JPS63261695A - Electric source for magnetron - Google Patents

Electric source for magnetron

Info

Publication number
JPS63261695A
JPS63261695A JP9513887A JP9513887A JPS63261695A JP S63261695 A JPS63261695 A JP S63261695A JP 9513887 A JP9513887 A JP 9513887A JP 9513887 A JP9513887 A JP 9513887A JP S63261695 A JPS63261695 A JP S63261695A
Authority
JP
Japan
Prior art keywords
magnetron
cathode
power supply
frequency
inductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9513887A
Other languages
Japanese (ja)
Inventor
石山 国雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9513887A priority Critical patent/JPS63261695A/en
Publication of JPS63261695A publication Critical patent/JPS63261695A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of High-Frequency Heating Circuits (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電源投入後、マグネトロンの陰極温度が動作
温度に到達するまでに必要な立上り時間を低減したマグ
ネトロン用電源装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a power supply device for a magnetron that reduces the rise time required for the cathode temperature of the magnetron to reach the operating temperature after power is turned on.

〔従来の技術〕[Conventional technology]

マグネトロン用電源装置として周波数を高くしたスイッ
チング電源を用いることによって電源変圧器を小型軽量
化し、かつ、出力制御を容易にする方法が、例えば、実
公昭61−31512号公報や特開昭60−25058
8号公報などに述べられているが、未だ広く実用化され
るには至っていない、かかる現状の一因として、実公昭
61−31512号公報にも述べられているように、マ
グネトロンの陰極側出口に取付けられた、マイクロ波が
漏洩して雑音源となるのを防止するためのインダクタと
コンデンサよりなるフィルタの特性についても考慮しな
ければならないことが挙げられる。
A method of reducing the size and weight of a power transformer and facilitating output control by using a switching power supply with a high frequency as a power supply device for a magnetron is disclosed, for example, in Japanese Utility Model Publication No. 61-31512 and Japanese Patent Laid-Open No. 60-25058.
Although it is stated in Publication No. 8, etc., it has not yet been widely put into practical use.One reason for this current situation is that, as stated in Publication No. 61-31512, the cathode side exit of the magnetron is It is also necessary to consider the characteristics of the filter, which is made up of an inductor and a capacitor and is installed in the microwave to prevent microwaves from leaking and becoming a noise source.

マグネトロンをスイッチング電源で動作させる場合に、
前記フィルタのインダクタやコンデンサが、マグネトロ
ンの陰極加熱動作に如何なる影響を与えるかまでは考慮
されておらず、マグネトロンを商用電源周波数より高い
スイッチング電源周波数で駆動しようとすると、マグネ
トロンの陰極出口に挿入されたフィルタ用インダクタの
インピーダンスは周波数に比例して太き(なるから、陰
極加熱電流は商用周波数の場合よりも流れ難くなる。こ
のインピーダンス増加の影響を打ち消し、充分な陰極温
度が得られるように、陰極回路の出力電圧を上昇させて
も、電源を投入してから陰極が動作温度に到達するまで
の立上り時間が、従来の如く商用周波数で加熱する場合
よりも長(なってしまうという問題が発生する。一層具
体的に述べれば、例えば、従来商用周波数で加熱した場
合には、電源投入後、約3秒でマイクロ波出力が得られ
る(陰極がそれに必要なだけの電子を放出する温度に到
達する)のに対し、スイッチング電源を用いた場合には
約6秒となり、約2倍の立上り時間を要する。
When operating the magnetron with a switching power supply,
It is not considered how the inductor and capacitor of the filter affect the cathode heating operation of the magnetron, and if you try to drive the magnetron at a switching power supply frequency higher than the commercial power supply frequency, the inductor and capacitor of the filter will be inserted into the cathode outlet of the magnetron. The impedance of the filter inductor increases in proportion to the frequency (therefore, the cathode heating current becomes more difficult to flow than at the commercial frequency. In order to cancel the effect of this impedance increase and obtain a sufficient cathode temperature, Even if the output voltage of the cathode circuit is increased, the rise time from turning on the power until the cathode reaches the operating temperature is longer than when heating at commercial frequency as in the past. To be more specific, for example, in the case of conventional heating at a commercial frequency, microwave output can be obtained in about 3 seconds after the power is turned on (the temperature at which the cathode emits the necessary amount of electrons is reached). On the other hand, when a switching power supply is used, the rise time is about 6 seconds, which is about twice as long.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記従来のスイッチング電源を使用すると陰極
温度立上り時間が長くなるという問題点を解決したマグ
ネトロン用電源装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a magnetron power supply device that solves the problem that the cathode temperature rise time becomes long when the conventional switching power supply is used.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために本発明においては、高いス
イッチング周波数で小型軽量化した電源用変圧器の二次
側に設けたマグネトロン陰極加熱用低圧巻線回路に直列
にコンデンサとインダクタを挿入し、これらの素子の定
数を、該回路が前記高いスイッチング周波数で直列共振
状態となってリアクタンス分が殆ど消滅し、変圧器側か
ら見た陰極加熱用回路のインピーダンスが殆どマグネト
ロンの陰極の抵抗分のみとなるように設定することにし
た。
In order to solve the above problems, in the present invention, a capacitor and an inductor are inserted in series with a low-voltage winding circuit for magnetron cathode heating provided on the secondary side of a power transformer that is small and lightweight with a high switching frequency. The constants of these elements are such that the circuit enters a series resonance state at the high switching frequency, the reactance component almost disappears, and the impedance of the cathode heating circuit seen from the transformer side is almost only the resistance of the magnetron's cathode. I decided to set it up like this.

(1乍用) 通常、マグネトロン用電源に用いようとするスイッチン
グ周波数は、商用電源周波数の例えば約1000倍程度
であり、また、マイクロ波周波数はスイッチング周波数
と比較しても例えば約数万倍程度と高い、従って、従来
マイクロ波漏洩抑制のためにマグネトロンの陰極加熱回
路の出口に取付けていたフィルタのインダクタの値は、
絶対値的には極めて小さなものである。
(For 1 unit) Normally, the switching frequency to be used in a magnetron power supply is, for example, about 1,000 times the commercial power supply frequency, and the microwave frequency is, for example, about tens of thousands of times compared to the switching frequency. Therefore, the value of the inductor of the filter conventionally installed at the outlet of the magnetron's cathode heating circuit to suppress microwave leakage is
In terms of absolute value, it is extremely small.

一方、マグネトロンの陰極は、例えば電子レンジ用のも
のの場合、タングステンフィラメントよりなり、室温で
約0.03オーム、動作温度(約1500℃)で約0.
3オ一ム程度の抵抗を有する。前記フィルタ用インダク
タの値は小さく、商用電源周波数では、上記フィラメン
トの小さい室温抵抗値に比較しても、まだ無視できる程
度であるが、スイッチング周波数では、このインダクタ
のインピーダンスは商用周波数時の約1000倍にもな
り、フィラメントの室温抵抗に対しては勿論、約10倍
に上昇した動作温度時の抵抗値に対しても数倍の大きさ
となり、前記のように、フィラメント、温度が動作温度
にまで立上る時間を約2倍にまで長くしてしまう。なお
、商用電源周波数でマグネトロン陰極を加熱するときは
、室温時の抵抗は小さいから、電源投入後、一旦、継続
動作時の電流値の例えば10倍近くの値に達する大きな
電流いわゆる突入電流が流れたのち、フィラメントの温
度が次第に上昇し、それと共にフィラメントの抵抗が増
加して電流値は次第に低下し、継続動作時の電流値にな
ったところで平衡状態となる。陰極加熱回路のインピー
ダンスが大きければ、突入電流値が小さく抑えられ、加
熱電力量が小さく抑えられて、一定の熱容量を有するフ
ィラメントの温度が動作温度に達するまでの立上り時間
が長くなる。
On the other hand, the cathode of a magnetron, for example in the case of a microwave oven, is made of a tungsten filament, and has an ohm of approximately 0.03 ohm at room temperature and approximately 0.0 ohm at the operating temperature (approximately 1500 degrees Celsius).
It has a resistance of about 3 ohms. The value of the filtering inductor is small and at commercial power frequency it is still negligible compared to the small room temperature resistance of the filament, but at the switching frequency the impedance of this inductor is about 1000 at commercial frequency. This is not only the room temperature resistance of the filament, but also several times the resistance value at the operating temperature, which is about 10 times higher. This will approximately double the time it takes to rise. When heating the magnetron cathode at the commercial power frequency, the resistance at room temperature is small, so once the power is turned on, a large current, so-called inrush current, which reaches a value nearly 10 times the current value during continuous operation, flows. Thereafter, the temperature of the filament gradually rises, the resistance of the filament increases, and the current value gradually decreases, and when the current value reaches the value for continued operation, an equilibrium state is reached. If the impedance of the cathode heating circuit is large, the inrush current value is kept small, the amount of heating power is kept small, and the rise time until the temperature of the filament having a certain heat capacity reaches the operating temperature becomes long.

本発明によりスイッチング周波数で陰極加熱回路に直列
共振が生ずるようにすると、陰極加熱回路ではりアクタ
ンス分の影響が殆どなくなり、加熱電流の立上り時間を
決めるのは、陰極フィラメントの抵、抗分だけやなる、
即ち、商用電源で加熱するときと殆ど同一の立上り時間
となる。
By making series resonance occur in the cathode heating circuit at the switching frequency according to the present invention, the effect of the actance component on the cathode heating circuit is almost eliminated, and the rise time of the heating current is determined only by the resistance of the cathode filament. Become,
In other words, the rise time is almost the same as when heating with a commercial power source.

〔実施例〕〔Example〕

第1図は本発明−実施例の概略回路図を示し、図中、■
は変圧器、2は本発明に係る直列インダクタ、3は本発
明に係る直列コンデンサ、4はフィルタ付きマグネトロ
ン、5はフィルタ用コンデンサ、6はフィルタ用インダ
クタ、7はマグネトロンのフィラメント、Bは直流を開
閉して高い周波数50kHzの交流に変換するスイッチ
ング素子である。この実施例の高圧回路は倍電圧整流回
路になっている。また、スイッチング電源を用いてマグ
ネトロンの出力電力制御を行う場合は、フィラメント加
熱電力は(以前行われていたように)長い周期で中断さ
れるようなことはないから、一旦フィラメントが動作温
度に達したのちは、フィラメントの熱容量によって略所
望の動作温度に維持される。この実施例では、フィラメ
ントの室温時抵抗値は約0.03Ω、動作温度時抵抗値
は約0.3Ωである。フィルタ用インダクタ6のインダ
クタンス値は既述の如く僅かであるが、それでも50k
lLzのスイッチング周波数では、陰極加熱回路内のイ
ンダクタンス分インピーダンスの合計が約1.5Ωにな
る(なお、陰極加熱回路に電圧を供給する変圧器巻線の
抵抗やインダクタンスは無視できる位置さい〉、従って
陰極加熱回路全体のインピーダンスは圧倒的にインダク
タンス分が大きく、フィラメント抵抗値が0.3Ωの場
合でも、合成したインピーダンスは1.53Ωである。
FIG. 1 shows a schematic circuit diagram of an embodiment of the present invention.
is a transformer, 2 is a series inductor according to the present invention, 3 is a series capacitor according to the present invention, 4 is a magnetron with a filter, 5 is a filter capacitor, 6 is a filter inductor, 7 is a filament of the magnetron, and B is a direct current This is a switching element that opens and closes to convert alternating current at a high frequency of 50 kHz. The high voltage circuit of this embodiment is a voltage doubler rectifier circuit. Also, when controlling the output power of the magnetron using a switching power supply, the filament heating power is not interrupted in long cycles (as was done previously), so once the filament reaches operating temperature, Thereafter, the heat capacity of the filament maintains approximately the desired operating temperature. In this example, the resistance value of the filament at room temperature is about 0.03Ω, and the resistance value at operating temperature is about 0.3Ω. Although the inductance value of the filter inductor 6 is small as mentioned above, it is still 50k.
At a switching frequency of 1Lz, the total impedance due to inductance in the cathode heating circuit is approximately 1.5Ω (note that the resistance and inductance of the transformer winding that supplies voltage to the cathode heating circuit can be ignored), so The impedance of the entire cathode heating circuit is overwhelmingly large due to inductance, and even when the filament resistance value is 0.3Ω, the combined impedance is 1.53Ω.

もし、本発明を実施しないでフィラメントに所望の電流
11Aを流そうとすると、商用電源周波数の場合なら此
の回路に必要な起電力は約3.3vで済むのに、スイッ
チング周波数的50kHzの場合には約17V必要にな
り、その上、電源投入直後に流れる電流も約11Aなの
で、フィラメントの温度が電子放出するのに充分な温度
に到達するまでの時間は約6秒に延びてしまう、なお、
スイッチング電源で加熱する場合に、方式によって、ピ
ーク値一定の場合、50又は60Hz ?’変調されて
いる場合、またスイッチング周波数が一定の場合、ある
程度スイッチング周波数が変動する場合など種〜あるが
、いずれの場合も、陰極加熱回路の全インピーダンスが
、インダクタンス分のインピータンスが約1000倍に
増加することによって、上記の如く大きくなることは避
けられない、また、フィルタ用コンデンサのインピーダ
ンス値はスイッチング周波数50kHzでも、未だ充分
に大きく、フィラメント電流がバイパスされるなどの影
響は生じない。
If you try to make the desired current of 11A flow through the filament without implementing the present invention, the electromotive force required for this circuit would be about 3.3V at the commercial power frequency, but if the switching frequency is 50kHz, the electromotive force required for this circuit would be about 3.3V. Approximately 17V is required for this, and on top of that, the current that flows immediately after the power is turned on is approximately 11A, so the time it takes for the filament to reach a temperature sufficient to emit electrons is extended to approximately 6 seconds. ,
When heating with a switching power supply, depending on the method, if the peak value is constant, 50 or 60Hz? There are various cases, such as when the switching frequency is modulated, when the switching frequency is constant, and when the switching frequency fluctuates to some extent, but in all cases, the total impedance of the cathode heating circuit is approximately 1000 times the impedance of the inductance. The impedance value of the filter capacitor is still sufficiently large even at a switching frequency of 50 kHz, so that no effect such as bypassing of the filament current occurs.

しかし、本発明によって、陰極加熱回路がスイッチング
周波数で直列共振状態となるようにしておけば、この回
路のりアクタンス分はほぼ零となって、商用電源周波数
で加熱する場合とほぼ同様になる。なお、スイッチング
周波数が変動する方式の場合は、実用状態で最も頻繁に
使われる場合の周波数で、直列共振状態が生ずるように
しておけば良い。例えば、約50kHzで直列共振状態
にするには、前記インダクタンス分が約1.5Ωになっ
た場合で、約2.1μFのコンデンサを挿入すれば良い
ことになる。
However, according to the present invention, if the cathode heating circuit is brought into a series resonant state at the switching frequency, the actance of this circuit becomes almost zero, which is almost the same as heating at the commercial power frequency. In the case of a method in which the switching frequency varies, it is sufficient to create a series resonance state at a frequency that is most frequently used in practical conditions. For example, in order to achieve a series resonance state at approximately 50 kHz, if the inductance is approximately 1.5 Ω, it is sufficient to insert a capacitor of approximately 2.1 μF.

このようなコンデンサは、従来からマグネトロンと一体
に扱われて来たフィルタケースの中に、第2図に示すよ
うに取付けておけば、取扱上便利である。
Such a capacitor can be conveniently handled if it is installed as shown in FIG. 2 inside a filter case, which has conventionally been handled as an integral part of a magnetron.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、スイッチング電源
を用いた場合に、マグネトロン始動時の立上り時間が増
加することを防止できる。
As described above, according to the present invention, when a switching power supply is used, it is possible to prevent an increase in the rise time when starting the magnetron.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明−実施例の概略回路図、第2図は、本発
明に係る直列コンデンサ挿入位置説明図である。 2−直列インダクタ、  3・・・直列コンデンサ、5
−フィルタ用コンデンサ、  6・・・・フィルタ用イ
ンダクタ。
FIG. 1 is a schematic circuit diagram of an embodiment of the present invention, and FIG. 2 is an explanatory diagram of the insertion position of a series capacitor according to the present invention. 2-Series inductor, 3...Series capacitor, 5
- Filter capacitor, 6...Filter inductor.

Claims (1)

【特許請求の範囲】 1、商用電源から整流して得た直流をスイッチング素子
により開閉して、周波数が商用電源より高い交流に変換
して電源用変圧器の一次側に供給し、この変圧器の二次
側に備えた高圧巻線からマグネトロンの陽極に、低圧巻
線からマグネトロンの陰極に、夫々電力を供給するよう
にしたマグネトロン用電源装置において、前記低圧巻線
回路に直列にコンデンサとインダクタを挿入し、これら
の素子の定数を、低圧巻線回路が前記高い周波数で直列
共振状態となってリアクタンス分が殆ど消滅し、変圧器
側から見た陰極用低圧回路のインピーダンスが殆どマグ
ネトロンの陰極の抵抗分のみとなるように設定したこと
を特徴とするマグネトロン用電源装置。 2、前記コンデンサとインダクタを、マグネトロンに一
体となるように取付けた特許請求の範囲第1項記載のマ
グネトロン用電源装置。
[Claims] 1. Direct current obtained by rectifying a commercial power source is opened and closed by a switching element, converted into alternating current whose frequency is higher than that of the commercial power source, and supplied to the primary side of a power transformer, and this transformer In a magnetron power supply device that supplies power from a high voltage winding provided on the secondary side of the magnetron to the anode of the magnetron, and from a low voltage winding to the cathode of the magnetron, a capacitor and an inductor are connected in series with the low voltage winding circuit. By inserting the A power supply device for a magnetron, characterized in that it is set so that only the resistance of 2. A power supply device for a magnetron according to claim 1, wherein the capacitor and inductor are integrally attached to the magnetron.
JP9513887A 1987-04-20 1987-04-20 Electric source for magnetron Pending JPS63261695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9513887A JPS63261695A (en) 1987-04-20 1987-04-20 Electric source for magnetron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9513887A JPS63261695A (en) 1987-04-20 1987-04-20 Electric source for magnetron

Publications (1)

Publication Number Publication Date
JPS63261695A true JPS63261695A (en) 1988-10-28

Family

ID=14129449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9513887A Pending JPS63261695A (en) 1987-04-20 1987-04-20 Electric source for magnetron

Country Status (1)

Country Link
JP (1) JPS63261695A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03204518A (en) * 1989-12-29 1991-09-06 Matsushita Electric Ind Co Ltd High-frequency heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03204518A (en) * 1989-12-29 1991-09-06 Matsushita Electric Ind Co Ltd High-frequency heater

Similar Documents

Publication Publication Date Title
US4277726A (en) Solid-state ballast for rapid-start type fluorescent lamps
US5381076A (en) Metal halide electronic ballast
US4484108A (en) High frequency ballast-ignition system for discharge lamps
AU592934B2 (en) A power supply for a magnetron
JPH0556639B2 (en)
EP0279514A1 (en) High frequency heating apparatus using inverter-type power supply
WO1992002110A1 (en) High frequency heating apparatus using power supply of switching type for magnetron
CA1313543C (en) Magnetron with full wave bridge inverter
CA1290817C (en) Power supply apparatus
JPH06310286A (en) Lamp
JPS63261695A (en) Electric source for magnetron
CA2115122A1 (en) Fluorescent lamp operating circuit
JPS6131512Y2 (en)
JPS5914235B2 (en) High frequency heating device
JP2600662B2 (en) Induction heating cooker
JP2697168B2 (en) High frequency heating equipment
JPS602755B2 (en) magnetron drive device
JP2547885B2 (en) Microwave oven with inverter power supply
JPS63308890A (en) High-frequency heating device
JPS625589A (en) High frequency heater
JP3435801B2 (en) Induction heating cooker
JPS63304593A (en) High-frequency power source device for magnetron
JPH0246693A (en) Inverter power source for magnetron
JPS625592A (en) Cooker
JP3072122B2 (en) High frequency heating equipment