JPS63260675A - Multi-electrode submerged arc welding method - Google Patents

Multi-electrode submerged arc welding method

Info

Publication number
JPS63260675A
JPS63260675A JP9385387A JP9385387A JPS63260675A JP S63260675 A JPS63260675 A JP S63260675A JP 9385387 A JP9385387 A JP 9385387A JP 9385387 A JP9385387 A JP 9385387A JP S63260675 A JPS63260675 A JP S63260675A
Authority
JP
Japan
Prior art keywords
welding
molten pool
probe
electrode
submerged arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9385387A
Other languages
Japanese (ja)
Inventor
Shigeo Fujimori
藤森 成夫
Yukiyoshi Kitamura
北村 征義
Koichi Shinada
功一 品田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9385387A priority Critical patent/JPS63260675A/en
Publication of JPS63260675A publication Critical patent/JPS63260675A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the occurrence of a defective product by detecting the presence or absence of the existence of a molten pool at the rear position at the prescribed distance from a last electrode by ultrasonic waves to regulate the welding speed based on its detected result. CONSTITUTION:A combination transmission and reception type ultrasonic angle beam probe 4 to detect the molten pool 7 at the position separated by 5-25 cm at the rear side from the last electrode 3 among electrodes 1-3 is arranged. The probe 4 set at the position separated by the prescribed distance Y from a melting boundary part 21 of material 6 to be welded emits the ultrasonic waves 22 toward the material 6 to be welded. When the molten pool 7 is not filled on the melting boundary 21, echoes F are generated on a cathode-ray tube of a flaw detector 18 on this part and the danger of the occurrence of an undercut is predicted. Based on this signal, the welding speed is reduced or regulated, by which the occurrence of the undercut can be surely prevented. Accordingly, the occurrence of the defective product is prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はサブマージアーク溶接の制御に係わり、特1c
 多電極サブマージアーク溶接における溶接欠陥発生の
条件を超音波エコーで検知し、その精報から溶接条件を
制御する方法に係わるものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to control of submerged arc welding, and particularly relates to control of submerged arc welding.
The present invention relates to a method of detecting conditions for the occurrence of welding defects in multi-electrode submerged arc welding using ultrasonic echoes, and controlling welding conditions based on the detailed information.

〔従来の技術〕[Conventional technology]

サブマージアーク溶接は高能率な溶接法としていまなお
広く使用され、さらに生産性向上や自動化、省人化技術
開発が進められているが、この自動化、省人化を推進す
る場合においても、高生産性維持の面から、溶接速度は
溶接欠陥(アンダカット)が発生しない限界速度で行わ
れる。しかしながら、このような限界速度で溶接を行う
限り、開先形状や溶融スラブ、ガス生成状況の変動によ
ってアンダカット等の溶接欠陥が発生することがある。
Submerged arc welding is still widely used as a highly efficient welding method, and the development of productivity improvement, automation, and labor-saving technologies is progressing. In order to maintain the welding properties, the welding speed is set at the limit speed at which welding defects (undercuts) do not occur. However, as long as welding is performed at such a limit speed, welding defects such as undercuts may occur due to variations in the groove shape, molten slab, and gas generation conditions.

特に無人溶接で、かかる状況のまま溶接を行わしめた場
合には、連続的な欠陥を有する成品を製造してしまう恐
れがある。
Particularly in unmanned welding, if welding is continued under such conditions, there is a risk of producing a product with continuous defects.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の問題を解決するためには、溶接現象を監視し、溶
接欠陥発生を防止するように溶接条件を制御せしめる必
要がある。可視アーク溶接法では特開昭57−7378
号公報にもみられるように溶接現象が直接1tl察し得
るのでその監視は比較的容易であり、その結果をフィー
ドバックして制御するといった自動化、省人化技術はマ
イクロコンピュータの普及とあいまって急速に進展して
いる。
In order to solve the above problems, it is necessary to monitor welding phenomena and control welding conditions to prevent welding defects from occurring. For visible arc welding method, JP-A-57-7378
As seen in the publication, since welding phenomena can be observed directly, it is relatively easy to monitor them, and automation and labor-saving technology that feeds back the results for control is rapidly progressing with the spread of microcomputers. are doing.

しかしながら、サブマージアーク溶接では、溶接現象に
基い・たフィードバック制御を行っている例は数少ない
。これは溶接部ガフラックスでしゃへいされているため
、直接的な溶接現象観察が困難であり、かつ、溶接現象
のうち何をフィードバックすればよいかということが不
明であることによる。前者の溶接部1ilt祭法として
よく知られているX線透視法は、実験室的には使用し得
るが、実際の製造ラインに適用するには、装置が大規模
となり不向である。装置の簡便さという点では超音波に
よる溶接部の検知法が知られており、特開昭59−92
17/1号公報においては、超音波エコーを用い、溶接
ビード位置制御及び溶は込み制御を行わしめる方法が提
案されている。しかしながら上記の方法では溶接線倣い
と溶は込み確保を目的としており、アンダカットを防止
する効果は得られない。
However, in submerged arc welding, there are only a few examples of feedback control based on welding phenomena. This is because the weld zone is shielded by gafflux, making it difficult to directly observe welding phenomena, and it is unclear what welding phenomena should be fed back. The former X-ray fluoroscopy method, which is well known as the welding part 1ilt method, can be used in a laboratory, but requires a large-scale apparatus and is not suitable for application to an actual manufacturing line. In terms of the simplicity of the device, a method for detecting welds using ultrasonic waves is known, and was disclosed in Japanese Patent Application Laid-open No. 59-92.
No. 17/1 proposes a method of controlling weld bead position and penetration by using ultrasonic echoes. However, the above method is aimed at copying the weld line and ensuring weld penetration, and is not effective in preventing undercuts.

また、片面サブマージアーク溶接では被溶接材裏面に貫
通したアーク光を検出して溶接条件を制御し、均一な高
さのビードを得る方法が特開昭58−141861号公
報で提案されているが、高級ラインパイプ製造などで用
いられる両面−磨サブマージアーク溶接に適用するのは
困難であり、また、アンダカット等の溶接欠陥発生防止
についても特に考慮されていない。
Furthermore, in one-sided submerged arc welding, Japanese Patent Laid-Open No. 58-141861 proposes a method in which the arc light penetrating the back surface of the welded material is detected to control the welding conditions and obtain a bead of uniform height. It is difficult to apply this method to double-sided polished submerged arc welding used in the manufacture of high-grade line pipes, and no particular consideration is given to preventing welding defects such as undercuts.

本発明はかかる現状を鑑みてなされたものであって、溶
融プールの後退距離を自動制御し、アンダカットの発生
しない高速多電極サブマージアーク溶接方法を提供する
ことを目的としている。
The present invention has been made in view of the current situation, and it is an object of the present invention to provide a high-speed multi-electrode submerged arc welding method that automatically controls the retreating distance of the molten pool and does not cause undercuts.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、サブマージアーク溶接欠陥発生を監視する現
象の定量化とその防止法について種々検討した結果得ら
れたもので、その要旨とするところは、溶接線方向に一
直線状に2本以上の溶接電極を配列して、溶接速度1.
5m/ff1in以上で行う多電極サブマージアーク溶
接法において、最終電極後方5〜25mmの位置での溶
融プールの存在の有無を超音波によって検出し、該位置
に溶融プールが存在しない信号を得た場合は、溶接速度
を低減することを特徴とする多電極サブマージアーク溶
接方法、及び、最終電極からその後方25waまでの範
囲で超音波探触子を溶接線と平行方向に往復走査させ、
アークガウジング空洞と溶融プールとの境界面を超音波
によって検出し、検出時の超音波探触子の最終電極から
の距離が基準値と一致するように溶接速度を増減するこ
とを特徴とする多電極サブマージアーク溶接方法、にあ
る。
The present invention was obtained as a result of various studies on the quantification of the phenomenon of monitoring the occurrence of submerged arc welding defects and its prevention methods. Arrange the electrodes and set the welding speed 1.
In the multi-electrode submerged arc welding method performed at 5 m/ff1 inch or more, the presence or absence of a molten pool at a position 5 to 25 mm behind the final electrode is detected by ultrasonic waves, and a signal indicating that there is no molten pool at that position is obtained. is a multi-electrode submerged arc welding method characterized by reducing the welding speed, and an ultrasonic probe reciprocatingly scans in a direction parallel to the weld line in a range from the final electrode to 25 wa behind it,
The interface between the arc gouging cavity and the molten pool is detected by ultrasonic waves, and the welding speed is increased or decreased so that the distance from the final electrode of the ultrasonic probe at the time of detection matches a reference value. Electrode submerged arc welding method.

〔作用〕[Effect]

本発明は、溶接条件によって特定されるアンダカット発
生限界溶融プール後退距離(以下基準値と略称する)付
近で、溶融プールの存在の有無を超音波によって監視し
、そのエコーの発生頻度をフィードバックし、あるいは
最終電極後方のアークガウジング空洞と溶融プールとの
境界面を超音波によって監視し、該位置を基準値と比較
して。
The present invention uses ultrasonic waves to monitor the presence or absence of a molten pool near the undercut occurrence limit molten pool retreat distance (hereinafter referred to as reference value) specified by welding conditions, and feeds back the frequency of echo occurrence. , or by monitoring the interface between the arc gouging cavity and the melt pool behind the final electrode by ultrasound and comparing the position with a reference value.

必要に応じ溶接速度を増減することにより、高能率でア
ンダカットのないビードを提供するものである。
By increasing or decreasing the welding speed as necessary, a bead with high efficiency and no undercut can be provided.

以下、本発明を、添付図面を参照して説明する。The present invention will now be described with reference to the accompanying drawings.

第1図は本発明を、3電極サブマージマーク溶接に実施
する一実施態様を示す斜視図で、溶接部は理解を容易に
するため、フラックス及び溶融スラグを除いている。
FIG. 1 is a perspective view showing an embodiment of the present invention in three-electrode submerged mark welding, with flux and molten slag removed from the weld for ease of understanding.

同図において1〜3はそれぞれ第1.第2および第3(
最終)電極であり、4は最終電極3のワイヤ先端が被溶
接材6の表面高さとなる面より、溶接線方向に10〜2
5mm後方位置(距離X)の溶融プール7を検知し得る
ように配置した送、受信兼用型の超音波斜角探触子であ
る。
In the figure, 1 to 3 are respectively numbered 1. Second and third (
4 is the final) electrode, and the wire tip of the final electrode 3 is 10 to 2
This is a transmitting and receiving type ultrasonic angle probe arranged so as to be able to detect the molten pool 7 at a position 5 mm behind (distance X).

そしてここでは、該探触子4は溶接トーチホルダー8に
より溶接電極に対し、常に一定位置に確保されている。
Here, the probe 4 is always secured at a constant position with respect to the welding electrode by the welding torch holder 8.

なお、5はアークガウジング空洞、9はフラックス、1
0は凝固金属、11〜13はワイヤ送給モータ、14〜
16は溶接電源、17は溶接操作盤、18は超音波探傷
器、19は演算・制御器、20は溶接合車、WDは溶接
方向である。
In addition, 5 is the arc gouging cavity, 9 is the flux, 1
0 is solidified metal, 11-13 are wire feeding motors, 14-
16 is a welding power source, 17 is a welding operation panel, 18 is an ultrasonic flaw detector, 19 is a calculation/controller, 20 is a welding wheel, and WD is a welding direction.

そしていま、探触子4の存在する位置の溶接方向に対し
垂直面での断面図である第2図に示されるように、被溶
接材6の表面近傍の溶融境界部21から距離Y離れた位
置にセットした探触子4より、被溶接材6に入射された
超音波22は、溶融境界部21に溶融プール7が充填さ
れていないと、この部分でエコーを発生し、溶接線方向
と平行な垂直面での透視図と超音波探傷器のブラウン管
正面図を組み合せた第3図に示すように、該ブラウン管
には入射エコーTのほか、ゲート部Gに溶融境界部21
のエコーFが出現する。一方、第3図と同様な手法で作
図した第71図に示すように、溶融境界部21に溶融プ
ール7が充填されている場合には、入射エコーTのみし
か出現しない。
Now, as shown in FIG. 2, which is a cross-sectional view on a plane perpendicular to the welding direction at the position where the probe 4 is present, a distance Y away from the molten boundary 21 near the surface of the welded material 6 is shown. If the molten boundary 21 is not filled with the molten pool 7, the ultrasonic wave 22 incident on the welded material 6 from the probe 4 set at the position will generate an echo in this area, and the ultrasonic wave 22 will be reflected in the welding line direction. As shown in FIG. 3, which is a combination of a perspective view on a parallel vertical plane and a front view of a cathode ray tube of an ultrasonic flaw detector, in addition to the incident echo T, the cathode ray tube has a molten boundary 21 at the gate part G.
Echo F appears. On the other hand, as shown in FIG. 71 drawn using the same method as FIG. 3, when the molten boundary portion 21 is filled with the molten pool 7, only the incident echo T appears.

すなわち、ゲート部Gにエコーが発生しない間は、距離
Xには溶融プール7が充填され、エコーが発生した場合
には距離Xより溶融プール7が後退していることが識別
できる。
That is, while no echo is generated at the gate portion G, the distance X is filled with the molten pool 7, and when an echo is generated, it can be determined that the molten pool 7 is retreating from the distance X.

アップカットは、溶接速度の増大によって、溶融プール
後退距離が大きくなり、ある限界距離を超えると発生す
ることが公知文献(溶接学会論文集、 vol、、 1
 、 no、2. P L36.1983)で知られて
いる。
Upcut occurs when the retreat distance of the molten pool becomes larger due to an increase in welding speed and exceeds a certain limit distance, as described in the known literature (Proceedings of the Welding Society of Japan, vol. 1).
, no, 2. P L36.1983).

したがって溶接条件毎にアップカット発生限界の溶融プ
ール後退距離を予め調べておき、該距離での溶融プール
存在の有無を監視し、境界部21からのエコー発生頻度
をフィードバックし、溶接条件を制御すれば、溶接欠陥
のない良好なビードを得ることが可能となる。
Therefore, it is necessary to check in advance the retreat distance of the molten pool at the limit of up-cut occurrence for each welding condition, monitor the presence or absence of the molten pool at that distance, feed back the frequency of echo generation from the boundary 21, and control the welding conditions. For example, it becomes possible to obtain a good bead without welding defects.

かかる観点に立脚して、溶融プール位置監視システムを
組み込んだ本発明のサブマージアーク溶接自動制御法の
一実施態様を第5図に示すフローチャートに従って詳述
すると、まず、被溶接材6の開先形状、目標溶は込み深
さ等の情報を第1図に示す演算・制御器19に入力し、
その情報をもとに、予め、該演算・制御器19の記憶装
置に作成しておいたデータベースより、基準溶接条件を
抽出しくステップ1:以下カッコ内ではステップという
語を省略)、溶接操作盤17を経由し、該溶接条件を溶
接電源等へ出力し、各機器に所定値をセットする(2)
。次に溶接を開始する(3)とともに、第1図で示した
探触子4から被溶接機6へ超音波を入射しく4)、第2
図に示す溶融境界部21のエコーを、第1図に示す演算
・制御器19に内蔵したA/D変換器でデジタル変換し
く5)、該演算・制御器19に入力してエコーの出現回
数をカウントし、溶接条件変更の判断を行う(6)。こ
こでエコーの出現回数によって溶接条件を変更するとし
たのは、数十秒に一回出現するようなレベルではアップ
カットは発生せず、このようなものに対して溶接条件を
変更しても意味はなく、アップカット発生の恐れがある
一秒間に複数回以上出現するものを対象とするためであ
る。
Based on this viewpoint, one embodiment of the submerged arc welding automatic control method of the present invention incorporating a molten pool position monitoring system will be described in detail according to the flowchart shown in FIG. 5. First, the groove shape of the workpiece 6 , information such as the target penetration depth is input to the calculation/controller 19 shown in FIG.
Based on that information, the standard welding conditions are extracted from the database created in advance in the storage device of the calculation/controller 19. Step 1: The word step is omitted in parentheses below), welding operation panel 17, the welding conditions are output to the welding power source, etc., and predetermined values are set in each device (2)
. Next, welding is started (3), and ultrasonic waves are made to enter the welding machine 6 from the probe 4 shown in FIG.
The echo of the molten boundary 21 shown in the figure is converted into digital by the A/D converter built in the calculation/controller 19 shown in FIG. is counted and a decision is made to change the welding conditions (6). The reason we decided to change the welding conditions based on the number of times echoes appear is that up-cuts will not occur at levels where echoes appear once every few tens of seconds, and there is no point in changing the welding conditions for such echoes. This is because it targets items that appear multiple times or more per second, which may cause upcuts.

アップカット発生防止は、上述した知見から溶接速度を
低下し、溶融プール後退距離を基準値以内に抑えること
が有効であり、溶接条件変更が必要と判断された場合に
は、溶接速度を現速度よす逐次低下させる信号を第1図
に示す溶接操作盤17を介し、溶接合車へ出力し、溶接
速度を低下せしめ(8)、アップカット発生を防止する
。但し、溶接速度が低下しても、溶は込み深さは一定値
に保持する必要があり、あらかじめ溶接速度毎に作成さ
れている溶接条件データベースを参照し、所定温は込み
深さを得るに必要な各電極電流値を抽出しく9)、第1
図に示す溶接操作盤17を介して各電極溶接電源14〜
16に該電流値を出力しく10)、溶接電流も同時に所
定値に変更させる。
Based on the above knowledge, it is effective to prevent upcut from occurring by lowering the welding speed and keeping the molten pool retreat distance within the standard value.If it is determined that it is necessary to change the welding conditions, the welding speed should be reduced to the current speed. A signal for gradually decreasing the welding speed is outputted to the welding wheel via the welding operation panel 17 shown in FIG. 1 to reduce the welding speed (8) and prevent the occurrence of upcut. However, even if the welding speed decreases, the penetration depth needs to be maintained at a constant value. To extract the required current value for each electrode9), the first
Each electrode welding power source 14 ~ through the welding operation panel 17 shown in the figure
16) to output the current value 10), and at the same time change the welding current to a predetermined value.

そして溶接終了を判断しく14)、溶接継続であれば溶
接部のエコー検知(4)からを繰返す。
Then, it is determined whether the welding is completed (14), and if welding is to be continued, the process from detecting the echo of the welded part (4) is repeated.

一方、溶接条件変更を必要としない場合には、現速度が
基準条件の限界速度であるかどうか判断しく7)、限界
速度未満であれば限界速度に近づくように溶接速度を上
述したような手段でアップさせる(11)。このとき溶
接電流値についても上述したのと同様に新しい溶接電流
値を抽出して(12)出力する(13)ことはいうまで
もない。
On the other hand, if it is not necessary to change the welding conditions, it is necessary to judge whether the current speed is the limit speed of the standard conditions7), and if it is less than the limit speed, the welding speed should be adjusted as described above to approach the limit speed. (11). At this time, it goes without saying that a new welding current value is extracted (12) and outputted (13) in the same manner as described above.

かかる制御を繰り返し行うことによって、溶接欠陥を抑
制しつつ、−完溶は込み深さを有するビードを得ること
ができる。
By repeating such control, it is possible to suppress welding defects and obtain a bead with a complete penetration depth.

本発明ではアッダカット発生限界溶融プール後退距離で
溶融プール挙動を監視することが重要であり、この距離
Xは溶接条件によって若干変化するが、5IIW未満で
は溶接入熱に関係なく、最終電極アークによってアーク
空洞が形成されており。
In the present invention, it is important to monitor the molten pool behavior at the molten pool retreat distance that is the limit for the occurrence of adda cuts.This distance A cavity is formed.

この区間では常に溶融欠陥境界からのエコーが検知され
てしまい、このエコーは溶接欠陥発生モニターとはなり
得ない。また、溶融プール後退が25noを超えるとい
づれの溶接速度、入熱でもアッダカットがほぼ連続的に
発生するため、これより大きな距離で溶融プール位置を
監視しても効果はない。
In this section, echoes from the fused defect boundary are always detected, and these echoes cannot be used as a welding defect occurrence monitor. Furthermore, if the molten pool retreat exceeds 25°, adder cuts will occur almost continuously at any welding speed and heat input, so monitoring the molten pool position at a distance greater than this will not be effective.

なお、本発明で溶接速度1.5m/min以上としたの
は、2電極以上のサブマージアーク溶接において、溶接
速度1.5m/+*in未満の低速溶接ではアッダカッ
ト発生の危険はなく特に本発明を必要としないからであ
る。
The welding speed of 1.5 m/min or higher in the present invention is because there is no risk of adder cut occurring in submerged arc welding with two or more electrodes, and in low-speed welding with a welding speed of less than 1.5 m/+*in, especially in the present invention. This is because it is not necessary.

また、探触子と被溶接材間の接触媒質としてはグリセリ
ン等のようなやや粘性の大きいものがよいが、探触子に
シュー等を設けそこに流水を満たす方法でもよい。要は
確実に被溶接材に超音波が伝搬できればよい。
Further, as the couplant between the probe and the material to be welded, it is preferable to use something with a slightly high viscosity such as glycerin, but it is also possible to provide a shoe or the like on the probe and fill it with running water. The point is that the ultrasonic waves should be able to reliably propagate to the material to be welded.

斜角探触子の屈折角は60°前後が最も感度がよいが、
予想される溶融境界21の溶は込み角度θ(第2図参照
)によって適宜選択されることが好ましい、探傷感度は
ノイズが発生しない程度でできるだけ高感度で検出した
方が有利である。また、周波数は特に気を使う必要はな
く、通常使用されている1〜5MHzで十分検知可能で
ある。
The angle of refraction of the angle probe is most sensitive at around 60°, but
It is preferable that the flaw detection sensitivity is appropriately selected depending on the expected penetration angle θ of the molten boundary 21 (see FIG. 2). It is advantageous to detect the flaw with as high a sensitivity as possible without generating noise. Further, there is no need to pay particular attention to the frequency, and the commonly used 1 to 5 MHz is sufficient for detection.

なお、第2図において、溶融境界21と探触子4の入射
点までの距離Yについては、予め溶融境界部21の溶は
込み角度θを予想して選択した探触子の屈折角、被溶接
材の板厚、スキップ数等から計算で求めてセットすれば
よいが、セット時のずれや溶は込み位置の変化で、第2
図に示す溶融境界部21の位置がずれた場合にはエコー
が戻らず、溶融プールが存在しなくとも、エコーを検知
できないことが生ずる。かかる場合のことも考慮すれば
、探触子4を溶接線と直角方向に往復走査させ、境界面
21を確実に捕捉することが望ましい。
In FIG. 2, the distance Y between the molten boundary 21 and the incident point of the probe 4 is determined by the refraction angle of the probe selected by predicting the penetration angle θ of the molten boundary 21 in advance. The setting can be calculated based on the plate thickness of the welding material, the number of skips, etc., but due to misalignment during setting or changes in the penetration position, the second
If the position of the molten boundary portion 21 shown in the figure is shifted, the echo will not return and the echo may not be detected even if there is no molten pool. Considering such a case, it is desirable to reciprocate the probe 4 in a direction perpendicular to the weld line to reliably capture the boundary surface 21.

この往復走査の振幅は大きくとる必要はなく10m前後
で十分である。しかしながら振動数(往復回数/5ee
)については、少な過ぎると検出漏れ区間が長くなると
いった問題点があり、確実な制御を行わしめるためには
溶接線方向の検出精度を2.5I以下にする必要がある
。このため、振動数は溶接速度をv (cw/5ac)
とすれば、2Xv(Hz)以上とすべきである。
The amplitude of this reciprocating scan does not need to be large, and around 10 m is sufficient. However, the vibration frequency (number of reciprocations/5ee
), if it is too small, there is a problem that the detection failure section becomes long, and in order to perform reliable control, the detection accuracy in the weld line direction needs to be 2.5I or less. Therefore, the frequency is the welding speed v (cw/5ac)
If so, it should be 2Xv (Hz) or more.

また、第2図において斜角探触子4の代りに表面波探触
子を用いれば上記のような前後走査の必要性がなく簡便
であると考えられるが、溶融境界 ′部21の溶は込み
角度θが大きい場合には、この部分のエコーを検知する
ことが不可能となり、溶は込み形状によって検出精度が
大きく異なってくるため、使用可能範囲が制限される。
In addition, if a surface wave probe is used instead of the angle probe 4 in FIG. 2, there is no need for the above-mentioned back-and-forth scanning and it is considered to be simpler, but the melting at the melting boundary '21 is If the penetration angle θ is large, it becomes impossible to detect echoes in this part, and the detection accuracy varies greatly depending on the shape of the penetration, which limits the usable range.

なお、検出探触子は単独でも十分な検出効果を発揮する
が、さらに高精度の検知を行う必要があれば、第1図の
探触子4と溶接部をはさんで対向した位置にもう一つの
探触子を向い合せて設置し、両側より溶融プールを検知
してもよい。
Note that the detection probe exerts sufficient detection effect even when used alone, but if it is necessary to perform even more precise detection, an additional probe can be installed at a position opposite to probe 4 in Fig. 1 across the welded part. It is also possible to install one probe facing each other and detect the molten pool from both sides.

上記に述べた実施態様では探触子を溶接線方向に対し、
定位置方式としたが、第1図に示す探触子4を固定せず
、最終電極からの後方25■までの範囲を溶接方向に対
し駆動せしめるようにし、該探触子位置をポテンショメ
ータ等で検知する機構を設け、第2図に示す溶融境界部
21のエコーの発生がなくなるように該探触子を移動せ
しめ、アークガウジング空洞と溶融プールとの境界面を
検知することによって溶接速度を可変してもよい。
In the embodiment described above, the probe is placed in the direction of the welding line.
Although the fixed position method was adopted, the probe 4 shown in Fig. 1 was not fixed, but was moved in the welding direction in a range up to 25 mm backward from the final electrode, and the probe position was adjusted using a potentiometer, etc. A detection mechanism is provided, and the probe is moved so as to eliminate the generation of echoes at the molten boundary portion 21 shown in FIG. 2, and the welding speed is varied by detecting the interface between the arc gouging cavity and the molten pool. You may.

すなわち、溶接スタート時には最終電極直後にセットさ
れた探触子は、まずアークガウジング空洞により溶融境
界部21からは連続的にエコーが検出される。このエコ
ー信号に従って、探触子の駆動装置がエコー信号の少な
くなる方向(溶接方向と反対方向)に探触子を移動せし
める0次にエコーの検出がなくなる位置まで探触子が移
動すると、今度は逆に溶接方向に向って駆動せしめるよ
うにすることによって、常に探触子の位置はアークガウ
ジング空洞と溶融プール境界面付近に位置することにな
る6そして、該探触子位置をポテンショメータ等で検知
し、あらかじめ、アッダカット発生限界距離として入力
していた基準値と比較し。
That is, at the start of welding, echoes of the probe set immediately after the final electrode are continuously detected from the molten boundary portion 21 by the arc gouging cavity. According to this echo signal, the probe drive device moves the probe in the direction where the echo signal decreases (the direction opposite to the welding direction). Conversely, by driving the probe in the welding direction, the probe is always positioned near the interface between the arc gouging cavity and the molten pool6.Then, the probe position is controlled by a potentiometer, etc. It is detected and compared with the reference value that was input in advance as the limit distance for adda cut occurrence.

該探触子位置が基準値を超えている場合には、溶接速度
を低減させ、逆に基準値より小さい場合には溶接速度を
増加し、常に基準値と一致させる方式を採用しても、全
く同様な効果が得られる。
Even if a method is adopted in which the welding speed is reduced when the probe position exceeds the reference value, and conversely when it is smaller than the reference value, the welding speed is increased so that it always matches the reference value, Exactly the same effect can be obtained.

〔実施例〕〔Example〕

3電極サブマージアーク溶接において、5M50材。 5M50 material in 3-electrode submerged arc welding.

板厚12.7msの鋼板を用い、基準溶接条件を第1電
極溶接電流1040A、溶接電圧31v、第2電極溶接
電流7g0A、溶接電圧33v、第3電極溶接電流62
0A、溶接電圧35Vとし、探触子位置を第3電極後方
22膿の位置にセットし、2スキツプで溶融プールを監
視した。なお、探触子の、溶接線方向と直角方向での前
後方向振動幅tまioam、振動数は15Hzであり、
使用した斜角探触子は5MHz、ジルコン・チタン酸鉛
系磁器振動子、高さX幅=10XIOmm、屈折角60
’ 、感度は70dB、接触媒質はグリセリンである。
Using a steel plate with a thickness of 12.7 ms, the standard welding conditions were: first electrode welding current 1040A, welding voltage 31V, second electrode welding current 7g0A, welding voltage 33V, third electrode welding current 62V.
The welding voltage was 0 A and the welding voltage was 35 V, the probe position was set at 22 pus behind the third electrode, and the molten pool was monitored in 2 skips. In addition, the longitudinal vibration width tioam and frequency of the probe in the direction perpendicular to the welding line direction are 15 Hz,
The angle probe used was 5 MHz, zircon-lead titanate ceramic resonator, height x width = 10 x IO mm, refraction angle 60
', sensitivity is 70 dB, couplant is glycerin.

そして、アッダカットが発生する溶接速度2.6m/m
inで溶接をスタートし、11秒経過後より溶融プール
監視信号に従って溶接条件を自動制御させた。その結果
、溶接速度2 、6 m /minの部分にアッダカッ
トが発生したが、その後自動制御させた部分ではアッダ
カットのない良好なビードが得られた。
The welding speed at which adda cut occurs is 2.6 m/m.
Welding was started at 11 seconds, and after 11 seconds, welding conditions were automatically controlled according to the molten pool monitoring signal. As a result, adder cuts occurred in the welding speeds of 2 and 6 m/min, but good beads without adder cuts were obtained in the parts where automatic control was subsequently applied.

第6図はその時の溶融境界部21のエコー高さ変化を経
時的に示したもので、溶接速度2.6m/1linの部
分にはアッダカットが発生したが、その後自動制御させ
た部分ではアッダカットのない良好なビードが得られた
。第6図はその時の溶融境界部21のエコー高さ変化を
経時的に示したもので、溶接速度2.6m/ll1in
で制御しない部分の前半側ではアッダカット発生となる
高レベルのエコーが多発しているが、溶接糖性自動的制
御を開始した11秒以降では、該エコーが減少し、溶接
速度2.4m/minまで自動制御されたアッダカット
発生のない部分の溶融境界部21のエコー高さの経時変
化は、第7図に示すように高レベルのエコーが全く発生
していないことがわかる。また、溶接電流値の制御によ
り、溶は込み深さは溶接速度2.6m/mxn+2.4
m/minともほぼ6Iと一定していた。
Figure 6 shows the change in echo height of the molten boundary 21 over time. Adder cuts occurred in the part where the welding speed was 2.6 m/1 lin, but no adder cuts occurred in the part where the welding speed was automatically controlled. No good beads were obtained. Figure 6 shows the change in echo height of the molten boundary 21 over time at that time, and shows the welding speed of 2.6m/11in.
In the first half of the part that is not controlled, high-level echoes that cause adder cuts occur frequently, but after 11 seconds when automatic welding sugar control is started, the echoes decrease and the welding speed is 2.4 m/min. As shown in FIG. 7, the change over time in the echo height of the molten boundary portion 21 in the automatically controlled portion where no adder cut occurs shows that no high-level echoes occur at all. In addition, by controlling the welding current value, the welding speed is 2.6 m/m x n + 2.4
Both m/min remained constant at approximately 6I.

〔発明の効果〕〔Effect of the invention〕

上記に述べた技術により、両面一層サブマージアーク溶
接のごとき、溶は込み深さ管理が重要である溶接法にお
いても、溶接欠陥発生を最小限に制御し、かつ、溶は込
み深さを一定に保持しつつ、最大溶接速度でアーク溶接
を自動制御することが可能となる。したがって無人溶接
を行う際についても、溶接欠陥発生による不良品製造の
恐れがなくなり、後工程での検査の省略など、省人、省
設備化等を実現でき、産業上の価値は極めて高い。
With the above technology, welding defects can be minimized and the penetration depth can be kept constant even in welding methods where control of penetration depth is important, such as double-sided submerged arc welding. It becomes possible to automatically control arc welding at the maximum welding speed while maintaining the maximum welding speed. Therefore, even when performing unmanned welding, there is no fear of manufacturing defective products due to welding defects, and it is possible to save labor and equipment by omitting inspections in post-processes, and has extremely high industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による3電極サブマージアーク溶接の
一実施態様を示す斜視図である。第2図は、第1図の1
部を示す図面であって探触子4の存在する位置の溶接方
向WDに対し直角な面での拡大断面図、第3図及び第4
図は、溶接線方向WDと平行な垂直面での透視図と超音
波探傷器のブラウン管正面図を組み合せた説明図である
。 第5図は2本発明のサブマージアーク溶接の一制御態様
を示すフローチャートである。第6図及び第7図は、第
2図に示す溶融境界部21を探触子4で検出したエコー
高さを経時的に示す波形図である。 1:第1電極     2:第2電極 3:第3(最終)電極  4:超音波斜角探触子5:ア
ークガウジング空洞 6:被溶接材     7:溶融プール8:電極ホルダ
ー   9:フラッグスIO=凝固金属   11〜1
3:ワイヤ送給モータ14〜16:溶接電源    1
7:溶接操作盤18:超音波探傷器   19:演算・
制御器20:溶接台車     21:溶融境界部22
:超音波経路    23:溶融スラブX:!&終電極
と超音波斜角探子との溶接線方向の距離 T:入射エコー    F:溶融境界部エコーG:ゲー
ト     WD:溶接方向 O:溶融境界部の溶は込み角度
FIG. 1 is a perspective view showing one embodiment of three-electrode submerged arc welding according to the present invention. Figure 2 is 1 of Figure 1.
FIGS. 3 and 4 are enlarged cross-sectional views taken in a plane perpendicular to the welding direction WD at the position where the probe 4 is present; FIGS.
The figure is an explanatory view that combines a perspective view on a vertical plane parallel to the welding line direction WD and a front view of a cathode ray tube of an ultrasonic flaw detector. FIG. 5 is a flowchart showing one control mode of submerged arc welding according to the present invention. 6 and 7 are waveform diagrams showing the echo heights detected by the probe 4 at the melting boundary portion 21 shown in FIG. 2 over time. 1: First electrode 2: Second electrode 3: Third (final) electrode 4: Ultrasonic angle probe 5: Arc gouging cavity 6: Welded material 7: Molten pool 8: Electrode holder 9: Flags IO= Solidified metal 11-1
3: Wire feeding motor 14-16: Welding power source 1
7: Welding operation panel 18: Ultrasonic flaw detector 19: Calculation/
Controller 20: Welding cart 21: Melting boundary portion 22
: Ultrasonic path 23: Molten slab X:! & Distance between the final electrode and the ultrasonic angle probe in the weld line direction T: Incident echo F: Melt boundary echo G: Gate WD: Welding direction O: Melt penetration angle of the melt boundary

Claims (2)

【特許請求の範囲】[Claims] (1)溶接線方向に一直線上に2本以上の溶接電極を配
列して、溶接速度1.5m/min以上で行う多電極サ
ブマージアーク溶接法において、最終電極後方5〜25
mmの位置での溶融プールの存在の有無を超音波によっ
て検出し、該位置に溶融プールが存在しない信号を得た
場合には溶接速度を低減することを特徴とする多電極サ
ブマージアーク溶接法。
(1) In a multi-electrode submerged arc welding method in which two or more welding electrodes are arranged in a straight line in the direction of the welding line and the welding speed is 1.5 m/min or more,
A multi-electrode submerged arc welding method characterized in that the presence or absence of a molten pool at a position of mm is detected by ultrasonic waves, and when a signal indicating that a molten pool does not exist at the position is obtained, the welding speed is reduced.
(2)溶接線方向に一直線上に2本以上の溶接電極を配
列して、溶接速度1.5m/min以上で行う多電極サ
ブマージアーク溶接法において、最終電極からその後方
25mmまでの範囲で、超音波探触子を溶接線と平行方
向に往復走査させ、アークガウジング空洞と溶融プール
との境界面を超音波によって検出し、検出時の超音波探
触子の最終電極からの距離が基準値と一致するように溶
接速度を増減することを特徴とする多電極サブマージア
ーク溶接法。
(2) In a multi-electrode submerged arc welding method in which two or more welding electrodes are arranged in a straight line in the direction of the welding line and performed at a welding speed of 1.5 m/min or more, in a range up to 25 mm behind the final electrode, The ultrasonic probe is scanned back and forth in a direction parallel to the weld line, and the interface between the arc gouging cavity and the molten pool is detected by ultrasonic waves, and the distance from the final electrode of the ultrasonic probe at the time of detection is the reference value. A multi-electrode submerged arc welding method characterized by increasing or decreasing the welding speed to match.
JP9385387A 1987-04-16 1987-04-16 Multi-electrode submerged arc welding method Pending JPS63260675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9385387A JPS63260675A (en) 1987-04-16 1987-04-16 Multi-electrode submerged arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9385387A JPS63260675A (en) 1987-04-16 1987-04-16 Multi-electrode submerged arc welding method

Publications (1)

Publication Number Publication Date
JPS63260675A true JPS63260675A (en) 1988-10-27

Family

ID=14093974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9385387A Pending JPS63260675A (en) 1987-04-16 1987-04-16 Multi-electrode submerged arc welding method

Country Status (1)

Country Link
JP (1) JPS63260675A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100313483B1 (en) * 1999-06-18 2001-11-17 김형벽ㅂ Automatic submerged arc welding machine with three welding torches for pipe with small internal diameter
RU2613831C1 (en) * 2015-12-03 2017-03-21 Акционерное общество "Выксунский металлургический завод" Method for submerged multiarc welding of metal products

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100313483B1 (en) * 1999-06-18 2001-11-17 김형벽ㅂ Automatic submerged arc welding machine with three welding torches for pipe with small internal diameter
RU2613831C1 (en) * 2015-12-03 2017-03-21 Акционерное общество "Выксунский металлургический завод" Method for submerged multiarc welding of metal products

Similar Documents

Publication Publication Date Title
US5304774A (en) Method and apparatus for monitoring weld quality
JP5278426B2 (en) Composite welding method and composite welding apparatus
WO2017015115A1 (en) Real-time analysis and control of electron beam manufacturing process through x-ray computed tomography
EP0110523B1 (en) Ultrasonic control of welding
JP4109911B2 (en) Multi-layer welding method
EP3556506A2 (en) A welding process and welding apparatus using a probe
JPS63260675A (en) Multi-electrode submerged arc welding method
JP2003290946A (en) Apparatus for evaluating laser welding quality, and process and equipment for laser welding
EP4124859A1 (en) Weld inspection device, welding system, and weld inspection method
JP2003290921A (en) Multi-layer welding method, and multi-layer automatic welding equipment
JP3407655B2 (en) Laser welding monitoring method
JP2751780B2 (en) Laser beam processing equipment
EP0300013B1 (en) Welding method and apparatus
JP2010064086A (en) Composite welding method and composite welding apparatus
EP0029070B1 (en) Apparatus for surface inspection and treatment of steel members
JP3261516B2 (en) Automatic welding method and automatic welding device
JP2009034722A (en) Laser welding method
JP4341172B2 (en) Control method of torch position in multi-layer welding
JP3087600B2 (en) Laser welding machine
JPH0647171B2 (en) Welding controller
JP3098091B2 (en) Laser welding control method and device
CN113770657B (en) Online prediction method and device for abrasion loss of laser forging composite arc welding seam
JP2003181644A (en) Multi-layer pad welding method for x-shaped groove joint
CN110369825B (en) Electromagnetic ultrasonic method and system for inhibiting hump of molten metal in additive manufacturing
JP2004090068A (en) Laser welding process