JPS63262072A - Ultrasonic motor device - Google Patents

Ultrasonic motor device

Info

Publication number
JPS63262072A
JPS63262072A JP62095614A JP9561487A JPS63262072A JP S63262072 A JPS63262072 A JP S63262072A JP 62095614 A JP62095614 A JP 62095614A JP 9561487 A JP9561487 A JP 9561487A JP S63262072 A JPS63262072 A JP S63262072A
Authority
JP
Japan
Prior art keywords
mechanical arm
frequency
sweep
arm current
sweeper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62095614A
Other languages
Japanese (ja)
Other versions
JPH0667227B2 (en
Inventor
Masahiro Takada
雅弘 高田
Takashi Fukunaga
福永 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62095614A priority Critical patent/JPH0667227B2/en
Publication of JPS63262072A publication Critical patent/JPS63262072A/en
Publication of JPH0667227B2 publication Critical patent/JPH0667227B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods
    • H02N2/142Small signal circuits; Means for controlling position or derived quantities, e.g. speed, torque, starting, stopping, reversing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/166Motors with disc stator

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To reduce the varying width of a moving velocity by controlling the sweeping direction of a circulation type sweeper and the start/stop of the sweep according to the amplitude of a mechanical arm current. CONSTITUTION:An ultrasonic motor is composed of a circulation type frequency sweeper 1, a phase shifter 2, power amplifiers 3-4, and a sweep controller 6, etc. In this case, a mechanical arm current detector 5 is provided, its detection current is input to the controller 6, which outputs sweep ON/OFF direction command in response to the current. The logic unit of the controller 6 turns ON the command 8 when the current is smaller than a set range, sets a sweeping direction command 7 to a smaller frequency from larger frequency, and set the frequency from small to larger one when it is larger than the set range. Thus, the shifter 2 outputs predetermined AC signal A, B by a driving frequency signal 9, and applies driving signal VA, VB to the electrode A, B of the motor through the amplifiers 3-4.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、圧電体を用いて駆動力を発生する超音波モー
タ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an ultrasonic motor device that generates driving force using a piezoelectric body.

従来の技術 近年、圧電セラミック等の電気−機械変換素子を用いて
種々の超音波振動を励振することにより、回転あるいは
走行運動を得る超音波モータが高いエネルギー密度を有
することから注目されている。
2. Description of the Related Art In recent years, ultrasonic motors, which obtain rotational or running motion by exciting various ultrasonic vibrations using electro-mechanical transducers such as piezoelectric ceramics, have attracted attention because of their high energy density.

第5図に超音波モータの一例として、円板型超音波モー
タの分解斜視図を示す・ 特開昭60−190178号公報に示すように、振動体
の低面には、円板形状で放射状に例えば8分割し、46
° ごとに逆方向に分極した圧電体12と圧電体13を
互いに空間的な位相を9o0  ずらして貼シ合わせ、
圧電体12と13の各々に時間的な位相の90°異なる
数10KHz  の駆動信号21.22を印加する。駆
動信号21.22の印加により、圧電体12.13には
、互いに時間的にも空間的にも位相の900 異なった
定在波が生じる。
Fig. 5 shows an exploded perspective view of a disk-type ultrasonic motor as an example of an ultrasonic motor. As shown in Japanese Patent Application Laid-open No. 190178/1983, the lower surface of the vibrating body has a disk-shaped radial structure. For example, divide it into 8, and make 46
The piezoelectric bodies 12 and 13, which are polarized in opposite directions for each degree, are pasted together with their spatial phases shifted by 9o0,
Driving signals 21.22 of several tens of kHz and having temporal phases different by 90 degrees are applied to each of the piezoelectric bodies 12 and 13. By applying the drive signals 21.22, standing waves are generated in the piezoelectric body 12.13, which are temporally and spatially different in phase by 900 degrees.

2つの前記定在波の振幅が等しくなるようにすると、前
記振動体23には、2つの前記定在波が合成されて、円
周方向に進む、曲げ進行波が生ずる0 第6図は、振動体23のA点が進行波によって、長軸2
w、短軸2uの楕円運動をしている様子を示し、振動体
23に加圧設置された移動体24が楕円の頂点で接触す
ることにより、波の進行波とは逆方向にV=wau・・
・(1)(Wは進行波の周波数)の速度で運動する事を
示している。移動体24は、振動体1との間の摩擦力で
波の進行方向とは逆方向に駆動され、外部に対してなす
仕事がこの摩擦力に対して無視できない時は移動体24
と振動体23の間にすべりが生じ、速度はVより小さく
なる。第2図は圧電体12又は13の電気的等価回路図
であり、圧電効果に寄与しない容量C0と圧電効果に寄
与するり、C1,Rとの並列に結合したものと考えられ
C0に流れる電流は電気腕電流と呼ばれ、L 、 C1
,Hに流れる電流を機械腕電流と呼ばれる。前記機械腕
電流と前記短軸の振幅2uとは比例関係にある。第1図
の圧電体12.13に印加する駆動信号21,22の電
圧と周波数を一定にしても、周囲温度や機械的負荷の変
動によって、前記圧電体12.13の電気的アドミタン
スが変化し、従って、前記機械腕電流が変化して、回転
速度が変動してしまう。
When the amplitudes of the two standing waves are made equal, the two standing waves are combined in the vibrating body 23, and a bending traveling wave that travels in the circumferential direction is generated. Point A of the vibrating body 23 is caused by the traveling wave to move along the long axis 2.
w shows an elliptical motion of the short axis 2u, and when the movable body 24 installed under pressure on the vibrating body 23 comes into contact with the apex of the ellipse, V = wau in the opposite direction to the traveling wave of the wave.・・・
・It shows that it moves at the speed of (1) (W is the frequency of the traveling wave). The moving body 24 is driven in the direction opposite to the direction of wave propagation by the frictional force between it and the vibrating body 1, and when the work done to the outside cannot be ignored with respect to this frictional force, the moving body 24
A slip occurs between the vibrating body 23 and the vibrating body 23, and the velocity becomes smaller than V. Figure 2 is an electrical equivalent circuit diagram of the piezoelectric body 12 or 13, and the current that flows through C0, which is considered to be the capacitance C0 that does not contribute to the piezoelectric effect, and the capacitance C0 that contributes to the piezoelectric effect, or is coupled in parallel with C1 and R. is called the electric arm current, L, C1
, H is called the mechanical arm current. The mechanical arm current and the short axis amplitude 2u are in a proportional relationship. Even if the voltage and frequency of the drive signals 21 and 22 applied to the piezoelectric body 12.13 in FIG. Therefore, the mechanical arm current changes and the rotational speed fluctuates.

発明が解決しようとする問題点 以上に説明したううに、超音波モータの移動速は、進行
波の周波数Wと楕円運動の短軸Uの積で決まり、短軸U
の大きさは機械腕電流に比例する。
Problems to be Solved by the Invention As explained above, the moving speed of the ultrasonic motor is determined by the product of the frequency W of the traveling wave and the minor axis U of the elliptical motion.
The magnitude of is proportional to the mechanical arm current.

周波数Wの変動幅に比べ短軸Uの大きさの変動幅は大き
く回転数はほぼ機械腕電流により決まる。
The variation range of the short axis U is larger than the variation range of the frequency W, and the rotation speed is determined almost by the mechanical arm current.

圧電体12.13の機械的負荷が一定であれば、電気イ
ンピーダンスは一定であシ、一定電圧、一定周波数であ
れば、機械腕電流は一定であり、回転数も一定である。
If the mechanical load on the piezoelectric body 12, 13 is constant, the electrical impedance is constant, and if the voltage and frequency are constant, the mechanical arm current is constant and the rotation speed is also constant.

しかし、実際には、移動体が移動しているため、機械的
負荷が変動したり、温度変化によって、電気インピーダ
ンスが変動し、その結果、機械腕電流が変化して、回転
数が大きく変動するという問題点や、駆動信号の周波数
によっては、超音波モータが起動しない時があるという
問題点や、駆動信号の電圧が変わると機械腕電流も変わ
り、回転数も変動する。という問題点がある。
However, in reality, as the moving object is moving, the mechanical load fluctuates, and the electrical impedance fluctuates due to temperature changes.As a result, the mechanical arm current changes and the rotational speed fluctuates greatly. Another problem is that the ultrasonic motor may not start depending on the frequency of the drive signal, and when the voltage of the drive signal changes, the mechanical arm current changes and the rotation speed also fluctuates. There is a problem.

本発明は上記の問題点を解決して、機械的負荷。The present invention solves the above problems and reduces mechanical loads.

温度、駆動信号の電圧の各変動に対して、回転数の変動
を軽減するとともに、同モータの起動をすみやかに行い
、また移動速度を選べる、超音波モータ装置を提供する
ことにある。
An object of the present invention is to provide an ultrasonic motor device that can reduce fluctuations in rotational speed in response to fluctuations in temperature and voltage of a drive signal, can quickly start the motor, and can select a moving speed.

問題点を解決するための手段 本発明は、圧電体と弾性体からなる振動体とこの振動体
に加圧接触して設置される移動体とからなる超音波モー
タを備え、所定の周波数範囲を循環的に掃引し、かつ周
波数掃引器と、前記掃引器の出力から位相の互いに90
0 異なる2つの交流信号を出力する位相器と、前記位
相器の出力を各々増幅して、前記超音波モータの駆動信
号を出力する電力増幅器と、圧電体に流入する電流の中
の機械腕電流を検出する機械腕電流検出器と、前記機械
腕電流の大きさにしたがって、前記掃引器の掃引方向と
掃引の開始または停止の信号を出力する掃引制御器とを
有し、前記掃引制御器において、機械腕電流が設定範囲
以下の時は、掃引方向を周波数の高い方から低い方にな
るように設定し、また前記機械腕電流が設定範囲以上の
時は、前記掃引方向を周波数の低い方から高い方になる
ように設定し、また前記機械腕電流が設定範囲内にある
時、または、前記電力増幅器の出力を切ってモータを停
止させている時には、前記掃引器の掃引を停止させるよ
うに構成した超音波モータ装置である0 作  用 上記のように構成すると、モータ起動時、機械腕電流は
、設定範囲より小さく、周波数掃引器の掃引方向は、周
波数の高い方から低い方になるように設定され、駆動信
号の周波数は漸次低くなり、それに伴ってモータの移動
体が移動し始め、機械腕電流が増加し、機械腕電流の大
きさが設定範囲内にはいると、前記周波数掃引器の掃引
が停止し、駆動信号の周波数が一定となり、移動体の移
動速度は、機械腕電流の設定範囲に相当する範囲になる
。駆動信号の電圧機械的負荷、温度等の変動により移動
速度が低下し、機械腕電流が設定範囲より小さくなると
、掃引器ば、再び周波数が小さくなる方向に掃引を開始
し、周波数の減少に伴って、移動速度と機械腕電流が増
加し、設定範囲にはいると掃引を停止する。また、移動
速度が上昇した時には、機械腕電流も増大し、設定範囲
を越えると、掃引器は、周波数が大きくなるように掃引
を開始し、周波数の増加に伴って、移動速度と機械腕電
流が減少し、設定範囲にはいると掃引が停止する。まだ
起動時に、掃引開始時の周波数が、移動速度の最も大き
くなる周波数より小さい時でも、掃引器を循環的に掃引
するように構成しているため、前述のように掃引方向を
周波数の高い方から低い方へ設定し、掃引開始後、周波
数が設定周波数範囲の最も小さい範囲になった後は、再
び、設定周波数範囲の最も高い所から掃引を続け、機械
腕電流が、設定範囲内になるまで掃引が続く。
Means for Solving the Problems The present invention includes an ultrasonic motor consisting of a vibrating body made of a piezoelectric body and an elastic body, and a movable body installed in pressurized contact with the vibrating body. Sweep cyclically and with a frequency sweeper and 90 degrees of phase from each other from the output of said sweeper.
0 A phase shifter that outputs two different alternating current signals, a power amplifier that amplifies the output of the phase shifter and outputs a drive signal for the ultrasonic motor, and a mechanical arm current in the current flowing into the piezoelectric body. a mechanical arm current detector that detects the mechanical arm current; and a sweep controller that outputs a sweep direction of the sweeper and a signal to start or stop the sweep according to the magnitude of the mechanical arm current. When the mechanical arm current is below the set range, the sweep direction is set from the higher frequency side to the lower frequency side, and when the mechanical arm current is above the set range, the sweep direction is set from the lower frequency side. and when the mechanical arm current is within a set range or when the output of the power amplifier is cut off to stop the motor, the sweep of the sweeper is stopped. An ultrasonic motor device configured to operate as described above.When the motor is started, the mechanical arm current is smaller than the set range, and the frequency sweeper sweeps in the direction from the higher frequency to the lower frequency. The frequency of the drive signal gradually decreases, the moving body of the motor begins to move, the mechanical arm current increases, and when the magnitude of the mechanical arm current falls within the set range, the frequency decreases. The sweep of the sweeper stops, the frequency of the drive signal becomes constant, and the moving speed of the moving object becomes a range corresponding to the setting range of the mechanical arm current. When the moving speed decreases due to fluctuations in drive signal voltage, mechanical load, temperature, etc., and the mechanical arm current becomes smaller than the set range, the sweeper starts sweeping in the direction of decreasing frequency again, and as the frequency decreases. The moving speed and mechanical arm current increase, and when they enter the set range, the sweep stops. In addition, when the moving speed increases, the mechanical arm current also increases, and when the set range is exceeded, the sweeper starts sweeping at a higher frequency, and as the frequency increases, the moving speed and mechanical arm current increase. decreases and the sweep stops when it enters the set range. Even when the frequency at the start of the sweep is lower than the frequency at which the movement speed is greatest, the sweeper is configured to sweep cyclically during startup, so the sweep direction is set to the higher frequency as described above. After the frequency reaches the smallest range of the set frequency range, the sweep is continued from the highest part of the set frequency range again until the mechanical arm current falls within the set range. The sweep continues until

以上の様に、循環式掃引器の掃引方向と掃引の開始、停
止を、機械腕電流の大きさに従って、制御することによ
り、前記機械腕電流が常に一定範囲内になるより駆動信
号の周波数を設定し、駆動体中の進行波の大きさを所定
範囲内に抑え、その結果、機械的負荷、温度、駆動信号
の電圧の各変動に対し、移動速度の変動幅を小さくでき
るとともに、超音波モータ起動時も、周波数の掃引によ
りすみやかに、移動速度を立ち上げる事ができる。
As described above, by controlling the sweep direction and the start and stop of the sweep of the circulating sweeper according to the magnitude of the mechanical arm current, the frequency of the drive signal can be adjusted so that the mechanical arm current is always within a certain range. This setting suppresses the size of the traveling wave in the driving body within a predetermined range, and as a result, it is possible to reduce the range of fluctuations in the moving speed in response to fluctuations in mechanical load, temperature, and drive signal voltage. Even when the motor is started, the movement speed can be quickly increased by sweeping the frequency.

また機械腕電流の設定範囲を変える事により、移動体の
移動速度の大きさとその変動幅を選ぶ事ができる。
Furthermore, by changing the setting range of the mechanical arm current, the magnitude of the moving speed of the moving object and its fluctuation range can be selected.

実施例 以下図に従って、本発明の実施例について詳細な説明を
行う。第1図は、本発明の超音波モータ装置のブロック
図である。電極部Aには、12の圧電体Aと抵抗素子R
A1とを直列接続し、第2図における、圧電体の電気腕
インピーダンスの容量coと等しい容量のコンデンサC
Aと前記抵抗素子RA1と等しい抵抗値の抵抗素子RA
2 を直列接続し、前記圧電体と抵抗素子より成る直列
接続体と並列に電極部Aに接続する。電極部Bについて
も同様である。電極部Aの抵抗素子RA1と抵抗素子R
A2  の各電位の差を差動増幅器14を用いて、機械
腕電流19を検出する。掃引制御器6において、機械腕
電流19を、平滑器16を用いて平滑し、前記平滑化さ
れた機械腕電流が、2つの電圧比較器1eを用いて、設
定範囲よりも小さいか、大きいか、又は設定範囲内かを
判別し、その結果に基づいて、ロジック部17で、循環
式周波数掃引器1に、掃引オン/オフ指令8と掃引方向
指令7を出力する。
EXAMPLES Below, examples of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram of an ultrasonic motor device of the present invention. The electrode part A includes 12 piezoelectric bodies A and a resistance element R.
A1 is connected in series with a capacitor C having a capacitance equal to the capacitance co of the electric arm impedance of the piezoelectric body in FIG.
A and a resistance element RA having a resistance value equal to that of the resistance element RA1.
2 are connected in series and connected to the electrode portion A in parallel with the series connection body consisting of the piezoelectric body and the resistance element. The same applies to the electrode section B. Resistance element RA1 and resistance element R of electrode part A
A mechanical arm current 19 is detected using a differential amplifier 14 based on the difference between the potentials of A2. In the sweep controller 6, a mechanical arm current 19 is smoothed using a smoother 16, and two voltage comparators 1e are used to determine whether the smoothed mechanical arm current is smaller or larger than a set range. , or within the set range, and based on the result, the logic unit 17 outputs a sweep on/off command 8 and a sweep direction command 7 to the circulating frequency sweeper 1.

ロジック部17では、前記機械腕電流が、前記設定範囲
よりも小さい時には、掃引オン/オフ指令8をオンとし
、掃引方向指令7を周波数が太きい方から、小さい方に
設定し、前記機械腕電流が、前記設定範囲より大きい時
は掃引オン/オフ指令8をオンとし、掃引方向指令7を
周波数の小さい方向から大きい方に設定する。
In the logic unit 17, when the mechanical arm current is smaller than the set range, the sweep on/off command 8 is turned on, the sweep direction command 7 is set from the higher frequency to the lower frequency, and the mechanical arm current is turned on. When the current is larger than the set range, the sweep on/off command 8 is turned on, and the sweep direction command 7 is set from the direction of the lowest frequency to the highest frequency.

また、前記機械腕電流が、前記設定範囲内にある時、又
は、モータのオン/オフ指令18がオフの時は、掃引オ
ン/オフ指令8はオフにする。循環式周波数掃引器1は
、前記掃引オン/オフ指令1と前記掃引方向指令Tに基
づき、循環的に所定の周波数範囲を掃引するか、又は掃
引を停止し、駆動周波数信号9を出力する。位相器2は
1.駆動周波数信号9より、互いに時間的に位相の9o
O異なった交流信号Aと交流信号Bを出力する。電力増
幅器3,4は交流信号A1  と交流信号Bを各々増幅
し、同一電圧の駆動信号A、Bを出力するように構成し
、電極部A、Bに駆動信号A、Bを各々印加する。
Furthermore, when the mechanical arm current is within the set range or when the motor on/off command 18 is off, the sweep on/off command 8 is turned off. The cyclic frequency sweeper 1 cyclically sweeps a predetermined frequency range or stops sweeping based on the sweep on/off command 1 and the sweep direction command T, and outputs a drive frequency signal 9. Phaser 2 is 1. From the drive frequency signal 9, the temporal phase of 9o
O Outputs different AC signal A and AC signal B. The power amplifiers 3 and 4 are configured to amplify the AC signal A1 and the AC signal B, respectively, and output drive signals A and B of the same voltage, and apply the drive signals A and B to the electrode sections A and B, respectively.

第3図は、本実施例に用いた超音波モータの回転数と機
械腕電流の特性曲線であり、ロジック部17の掃引器へ
の2つの出力も並記する。超音波モータの回転数は、周
波数の掃引方向に関して第3図のような履歴をもち、超
音波モータの回転数を上げる時、または、起動時には、
掃引方向を周波数の高い方から低い方へ設定することが
必要である事がわかる。逆に回転数を下げる時は、周波
数を上げる事が必要である事がわかる。
FIG. 3 is a characteristic curve of the rotation speed of the ultrasonic motor used in this embodiment and the mechanical arm current, and two outputs to the sweeper of the logic section 17 are also shown. The rotational speed of the ultrasonic motor has a history as shown in Fig. 3 in the frequency sweep direction, and when increasing the rotational speed of the ultrasonic motor or starting up,
It can be seen that it is necessary to set the sweep direction from the higher frequency side to the lower frequency side. On the other hand, when lowering the rotation speed, it is necessary to increase the frequency.

第5図は、二つの圧電体の駆動電圧が同一にして、パラ
メータとした時のどちらかの圧電体の機械腕電流と回転
数の特性曲線であり、電圧の変動には無関係に回転数は
機械腕電流にほぼ比例する。
Figure 5 shows the characteristic curve of the mechanical arm current and rotational speed of one of the piezoelectric bodies when the driving voltage of the two piezoelectric bodies is the same and the parameters are the same, and the rotational speed is independent of voltage fluctuations. Approximately proportional to mechanical arm current.

以下、本実施例の動作を第3図を用いて説明する。超音
波モータ起動時など機械腕電流19は、所定範囲よりも
小さい時は、掃引方向は周波数の高い方から低い方へ設
定される(第3図ではA点又はB点又は0点)。
The operation of this embodiment will be explained below with reference to FIG. When the mechanical arm current 19 is smaller than a predetermined range, such as when starting the ultrasonic motor, the sweep direction is set from the higher frequency to the lower frequency (point A, point B, or point 0 in FIG. 3).

例えば、掃引開始点がA点にあるとすると、掃引器1を
循環的に構成しているため、動作点は時間とともにF点
からB点へと移り、B点より周波数が漸次下がり、周波
数の減少に従がって、0点に示すように、機械腕電流1
9が増加する。そしてD点に示すように機械腕電流が設
定範囲内にはいると掃引器を停止し、移動体は設定範囲
内の機械腕電流に比例した回転数で回転する。
For example, if the sweep start point is at point A, since the sweeper 1 is configured cyclically, the operating point will move from point F to point B over time, and the frequency will gradually decrease from point B. According to the decrease, as shown at the 0 point, the mechanical arm current 1
9 increases. Then, as shown at point D, when the mechanical arm current falls within the set range, the sweeper is stopped, and the moving body rotates at a rotation speed proportional to the mechanical arm current within the set range.

回転中に、機械的負荷、温度、駆動電圧の各変動によっ
て、回転数と機械腕電流19が減少し、0点に示すよう
に機械腕電流19が設定範囲以下になると、再び掃引方
向を周波数の低い方向に設定して掃引を開始し、周波数
の減少に従って、回転数と機械腕電流19が増大し、再
びD点のように、機械腕電流が設定範囲内になる。逆に
、上記の各変動によって、回転数と機械腕電流がE点の
ように設定範囲以上になると、掃引方向は周波数の高く
なる方向に設定され、周波数の増加に従って、回転波と
機械腕電流19は減少し、再びD点のように機械腕電流
19が設定範囲内になる。
During rotation, the rotation speed and mechanical arm current 19 decrease due to variations in mechanical load, temperature, and drive voltage, and when the mechanical arm current 19 falls below the set range as shown at the 0 point, the sweep direction is changed again to the frequency. The rotation speed and the mechanical arm current 19 increase as the frequency decreases, and the mechanical arm current falls within the set range again as at point D. Conversely, when the rotational speed and mechanical arm current exceed the set range as at point E due to each of the above fluctuations, the sweep direction is set in the direction of increasing frequency, and as the frequency increases, the rotational wave and mechanical arm current increase. 19 decreases, and the mechanical arm current 19 falls within the set range again as at point D.

以上の様に機械腕電流の大きさによって循環的に掃引す
る掃引器の掃引方向と掃引の開始、停止をきめることに
より、機械腕電流19を設定範囲内に制御することがで
き、機械的負荷、温度、駆動信号の電圧の変動に対し、
回転数の変動を軽減することが可能となる。また、起動
時に、周波数の高い方から低い方へ掃引がなされすみや
かな回転数の立ち上りが可能となる。
As described above, by determining the sweep direction of the sweeper that sweeps cyclically and the start and stop of the sweep depending on the magnitude of the mechanical arm current, the mechanical arm current 19 can be controlled within the set range, and the mechanical load , for variations in temperature and drive signal voltage,
It becomes possible to reduce fluctuations in rotational speed. Furthermore, at startup, the frequency is swept from high to low, allowing the rotational speed to rise quickly.

また、機械腕電流19の設定範囲を変えることにより、
第3図の範囲で、回転数の大きさと変動幅を任意に選ぶ
ことができる。
Also, by changing the setting range of the mechanical arm current 19,
The magnitude and fluctuation range of the rotational speed can be arbitrarily selected within the range shown in FIG.

なお、本実施例では、機械腕電流19は、電極部Aより
検出したが、電極部A、Hのいずれの方から検出しても
良い。
In this embodiment, the mechanical arm current 19 is detected from the electrode section A, but it may be detected from either of the electrode sections A and H.

また本実施例では、円板型超音波モータを用いて説明し
たが、本発明は、円板型超音波モータに限定されるもの
ではなく、円環型超音波モータや直線移動のリニヤ超音
波モータにも適用できる。
Furthermore, although this embodiment has been explained using a disc type ultrasonic motor, the present invention is not limited to a disc type ultrasonic motor, and the present invention is not limited to a disc type ultrasonic motor. It can also be applied to motors.

発明の効果 以上に説明したように、超音波モータの機械腕電流と移
動体の移動速度の周波数特性の履歴を考慮し、循環式周
波数掃引器において機械腕電流が設定範囲以下の時は、
掃引方向を周波数の高い方から低い方になるように設定
し、前記機械腕電流が、設定範囲以上の時は、前記掃引
方向を周波数の低い方から高い方向になるように設定し
、また前記機械腕電流が設定範囲内にある時、または、
電力増幅器の出力を切ってモータを停止させている時に
は、前記掃引器の掃引を停止させることにより、機械腕
電流を常に設定範囲内に制御することができ、その結果
、超音波モータの機械的負荷。
Effects of the Invention As explained above, considering the history of the frequency characteristics of the mechanical arm current of the ultrasonic motor and the moving speed of the moving object, when the mechanical arm current is below the set range in the circulating frequency sweeper,
The sweep direction is set from high frequency to low frequency, and when the mechanical arm current exceeds the set range, the sweep direction is set from low frequency to high frequency. When the mechanical arm current is within the setting range, or
When the motor is stopped by cutting off the output of the power amplifier, the mechanical arm current can be controlled always within the set range by stopping the sweep of the sweeper, and as a result, the mechanical arm current of the ultrasonic motor load.

温度、駆動信号の電圧の各変動に対し、移動体の移動速
度の変動幅を軽減することが可能となる。
It is possible to reduce the range of variation in the moving speed of the moving body with respect to each variation in temperature and voltage of the drive signal.

また起動時には、必ず周波数の高い方から低い方向へ掃
引がなされ、すみやかに移動速度の立ち上りが可能とな
る。また機械腕電流の設定範囲を選ぶことにより、移動
速度の大きさと変動幅を選ぶことができ、これらの実用
的効果は大きい。
Furthermore, at startup, the frequency is always swept from high to low, allowing the movement speed to quickly rise. Furthermore, by selecting the setting range of the mechanical arm current, the magnitude and fluctuation range of the moving speed can be selected, which has great practical effects.

これらの効果より、超音波モータの利用範囲が拡大し、
例えば、自動車、航空機、船舶等の輸送機のように電圧
変動や温度変動の激しい所にも、超音波モータの応用が
可能となる。
These effects have expanded the scope of use of ultrasonic motors,
For example, ultrasonic motors can be applied to places where voltage and temperature fluctuations are severe, such as in transportation vehicles such as automobiles, aircraft, and ships.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における超音波モータ装置の
ブロック図、第2図は同モータの電気等価回路図、第3
図は同モータの回転数と機械腕電流の駆動周波数に対す
る履歴と掃引制御器の動作説明図、第4図は同モータの
回転数と機械腕電流の関係を示す特性図である。第5図
は本発明の一実施例に用いる円板型超音波モータの分解
斜視図、第6図は同モータの原理説明図である。 1・・・・・・循環式周波数掃引器、2・・・・・・位
相器、3・・・・・・電力増幅器、4・・・・・・電力
増幅器、5・・・・・・機械腕電流検出器、6・・・・
・・掃引制御器。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第3図 第4図 第5図
FIG. 1 is a block diagram of an ultrasonic motor device according to an embodiment of the present invention, FIG. 2 is an electrical equivalent circuit diagram of the same motor, and FIG.
The figure is an explanatory diagram of the history of the rotational speed of the motor and the drive frequency of the mechanical arm current and the operation of the sweep controller, and FIG. 4 is a characteristic diagram showing the relationship between the rotational speed of the motor and the mechanical arm current. FIG. 5 is an exploded perspective view of a disk-type ultrasonic motor used in an embodiment of the present invention, and FIG. 6 is a diagram illustrating the principle of the motor. 1... Circulating frequency sweeper, 2... Phase shifter, 3... Power amplifier, 4... Power amplifier, 5... Mechanical arm current detector, 6...
...Sweep controller. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 圧電体と弾性体からなる振動体とこの振動体に加圧接触
して設置される移動体とからなる超音波モータを備え、
所定の周波数範囲を循環的に掃引し、かつ周波数の掃引
方向と、掃引の開始、停止の制御可能な周波数掃引器と
、前記掃引器の出力から位相の互いに90°異なる2つ
の交流信号を出力する位相器と、前記位相器の出力を各
々増幅して、前記超音波モータの駆動信号を出力する電
力増幅器と、圧電体に流入する電流の中の機械腕電流を
検出する機械腕電流検出器と、前記機械腕電流の大きさ
にしたがって、前記掃引器の掃引方向と掃引の開始又は
停止の信号を出力する掃引制御器とを有し、前記掃引制
御器において、機械腕電流が設定範囲以下の時は、掃引
方向を周波数の高い方から低い方になるように設定し、
また前記機械腕電流が設定範囲以上の時は、前記掃引方
向を周波数の低い方から高い方向になるように設定し、
また前記機械腕電流が設定範囲内にある時又は、電力増
幅器の出力を切ってモータを停止させている時には、前
記掃引器の掃引を停止させることを特徴とする超音波モ
ータ装置。
Equipped with an ultrasonic motor consisting of a vibrating body made of a piezoelectric body and an elastic body, and a moving body installed in pressure contact with the vibrating body,
A frequency sweeper that cyclically sweeps a predetermined frequency range and can control the frequency sweep direction and the start and stop of the sweep, and outputs two AC signals whose phases differ by 90 degrees from the output of the sweeper. a power amplifier that amplifies the output of the phase shifter and outputs a drive signal for the ultrasonic motor; and a mechanical arm current detector that detects a mechanical arm current in the current flowing into the piezoelectric body. and a sweep controller that outputs a sweep direction of the sweeper and a signal to start or stop the sweep according to the magnitude of the mechanical arm current, and in the sweep controller, the mechanical arm current is below a set range. When , set the sweep direction from high frequency to low frequency,
Further, when the mechanical arm current is above a set range, the sweep direction is set from a low frequency to a high frequency direction,
Further, the ultrasonic motor device is characterized in that the sweeping of the sweeper is stopped when the mechanical arm current is within a set range or when the output of the power amplifier is cut off to stop the motor.
JP62095614A 1987-04-17 1987-04-17 Ultrasonic motor device Expired - Lifetime JPH0667227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62095614A JPH0667227B2 (en) 1987-04-17 1987-04-17 Ultrasonic motor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62095614A JPH0667227B2 (en) 1987-04-17 1987-04-17 Ultrasonic motor device

Publications (2)

Publication Number Publication Date
JPS63262072A true JPS63262072A (en) 1988-10-28
JPH0667227B2 JPH0667227B2 (en) 1994-08-24

Family

ID=14142428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62095614A Expired - Lifetime JPH0667227B2 (en) 1987-04-17 1987-04-17 Ultrasonic motor device

Country Status (1)

Country Link
JP (1) JPH0667227B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007336752A (en) * 2006-06-16 2007-12-27 Seiko Epson Corp Driving method of piezoelectric actuator, drive unit of piezoelectric actuator, electronic equipment, control program of drive unit of piezoelectric actuator, and storage media

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007336752A (en) * 2006-06-16 2007-12-27 Seiko Epson Corp Driving method of piezoelectric actuator, drive unit of piezoelectric actuator, electronic equipment, control program of drive unit of piezoelectric actuator, and storage media

Also Published As

Publication number Publication date
JPH0667227B2 (en) 1994-08-24

Similar Documents

Publication Publication Date Title
EP0602635B1 (en) A method and an apparatus for controlling a moving velocity of an ultrasonic motor
US7061156B2 (en) Control apparatus for vibration type actuator
US5955819A (en) Standing-wave vibration motor
US7154208B2 (en) Control apparatus for vibration type actuator
JPS6356178A (en) Driving of ultrasonic motor
JPS63262072A (en) Ultrasonic motor device
JPH01321876A (en) Ultrasonic motor driving device
JP2548248B2 (en) Ultrasonic motor controller
JPH01114379A (en) Ultrasonic motor device
JP3722165B2 (en) Vibration actuator driving apparatus and vibration actuator driving method
JP2506895B2 (en) Ultrasonic motor controller
JPH01160379A (en) Driving gear of ultrasonic motor
JPH027879A (en) Driver of ultrasonic motor
JP2537996B2 (en) Ultrasonic motor drive
JP3495810B2 (en) Vibration wave motor device
JPH01198282A (en) Driver for supersonic motor
JP2636280B2 (en) Driving method of ultrasonic motor
JPH02101974A (en) Ultrasonic motor drive
JP2574293B2 (en) Ultrasonic motor driving method
JP3198041B2 (en) Ultrasonic motor speed controller
JP2538088B2 (en) Driving method for ultrasonic motor
JP2650337B2 (en) Ultrasonic motor drive
JP2577485B2 (en) Driving method of ultrasonic motor
JP2563351B2 (en) Ultrasonic motor driving method
JP3141525B2 (en) Ultrasonic motor drive control method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070824

Year of fee payment: 13