JPS6326330B2 - - Google Patents
Info
- Publication number
- JPS6326330B2 JPS6326330B2 JP23001082A JP23001082A JPS6326330B2 JP S6326330 B2 JPS6326330 B2 JP S6326330B2 JP 23001082 A JP23001082 A JP 23001082A JP 23001082 A JP23001082 A JP 23001082A JP S6326330 B2 JPS6326330 B2 JP S6326330B2
- Authority
- JP
- Japan
- Prior art keywords
- hcl
- hollow cathode
- cathode lamp
- disk
- turret
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000003287 optical effect Effects 0.000 claims description 15
- 238000005259 measurement Methods 0.000 claims description 13
- 238000010521 absorption reaction Methods 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims description 3
- 238000001479 atomic absorption spectroscopy Methods 0.000 claims 1
- 201000009277 hairy cell leukemia Diseases 0.000 description 38
- 238000004458 analytical method Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/3103—Atomic absorption analysis
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
【発明の詳細な説明】
本発明はホローカソードランプを光源とする多
元素自動分析用原子吸光分析装置に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an atomic absorption spectrometer for automatic multi-element analysis using a hollow cathode lamp as a light source.
自動原子吸光分析装置では各測定元素用のホロ
ーカソードランプ(HCL と略称する)を円板
に円周状に配列して取付けターレツト式に各
HCLを交換できるようにして、或る元素の測定
時にはその元素用のHCLを測定光路上に位置さ
せるようになつている。 In an automatic atomic absorption spectrometer, hollow cathode lamps (abbreviated as HCL) for each element to be measured are arranged circumferentially on a disk and mounted on a turret.
The HCL can be replaced, and when measuring a certain element, the HCL for that element is placed on the measurement optical path.
HCLはその名のように孔の中で発光している
ので、孔の中心線が測定光路の光軸と一致してい
るとき最も効率的に光が利用できる。しかし上述
したターレツト式交換機構では交換機構の工作誤
差及び組立て誤差によつて各HCLの取付座の中
心が測定光路の光軸と必ずしも一致しないし、仮
にこれが一致できたとしてもHCL自身の製作上
の誤差でHCLの外囲器の中心線と陰極の発光中
心とが一致していないから、HCLの発光中心と
測定光路の光軸との一致は得難いのである。 As the name suggests, HCL emits light inside a hole, so the light can be used most efficiently when the center line of the hole is aligned with the optical axis of the measurement optical path. However, in the above-mentioned turret-type exchange mechanism, the center of each HCL mounting seat does not necessarily coincide with the optical axis of the measurement optical path due to machining and assembly errors of the exchange mechanism, and even if this could be done, it would be difficult to manufacture the HCL itself. Because the center line of the HCL envelope does not match the emission center of the cathode due to the error, it is difficult to match the emission center of the HCL with the optical axis of the measurement optical path.
従つて本発明は自動原子吸光分析装置における
ターレツト式HCL交換機構でHCLの位置調整を
可能にすることを目的としてなされた。 Therefore, the present invention was made with the object of making it possible to adjust the position of HCL in a turret type HCL exchange mechanism in an automatic atomic absorption spectrometer.
本発明はHCLをターレツト円盤に回転可能に
取付け、測定位置におけるHCLを回転させて分
析計の光検出器の出力が最大になる点を検出し、
その位置でHCLを停止させて元素分析を行うよ
うにした自動原子吸光分析装置を提供するもので
ある。 In the present invention, the HCL is rotatably attached to a turret disk, the HCL at the measurement position is rotated to detect the point at which the output of the photodetector of the analyzer is maximum,
The present invention provides an automatic atomic absorption spectrometer that performs elemental analysis by stopping HCL at that position.
本発明によるときは各HCLが可能な範囲で光
の利用効率最高の状態で使用できるので測定上の
S/N比が向上し、もしこのような調整を手動で
行うものとすれば自動分析を始める前に各元素用
のHCLを全部予めターレツト円板上で位置調整
しておく必要があり、その場合分光器の波長を
一々HCLの波長に合せる必要があるので調整作
業は大へん面倒で時間がかゝる。しかし本発明に
よればHCLの位置調整は予め行わなくても自動
分析の途中測定元素切換えのとき自動的に行われ
るので分光器の波長はそのHCLの波長に自動的
に合されており、調整操作の面倒さと云うものが
全く存在しない。以下実施例によつて本発明を説
明する。 According to the present invention, each HCL can be used with the highest light utilization efficiency within the possible range, improving the S/N ratio in measurements. If such adjustments were to be made manually, automated analysis would be Before starting, it is necessary to adjust the position of all the HCLs for each element on the turret disk in advance, and in that case, the wavelength of the spectrometer must be matched to the wavelength of the HCL one by one, so the adjustment work is very troublesome and time-consuming. It's starting to grow. However, according to the present invention, the position adjustment of the HCL is automatically performed when changing the element to be measured during automatic analysis without having to be done in advance, so the wavelength of the spectrometer is automatically matched to the wavelength of the HCL, and the adjustment There is no such thing as troublesome operation. The present invention will be explained below with reference to Examples.
第1図は本発明の一実施例におけるHCL交換
機構を示す。1はターレツト基板、2はターレツ
ト面板で両者は連結柱3で結合されて一体化され
ている。基板1には一つの円周に沿つてHCLの
ホルダー4,4…が設けられている。これらのホ
ルダーと基板1との間にはベアリング(図では見
えない)が介在させてあり、各ホルダーはその位
置で基板1に垂直な軸周りに回転可能である。面
板2には基板1上の各ホルダー4の中心軸線の延
長が交わる点を中心にHCLの頭部を支承する受
孔5が穿つてある。HCLはその脚ピンがホルダ
ー4に挿入され、頭部が受孔5に支承され、ホル
ダー4を回転させるとHCLも回転する。基板1
と面板2との一体構成物はターレツト軸Xを中心
に回転できるように軸支されており、面板2の外
周と駆動用モータ6の回転軸に取付けられたプー
リとの間に伝動ワイヤ7が掛け渡してある。また
基板1の外周には各HCLに対応させてピン8が
立ててあり、ピン8の通過軌跡をはさんでピン8
を検出する検出器9が配置してある。このピン8
と検出器9とによつてHCL交換時のターレツト
回転停止位置が決められる。基板1の背面には更
に一つのピン10が立てゝあり、このピンを検出
する検出器11が配置されている。検出器11に
よつてピン10が検出される位置がターレツト交
換装置の原点であり、原点から反時計廻りに数え
て何番目のHCLと云う形でHCLの指定がなされ
る。またHCLのホルダー4をめぐつて一本の伝
動用ワイヤ12が掛け渡してあり、このワイヤは
モータ13の回転軸に取付けたプーリ14に掛つ
ている。従つてモータ13を回わすとホルダー4
が一斉に回転する。図でLは測定光学系の光軸で
一番上の位置にあるHCLがこの光軸L上にある。 FIG. 1 shows an HCL exchange mechanism in one embodiment of the present invention. 1 is a turret base plate, 2 is a turret face plate, and both are connected by a connecting column 3 to be integrated. HCL holders 4, 4, . . . are provided on the substrate 1 along one circumference. Bearings (not visible in the figure) are interposed between these holders and the substrate 1, and each holder can rotate around an axis perpendicular to the substrate 1 at that position. A receiving hole 5 for supporting the head of the HCL is bored in the face plate 2 at a point where the extensions of the central axes of the respective holders 4 on the base plate 1 intersect. The leg pins of the HCL are inserted into the holder 4, the head is supported in the receiving hole 5, and when the holder 4 is rotated, the HCL also rotates. Board 1
The integrated structure of the face plate 2 and the turret axis X is rotatably supported, and a transmission wire 7 is connected between the outer periphery of the face plate 2 and a pulley attached to the rotating shaft of the drive motor 6. It's spread over. In addition, pins 8 are set up on the outer periphery of the board 1 in correspondence with each HCL, and pins 8 are placed across the path of pin 8.
A detector 9 is arranged to detect. This pin 8
and detector 9 determine the turret rotation stop position during HCL replacement. There is also one pin 10 standing on the back side of the substrate 1, and a detector 11 for detecting this pin is arranged. The position where the pin 10 is detected by the detector 11 is the origin of the turret exchanging device, and the HCL is designated as the number of HCL counting counterclockwise from the origin. Further, a single transmission wire 12 is stretched around the HCL holder 4, and this wire is hung on a pulley 14 attached to the rotating shaft of a motor 13. Therefore, when the motor 13 is rotated, the holder 4
rotate in unison. In the figure, L is the optical axis of the measurement optical system, and HCL, which is located at the top, is on this optical axis L.
第2図は上述実施例における面板2の正面図で
ある。Cは受孔5の中心の回転軌跡で面板2と同
心である。点Lは測定光学系の光軸を示す。設計
上光軸Lは受孔5の回転軌跡Cと交わる筈である
が工作上、組立上の誤差により図のように両者は
離れている。5は云うまでもなく受孔で図では測
定位置にある一個だけが示してある。DはHCL
の発光中心でHCLの工作上の誤差でDは受孔9
の中心(円周C上にある)とは一致していない。
このような関係で第1図のモータ13を回わすと
HCLが回転し、第2図のD点は矢印円Rのよう
な軌跡を画いて移動できる。そこでその回転によ
つてD点が光学的にL点に最も接近した位置を求
めることができる。 FIG. 2 is a front view of the face plate 2 in the above embodiment. C is a rotation locus of the center of the receiving hole 5 and is concentric with the face plate 2. Point L indicates the optical axis of the measurement optical system. In design, the optical axis L should intersect with the rotation locus C of the receiving hole 5, but due to manufacturing and assembly errors, the two are separated as shown in the figure. Needless to say, 5 is a receiving hole, and only one of the holes at the measurement position is shown in the figure. D is HCL
Due to the manufacturing error of HCL, D is the hole 9 at the center of light emission.
does not coincide with the center of (located on the circumference C).
When the motor 13 in Fig. 1 is rotated with this relationship,
As the HCL rotates, point D in Figure 2 can move along a trajectory like the arrow circle R. Therefore, by this rotation, the position where point D is optically closest to point L can be determined.
第3図本発明の一実施例の全体を示す。Fは試
料を原子化する炎であり、Mは分光器、S1,S
2は夫々入射スリツト及び出射スリツトである。
Pは光検出器、AはプリアンプでQは信号処理回
路、CPUは装置全体を制御する制御回路でマイ
クロコンピユータが用いられている。この構成に
おいてHCLの位置調整の動作について説明する。
今試料中の元素xを測定するため元素x用の
HCLxが測定位置まで持つて来られたとする。こ
の動作はモータ6を回転することによつて行われ
る。HCLはターレツトの原点から数えてx番目
であり、ターレツトの原点位置からピン8が検出
される毎にCPUがその検出信号を数えているの
で、その計数がxになるようにモータ6の回転を
制御する。HCLxが測定位置に来るとCPUはモ
ータ13に通電してHCLxを回転させる。このと
きHCLxは発光させてありCPUは分光器Mを
HCLxの出す光の波長位置に既にセツトしてい
る。この状態で信号処理回路Qは光検出器Pの出
力のピークを検出し、ピーク検出信号をCPUに
送ると、CPUはモータ13の回転を中止させる。
以上でHCLxの位置調整を終る。第4図はHCLx
を回転させたときの光検出器Pの出力の変化の有
様を示したもので、ピーク位置で回転を止めれば
可能な範囲で最も効率良くHCLの光を利用でき
ることになり、S/Nの良好な分析が可能とな
る。 FIG. 3 shows an entire embodiment of the present invention. F is the flame that atomizes the sample, M is the spectrometer, S1, S
2 are an entrance slit and an exit slit, respectively.
P is a photodetector, A is a preamplifier, Q is a signal processing circuit, and CPU is a control circuit that controls the entire device, and a microcomputer is used. The operation of adjusting the position of the HCL in this configuration will be explained.
Now, to measure element x in the sample,
Suppose that HCLx is brought to the measurement position. This operation is performed by rotating the motor 6. HCL is the xth position counted from the turret's origin, and the CPU counts the detection signal every time pin 8 is detected from the turret's origin, so the rotation of the motor 6 is controlled so that the count becomes x. Control. When HCLx comes to the measurement position, the CPU energizes the motor 13 to rotate HCLx. At this time, HCLx is emitting light, and the CPU is controlling the spectrometer M.
It has already been set to the wavelength position of the light emitted by HCLx. In this state, the signal processing circuit Q detects the peak of the output of the photodetector P and sends a peak detection signal to the CPU, which causes the motor 13 to stop rotating.
This completes the HCLx position adjustment. Figure 4 shows HCLx
This figure shows how the output of the photodetector P changes when it is rotated.If the rotation is stopped at the peak position, the HCL light can be used most efficiently within the possible range, and the S/N ratio will be reduced. Good analysis becomes possible.
第1図は本発明の一実施例におけるHCL交換
機構の斜視図、第2図は同実施例のターレツトの
面板の正面図、第3図は同実施例の全体の構成を
示すブロツク図、第4図はHCLを回転させたと
きの光検出器の出力の変化の状態を示すグラフで
ある。
1…ターレツト基板、2…ターレツト面板、4
…HCL用ホルダー、7…ワイヤ、6…モータ、
8…位置決め用ピン、9…ピン8を検出する検出
器、12…ワイヤ、13…モータ、M…分光器、
P…光検出器、CPU…制御回路。
FIG. 1 is a perspective view of an HCL exchange mechanism according to an embodiment of the present invention, FIG. 2 is a front view of the turret face plate of the same embodiment, and FIG. 3 is a block diagram showing the overall configuration of the same embodiment. Figure 4 is a graph showing how the output of the photodetector changes when the HCL is rotated. 1... Turret board, 2... Turret face plate, 4
…HCL holder, 7…wire, 6…motor,
8... Positioning pin, 9... Detector for detecting pin 8, 12... Wire, 13... Motor, M... Spectrometer,
P...Photodetector, CPU...Control circuit.
Claims (1)
のホローカソードランプを列設し、同円板を回転
させることによつて任意の一つのホローカソード
ランプを測定光路上に位置させ得るようにしたタ
ーレツト式光源交換機構において、各ホローカソ
ードランプを上記円板に対して回転可能に取付
け、かつ回転駆動機構と連結し、原子吸光分析用
測光系の光検出器の出力の極大値を検出する手段
を設け、上記円板を回転させて一つのホローカソ
ードランプを測定光路上に位置させ、次に同ホロ
ーカソードランプを回転させ、そのときの光検出
器の出力の変化から極大が検出されたとき同ホロ
ーカソードランプの回転を停止させる制御回路を
設けたことを特徴とする自動原子吸光分析装置。1. A plurality of hollow cathode lamps are arranged in a row along one circumference on a rotatable disk, and by rotating the disk, any one hollow cathode lamp can be positioned on the measurement optical path. In the turret type light source exchange mechanism, each hollow cathode lamp is rotatably attached to the disk and connected to a rotation drive mechanism, and the maximum value of the output of the photodetector of the photometric system for atomic absorption spectrometry is detected. A detection means is provided, the disk is rotated to position one hollow cathode lamp on the measurement optical path, the hollow cathode lamp is then rotated, and the maximum is detected from the change in the output of the photodetector at that time. An automatic atomic absorption spectrometer characterized in that it is provided with a control circuit that stops the rotation of the hollow cathode lamp when the hollow cathode lamp is turned off.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23001082A JPS59120845A (en) | 1982-12-27 | 1982-12-27 | Automatic atomic absorption analytical apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23001082A JPS59120845A (en) | 1982-12-27 | 1982-12-27 | Automatic atomic absorption analytical apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59120845A JPS59120845A (en) | 1984-07-12 |
JPS6326330B2 true JPS6326330B2 (en) | 1988-05-30 |
Family
ID=16901176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23001082A Granted JPS59120845A (en) | 1982-12-27 | 1982-12-27 | Automatic atomic absorption analytical apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59120845A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0516523Y2 (en) * | 1987-01-16 | 1993-04-30 | ||
JPH01131151U (en) * | 1988-02-29 | 1989-09-06 | ||
JPH01146145U (en) * | 1988-03-31 | 1989-10-09 |
-
1982
- 1982-12-27 JP JP23001082A patent/JPS59120845A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59120845A (en) | 1984-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4826660A (en) | Detector assembly for analyzer instrument | |
CN101158600A (en) | Distribution photometer | |
JPH04232827A (en) | Optical testing apparatus | |
JPS6326330B2 (en) | ||
US3473878A (en) | Reflection head for measuring diffuse reflection density | |
JP3148241B2 (en) | Reel mechanism for game machine | |
EP0091137B1 (en) | Lamp mount for optical apparatus | |
CA1066917A (en) | Constant temperature, multiple sample, rotary changer | |
US4614434A (en) | Double multichromatic photometer with a single light-source and a single detector, particularly for performing chemical and clinical analyses | |
CN213023935U (en) | Uniform distribution photoresist coating suction head | |
JP2697154B2 (en) | Atomic absorption spectrophotometer | |
CN113252921A (en) | Conveying mechanism for multi-channel fluorescence immunoassay quantitative analyzer | |
US6407864B1 (en) | Automated system for testing two dimensional detector arrays and optical systems using sequential filters | |
JPH0665968B2 (en) | Wavelength feeding mechanism of spectrophotometer | |
CN201000363Y (en) | Distribution photometer | |
CN117542785B (en) | Reflector chuck for wafer detection | |
JPH0441285Y2 (en) | ||
JPH0531555Y2 (en) | ||
CN220525680U (en) | Optical adjusting device and lighting system | |
CN110161262B (en) | Rotating device and reagent disk | |
JPH0783828A (en) | Variable-angle absolute reflectance measuring instrument | |
JP3262831B2 (en) | Optical axis adjustment device for goniometer for X-ray diffractometer | |
USRE27270E (en) | Null type comparison eeflectometer wherein nulling is accomplished by moving the light detector | |
JPS58122448A (en) | Varied-angle colorimeter | |
JPS62294971A (en) | Automatic analyzer |