
700〜1500Vの範囲であつても安定化される。そ
の結果、試料から飛散した原子の励起が強く起こ
り発光が現れて、試料12の上部に負グロー領域
が発生する。この光を石英窓3を介して分光器
(図示せず)に導かれて計測される。
In this state, when a voltage is applied between the anode section 5 and the cathode section 10 of the sample 12, ionization occurs due to the space charge generated between the anode section 5 and the electrode section 8 due to the constant gas pressure conditions. The distribution density of the generated cations becomes denser, and the sample 12 is subjected to initial accelerated excitation. Next, in a stable discharge state, the electrode section 8
A glow discharge occurs in the lower part of the sample 12, that is, in the space near the surface of the sample 12. However, what is desired in this discharge is a high electron density as described above, and the discharge phenomenon is in the region of abnormal glow discharge. In this state, the voltage between the electrode section 8 and the cathode section 10 fluctuates drastically. In other words, it shows the constant current function. However, this constraint region is not so wide; if it is low, there will be insufficient excitation, and if it exceeds the upper limit, instability such as arc discharge will occur. The characteristic structure of the present invention is to control this to a stable region. That is,
Under these conditions, the anode section 5 and the electrode section 8 maintain a capacitive coupling condition within the hole 2, and the electrode interval is wider than the aforementioned interval D between the sample 12 and the extension section 8a. In the stable glow discharge state, both electrodes form a region with a coarser electron density, unlike the above-mentioned abnormal glow discharge. The function of this region is the same as that of a constant voltage discharge tube. Therefore, the electrode section 8 receives voltage stabilization from the anode section 5, and on the other hand, it has two functions of acting on the sample 12 with a high electron density. There is. Next, the unique space charge effect resulting from the structure of the present invention will be described. It consists in automatic control of electron density in the common discharge space. In other words, the electron density acting on the sample 12 and the electron density acting on the anode portion 8 located above the sample 12 have a mutually complementary relationship. This operation is similar to that of a charge control grid of a triode vacuum tube in which the electrode section 8 is leak biased toward the anode side. With this control, the additional voltage for discharge is
It is stabilized even in the range of 700-1500V. As a result, atoms scattered from the sample are strongly excited, light is emitted, and a negative glow region is generated in the upper part of the sample 12. This light is guided through a quartz window 3 to a spectrometer (not shown) and measured.

この発明によるグロー放電装置は以上のような
構成と作用とを備えているため、下記のような効
果を奏する。
Since the glow discharge device according to the present invention has the above-described configuration and operation, it has the following effects.

前記電極部は陰極部と陽極部との間に電圧を印
加し放電を起こさせた時、放電室内の空間電荷に
より陽極部電位より低い電位となり、この電極部
の作る制御作用により陰極試料表面付近に生ずる
負グロー領域の電子密度を高く維持しながら、ア
ーク放電などの異常を制限することが可能となつ
て制御を自動的に行うことができる。
When a voltage is applied between the cathode section and the anode section to cause a discharge, the electrode section has a potential lower than the anode section potential due to the space charge in the discharge chamber, and due to the control action created by this electrode section, the potential near the cathode sample surface This makes it possible to limit abnormalities such as arc discharge while maintaining a high electron density in the negative glow region that occurs in the negative glow region, and control can be performed automatically.

前記陽極部と電極部との間及び電極部と陰極部
との間に異質の放電を生じさせ、この電極部によ
り陰極部との間の電子の行程を長くして制御する
ことができ飛散した分析試料原子と電子との衝突
数が増大し試料原子の励起度が高くなり光の強度
が増大する。図示の構造でよく理解できるよう
に、本発明の特徴はその配置にあり、特に陽極部
と電極部及びその間にある絶縁部などの形状や寸
法について主張するものではない、図示の実施例
では陽極体の内側につば状の出つ張りを設け、そ
れと同寸法の電極部の内径とし、その間の絶縁部
は内径を広くして両電極間の結合を適当に設定し
ている。従つて、これらの寸法、形状はその装置
の用途、目的によつて選べばよい。
A heterogeneous discharge is generated between the anode part and the electrode part and between the electrode part and the cathode part, and the path of electrons between the cathode part and the cathode part can be lengthened and controlled by the electrode part, and scattering can be caused. The number of collisions between the analysis sample atoms and electrons increases, the degree of excitation of the sample atoms increases, and the intensity of light increases. As can be well understood from the illustrated structure, the feature of the present invention lies in its arrangement, and no claims are made about the shapes and dimensions of the anode portion, the electrode portion, and the insulating portion therebetween. A brim-like protrusion is provided inside the body, and the inner diameter of the electrode part is the same as that of the protrusion, and the insulating part between the two has a wider inner diameter to appropriately set the bond between the two electrodes. Therefore, these dimensions and shapes may be selected depending on the use and purpose of the device.

前記電極部の電位は陽極部と陰極部との間に印
加される電圧によつて制御されるもので、外部か
ら制御する必要がなくなる。
The potential of the electrode section is controlled by the voltage applied between the anode section and the cathode section, and there is no need for external control.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明によるグロー放電装置を示すた
めの断面図である。 1…絶縁体、2…孔部、3…石英窓体、4…ア
ルゴンガス導入管、5…陽極部、6…第1排気
管、7…絶縁部、8…電極部、8a…延長部、9
…絶縁部、10…陰極部、11…第2排気管、1
2…試料。
The drawing is a sectional view showing a glow discharge device according to the present invention. DESCRIPTION OF SYMBOLS 1... Insulator, 2... Hole, 3... Quartz window, 4... Argon gas introduction tube, 5... Anode part, 6... First exhaust pipe, 7... Insulating part, 8... Electrode part, 8a... Extension part, 9
...Insulating part, 10...Cathode part, 11...Second exhaust pipe, 1
2...Sample.

Claims (1)

【特許請求の範囲】[Claims] 1 被測定試料が装着される陰極部と絶縁された
陽極部との間に電圧を印加して放電発光を起こさ
せるグロー放電装置において、上記陰極部と陽極
部との間に電極部を設け、該電極部は前記陰極部
および陽極部に対して電気的に絶縁されており、
前記陽極部および陰極部との間に電圧を印加した
時、空間電荷の影響により前記陽極部の電位より
低い電位をもつようにしたことを特徴とするグロ
ー放電装置。
1. In a glow discharge device that causes discharge light emission by applying a voltage between a cathode part on which a sample to be measured is attached and an insulated anode part, an electrode part is provided between the cathode part and the anode part, The electrode part is electrically insulated from the cathode part and the anode part,
A glow discharge device characterized in that when a voltage is applied between the anode part and the cathode part, the potential is lower than that of the anode part due to the effect of space charge.
JP981682A 1982-01-25 1982-01-25 Glow discharger Granted JPS58127150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP981682A JPS58127150A (en) 1982-01-25 1982-01-25 Glow discharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP981682A JPS58127150A (en) 1982-01-25 1982-01-25 Glow discharger

Publications (2)

Publication Number Publication Date
JPS58127150A JPS58127150A (en) 1983-07-28
JPS6326332B2 true JPS6326332B2 (en) 1988-05-30

Family

ID=11730671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP981682A Granted JPS58127150A (en) 1982-01-25 1982-01-25 Glow discharger

Country Status (1)

Country Link
JP (1) JPS58127150A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412978B2 (en) * 1989-12-08 1992-03-06 Nabetsukusu Jugen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3605911A1 (en) * 1986-02-24 1987-08-27 Ges Foerderung Spektrochemie GLIMMENT CHARGE LAMP AND ITS USE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412978B2 (en) * 1989-12-08 1992-03-06 Nabetsukusu Jugen

Also Published As

Publication number Publication date
JPS58127150A (en) 1983-07-28

Similar Documents

Publication Publication Date Title
Schulz et al. Excitation of metastable levels in helium near threshold
Schoenbach et al. Microhollow cathode discharges
US4163151A (en) Separated ion source
US2636990A (en) Ion source unit
EP0567274B1 (en) Hollow cathode discharge tube
JPS6326332B2 (en)
JPH0213900A (en) Sealed high beam flux neutron tube
Lejeune Theoretical and experimental study of the duoplasmatron ion source: Part II: Emisive properties of the source
US6548958B2 (en) Hollow cathode lamp
US4698550A (en) Hollow cathode lamp
US4891525A (en) SKM ion source
US2680207A (en) Auxiliary electrode for ultrahighfrequency gaseous discharge switching devices
US3476970A (en) Hollow cathode electron discharge device for generating spectral radiation
JPH0762989B2 (en) Electron beam excited ion source
US3287589A (en) Electron-collision ion source, particularly for electric mass spectrometers
US4123684A (en) Thyratrons
US3509410A (en) Insulator shielded cathode
JP2605031B2 (en) Electron beam excited ion source
EP0056899A1 (en) Gas ion source
JP2526228B2 (en) Electronic beam type plasma device
RU2231163C2 (en) Ion source with effect of hollow cathode
US3171024A (en) Narrow beam electron source for the ion source of a mass spectrometer
Kistemaker et al. A magnetic ion-source of the Heil type
SU908193A1 (en) Ion source
Oks et al. Influence of a strong pulsed magnetic field on the charge state distribution of ions in a vacuum arc plasma