JPS63261825A - Electrolyte for driving electrolytic capacitor - Google Patents

Electrolyte for driving electrolytic capacitor

Info

Publication number
JPS63261825A
JPS63261825A JP9659387A JP9659387A JPS63261825A JP S63261825 A JPS63261825 A JP S63261825A JP 9659387 A JP9659387 A JP 9659387A JP 9659387 A JP9659387 A JP 9659387A JP S63261825 A JPS63261825 A JP S63261825A
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
butyrolactone
electrolytic solution
weight
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9659387A
Other languages
Japanese (ja)
Inventor
秀樹 島本
柳井 和俊
久雄 長柄
啓治 森
真吾 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Panasonic Holdings Corp
Original Assignee
Sanyo Chemical Industries Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd, Matsushita Electric Industrial Co Ltd filed Critical Sanyo Chemical Industries Ltd
Priority to JP9659387A priority Critical patent/JPS63261825A/en
Publication of JPS63261825A publication Critical patent/JPS63261825A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Primary Cells (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電解コンデンサ駆動用電解液に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an electrolytic solution for driving an electrolytic capacitor.

従来の技術 従来、電解コンデンサ駆動用電解液としてエチレングリ
コールにイオノゲンを溶解した電解液が用いられている
。しかし、この種の電解液は、比電導度が低く、特に低
温においてはインピーダンス特性が大きく変化するとい
う欠点がある。そのため、水を添加して電導度を改善し
た電解液が使用されているが、このような電解液は、高
温中での蒸気圧が高く、また電極であるアルミニウムと
反応しやすいため、高温領域での使用に適さない。
2. Description of the Related Art Conventionally, an electrolytic solution in which ionogen is dissolved in ethylene glycol has been used as an electrolytic solution for driving an electrolytic capacitor. However, this type of electrolytic solution has a drawback in that its specific conductivity is low and its impedance characteristics change significantly, especially at low temperatures. Therefore, electrolytes with improved conductivity by adding water are used, but such electrolytes have a high vapor pressure at high temperatures and easily react with the aluminum electrode, so they cannot be used in high-temperature regions. Not suitable for use in

以上のような欠点を改良するため、特開昭61−707
11号公報にみられるように、γ−ブチロラクトンを溶
媒とし、フタル酸のトリエチルアミン塩を用いる例や、
特開昭54−7564号公報にみられるように、γ−ブ
チロラクトンとエチレングリコールの混合溶媒にマレイ
ン酸のアミン塩を用いる例がある。
In order to improve the above-mentioned drawbacks, Japanese Patent Application Laid-Open No. 61-707
As seen in Publication No. 11, examples using γ-butyrolactone as a solvent and triethylamine salt of phthalic acid,
As seen in JP-A-54-7564, there is an example of using an amine salt of maleic acid in a mixed solvent of γ-butyrolactone and ethylene glycol.

また、特開昭59−78522号公報のように直鎖ジカ
ルボン酸の第4アンモニウム塩を用いた例、特開昭61
−93610号公報のように、1.10−デカンジカル
ボン酸あるいは、1.6−デカンジカルボン酸のテトラ
アルキルアンモニウム塩を用いた例もある。しかし、こ
のような電解液では次に示すような欠点がある。
In addition, examples using quaternary ammonium salts of linear dicarboxylic acids as in JP-A-59-78522, JP-A-61
There is also an example of using a tetraalkylammonium salt of 1.10-decanedicarboxylic acid or 1.6-decanedicarboxylic acid, as in Japanese Patent No. 93610. However, such electrolytes have the following drawbacks.

発明が解決しようとする問題点 つまり、従来の電解液では、溶媒にγ−ブチロラクトン
、溶質にフタル酸やマレイン酸のドーリエチルアミン塩
を用いた場合、酸解離がトリエチルアミンのプロトン化
解離で起こるため、イオン生成が少なく、比電導度が十
分に高くない。また、直鎖ジカルボン酸の第4アンモニ
ウム塩や1.10−デカンジカルボン酸あるいは、1.
6−デカンジカルボン酸のテトラアルキルアンそニウム
塩を用いた場合、酸との組合せが悪いため、比電導度が
低く、これらの電解液を用いた電解コンデンサは。
Problems to be Solved by the Invention In other words, in conventional electrolytes, when γ-butyrolactone is used as the solvent and doryethylamine salt of phthalic acid or maleic acid is used as the solute, acid dissociation occurs due to protonation dissociation of triethylamine. Ion generation is low and specific conductivity is not high enough. Also, quaternary ammonium salts of linear dicarboxylic acids, 1.10-decanedicarboxylic acids, or 1.
When a tetraalkylamsonium salt of 6-decanedicarboxylic acid is used, the specific conductivity is low due to poor combination with the acid, and electrolytic capacitors using these electrolytes have low specific conductivity.

インピーダンス特性を十分に低くすることができない欠
点があった。
There was a drawback that the impedance characteristics could not be made sufficiently low.

本発明は、このような従来の欠点を解決するもので、高
電導度で低温におけるインピーダンス特性の改善と高温
での長寿命化を図ることを目的とする。
The present invention solves these conventional drawbacks, and aims to improve impedance characteristics at low temperatures and extend life at high temperatures with high conductivity.

問題点を解決するだめの手段 上記問題点を解決するために、本発明は、溶媒としてγ
−ブチロラクトンとアセトニトリルの混合溶媒を用い、
溶質として、不飽和カルボン酸の四級アンモニウム塩を
用いる電解コンデンサ駆動用電解液である。不飽和カル
ボン酸のうち好ましくはフタル酸および/″または、マ
レイン酸であり、四級アンモニウム塩が、テトラエチル
アンモニウム塩および/またはテトラメチルアンモニウ
ム塩である。また、γ−ブチロラクトンとアセトニトリ
ルの混合割合は、γ−ブチロラクトンが95〜205〜
20重量%ニトリルが5〜80重量%である。
Means for Solving the Problems In order to solve the above problems, the present invention uses γ as a solvent.
- Using a mixed solvent of butyrolactone and acetonitrile,
This is an electrolytic solution for driving electrolytic capacitors that uses a quaternary ammonium salt of an unsaturated carboxylic acid as a solute. Among the unsaturated carboxylic acids, phthalic acid and/or maleic acid are preferred, and the quaternary ammonium salt is tetraethylammonium salt and/or tetramethylammonium salt.The mixing ratio of γ-butyrolactone and acetonitrile is , γ-butyrolactone is 95-205-
20% by weight nitrile is 5-80% by weight.

作用 このような本発明の電解液によれば、γ−ブチロラクト
ンとアセトニトリルの混合により、電解液の凝固点が低
下し、またγ−ブチロラクトンは混合溶媒の沸点を上昇
させ、アセトニ) IJルは、混合溶媒の粘度を低下さ
せて、イオンを動きやすくし、広い温度域にわたり高電
導度が得られる。
Effects According to the electrolytic solution of the present invention, the freezing point of the electrolytic solution is lowered by mixing γ-butyrolactone and acetonitrile, and γ-butyrolactone increases the boiling point of the mixed solvent. It lowers the viscosity of the solvent, making it easier for ions to move, and providing high conductivity over a wide temperature range.

本発明において、混合比をγ−ブチロラクトンが95〜
205〜20重量%ニトリルが5〜80重量%としたの
は、アセトニトリルが5重量%未満では、比電導度が十
分高くなく、80重量%を越える混合溶媒では、高温で
の安定性が悪いためである。
In the present invention, the mixing ratio of γ-butyrolactone is 95 to
205 to 20% by weight Nitrile is set to 5 to 80% by weight because if the acetonitrile content is less than 5% by weight, the specific conductivity is not high enough, and if the mixed solvent exceeds 80% by weight, stability at high temperatures is poor. It is.

実施例 以下、本発明による実施例について述べる。Example Examples according to the present invention will be described below.

第1図に、γ−ブチロラクト/とアセトニトリルの混合
溶媒の混合比を変えた電解液の常温での電導度を示す。
FIG. 1 shows the electrical conductivity at room temperature of electrolytic solutions with different mixing ratios of mixed solvents of γ-butyrolact/and acetonitrile.

なおこの時の溶質は20重量%のマレイン酸モノテトラ
エチルアンモニウムおヨヒフタル酸モノテトラエチルア
ンモニウムである。
The solute at this time was 20% by weight of monotetraethylammonium maleate and monotetraethylammonium isohyphthalate.

このようにγ−ブチロラクトンとアセトニトリルの混合
割合を変えることにより所定の電導度の電解液を得るこ
とができる。
By changing the mixing ratio of γ-butyrolactone and acetonitrile in this manner, an electrolytic solution having a predetermined conductivity can be obtained.

表1に、γ−ブチロラクト/とアセトニトリルの重量比
が50%:tso%の混合溶媒に、20重量%のマレイ
ン酸モノテトラエチルアンモニウム。
Table 1 shows 20% by weight of monotetraethylammonium maleate in a mixed solvent of γ-butyrolact/and acetonitrile in a weight ratio of 50%:tso%.

20重量%の7タル酸モノテトラエチルアンモニウムお
よび10重量%の7タル酸モノテトラメチルアンモニウ
ムをそれぞれ溶解させた時の常温における比電導度と従
来の電解液の比電導度を示す。
The specific conductivity at room temperature and the specific conductivity of a conventional electrolytic solution are shown when 20% by weight monotetraethylammonium heptatalate and 10% by weight monotetramethylammonium heptalate are respectively dissolved.

(以下余白) 表1の従来例4と実施例1を見ても明らかなように、実
施例は従来例に比較して非常に高い電導度を得ることが
できる。
(The following is a blank space) As is clear from Conventional Example 4 and Example 1 in Table 1, the Example can obtain a much higher conductivity than the Conventional Example.

表2に、表1の従来例1.従来例2.従来例3及び実施
例1.実施例2の電解液を用いたアルミ電解コンデンサ
の初期特性と105℃中における1000時間後の寿命
試験の結果を示す。なお試料コンデンサは、6.3v6
60μF(φ8×12J5)のアルミ電解コンデンサで
定格電圧印加試験である。
Table 2 shows conventional example 1 in Table 1. Conventional example 2. Conventional Example 3 and Example 1. The initial characteristics of an aluminum electrolytic capacitor using the electrolyte of Example 2 and the results of a life test after 1000 hours at 105° C. are shown. The sample capacitor is 6.3v6
This is a rated voltage application test using a 60μF (φ8×12J5) aluminum electrolytic capacitor.

(以下余白) 表2の従来例3と従来例1を見ても明らかなように、実
施例は従来例と比較して−δ(120Hz)、インピー
ダンス(1ooKIlz)、ともに大巾に低くすること
ができる。また1000時間後の従来例3と実施例1の
静電容量や従来例2と実施例2の−δを見ても明らかな
ように、高温中においては特性変化はきわめて小さく、
信頼性の高いコンデンサを得ることができる。
(Left below) As is clear from Conventional Example 3 and Conventional Example 1 in Table 2, both -δ (120Hz) and impedance (1ooKIlz) are significantly lower in the embodiment than in the conventional example. Can be done. Furthermore, as is clear from the capacitance of Conventional Example 3 and Example 1 after 1000 hours and -δ of Conventional Example 2 and Example 2, the change in characteristics is extremely small at high temperatures.
A highly reliable capacitor can be obtained.

第2図に、従来例と実施例の低温におけるインピーダン
ス変化を示す。第2図の従来例3と実施例1を見ても明
らかなように、実施例は従来例に比較して、低温におけ
るインピーダンス変化がきわめて少ないコンデンサを得
ることができる。
FIG. 2 shows impedance changes at low temperatures in the conventional example and the example. As is clear from prior art example 3 and example 1 in FIG. 2, the example can provide a capacitor with significantly less impedance change at low temperatures than the conventional example.

発明の効果 以上のように本発明によれば、従来の電解液と比較して
、大巾な比電導度の向上ができ、インピーダンス特性を
改善できる。しかも、広い温度域にわたりきわめて安定
な信頼性の高いコンデンサが提供でき、工業的価値の犬
なるものである。
Effects of the Invention As described above, according to the present invention, compared to conventional electrolytes, specific conductivity can be greatly improved and impedance characteristics can be improved. Furthermore, it is possible to provide a highly reliable capacitor that is extremely stable over a wide temperature range, making it a dog of industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、γ−ブチロラクトンとアセトニトリル混合溶
媒の重量比に対する電導度の相関を示す特性図、第2図
は従来の電解液及び本発明電解液を用いた定格6.3V
 560 μF (eb 8 X 12.5 )のアル
ミ電解コンデンサの温度に対するインピーダンス特性の
変化を表わした特性図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 温度(C)
Figure 1 is a characteristic diagram showing the correlation of electrical conductivity to the weight ratio of γ-butyrolactone and acetonitrile mixed solvent, and Figure 2 is a rated 6.3V using a conventional electrolyte and an electrolyte of the present invention.
FIG. 2 is a characteristic diagram showing changes in impedance characteristics of a 560 μF (eb 8 × 12.5) aluminum electrolytic capacitor with respect to temperature. Name of agent: Patent attorney Toshio Nakao and 1 other person 1st
Figure 2 Temperature (C)

Claims (4)

【特許請求の範囲】[Claims] (1)γ−ブチロラクトンとアセトニトリルの混合溶媒
に不飽和カルボン酸の四級アンモニウム塩を溶質として
用いることを特徴とする電解コンデンサ駆動用電解液。
(1) An electrolytic solution for driving an electrolytic capacitor, characterized in that a quaternary ammonium salt of an unsaturated carboxylic acid is used as a solute in a mixed solvent of γ-butyrolactone and acetonitrile.
(2)不飽和カルボン酸がフタル酸および/または、マ
レイン酸であることを特徴とする特許請求の範囲第1項
記載の電解コンデンサ駆動用電解液。
(2) The electrolytic solution for driving an electrolytic capacitor according to claim 1, wherein the unsaturated carboxylic acid is phthalic acid and/or maleic acid.
(3)四級アンモニウム塩が、テトラエチルアンモニウ
ム塩および/またはテトラメチルアンモニウム塩である
ことを特徴とする特許請求の範囲第1項記載の電解コン
デンサ駆動用電解液。
(3) The electrolytic solution for driving an electrolytic capacitor according to claim 1, wherein the quaternary ammonium salt is a tetraethylammonium salt and/or a tetramethylammonium salt.
(4)γ−ブチロラクトンが95〜20重量%、アセト
ニトリルが5〜80重量%で混合されていることを特徴
とする特許請求の範囲第1項記載の電解コンデンサ駆動
用電解液。
(4) The electrolytic solution for driving an electrolytic capacitor according to claim 1, characterized in that 95 to 20% by weight of γ-butyrolactone and 5 to 80% by weight of acetonitrile are mixed.
JP9659387A 1987-04-20 1987-04-20 Electrolyte for driving electrolytic capacitor Pending JPS63261825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9659387A JPS63261825A (en) 1987-04-20 1987-04-20 Electrolyte for driving electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9659387A JPS63261825A (en) 1987-04-20 1987-04-20 Electrolyte for driving electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPS63261825A true JPS63261825A (en) 1988-10-28

Family

ID=14169199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9659387A Pending JPS63261825A (en) 1987-04-20 1987-04-20 Electrolyte for driving electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS63261825A (en)

Similar Documents

Publication Publication Date Title
JPS63261825A (en) Electrolyte for driving electrolytic capacitor
JPH11340097A (en) Electrolytic solution for driving electrolytic capacitor
JP2627624B2 (en) Electrolyte for driving electrolytic capacitors
JP2572021B2 (en) Electrolyte for electrolytic capacitors
JP3276164B2 (en) Electrolyte for driving electrolytic capacitors
JP3212322B2 (en) Electrolyte for driving electrolytic capacitors
JP3310684B2 (en) Electrolytic solution for electrolytic capacitors
JPS63169020A (en) Electrolytic capacitor driving electrolyte
JP3347154B2 (en) Electrolyte for driving electrolytic capacitors
JPH0513277A (en) Electrolyte for driving electrolytic capacitor
JPS63169018A (en) Electrolytic capacitor driving electrolyte
JP3311768B2 (en) Electrolyte for driving electrolytic capacitors
JP3297067B2 (en) Manufacturing method of aluminum electrolytic capacitor
JPS629617A (en) Electrolytic liquid for driving electrolytic capacitor
JPH01114025A (en) Electrolyte for driving electrolytic capacitor
JPH01114017A (en) Electrolyte for driving electrolytic capacitor
JPS63169019A (en) Electrolytic capacitor driving electrolyte
JPH0218917A (en) Electrolyte for driving electrolytic capacitor
JPH05121272A (en) Electrolyte for driving electrolytic capacitor
JPH04343409A (en) Electrolyte for driving electrolytic capacitor
JPS63261821A (en) Electrolyte for driving electrolytic capacitor
JPS62213239A (en) Driving electrolyte for electrolytic capacitor
JPS62124727A (en) Driving electrolyte for electrolytic capacitor
JPH04263412A (en) Electrolyte for driving of electrolyte capacitor
JPH01227420A (en) Electrolyte for driving electrolytic capacitor