JPS63260082A - Floating gate type nonvolatile semiconductor memory device - Google Patents
Floating gate type nonvolatile semiconductor memory deviceInfo
- Publication number
- JPS63260082A JPS63260082A JP9437087A JP9437087A JPS63260082A JP S63260082 A JPS63260082 A JP S63260082A JP 9437087 A JP9437087 A JP 9437087A JP 9437087 A JP9437087 A JP 9437087A JP S63260082 A JPS63260082 A JP S63260082A
- Authority
- JP
- Japan
- Prior art keywords
- polycrystalline silicon
- layer
- signal line
- insulating film
- diffusion layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims description 21
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 32
- 239000012535 impurity Substances 0.000 claims abstract description 22
- 229910052751 metal Inorganic materials 0.000 claims abstract description 6
- 239000002184 metal Substances 0.000 claims abstract description 6
- 239000010410 layer Substances 0.000 claims description 62
- 238000009792 diffusion process Methods 0.000 claims description 36
- 230000002265 prevention Effects 0.000 claims description 9
- 239000011229 interlayer Substances 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052710 silicon Inorganic materials 0.000 abstract description 3
- 239000010703 silicon Substances 0.000 abstract description 3
- 230000002950 deficient Effects 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- 229910052814 silicon oxide Inorganic materials 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 238000001947 vapour-phase growth Methods 0.000 description 2
- 229930091051 Arenine Natural products 0.000 description 1
- 244000046146 Pueraria lobata Species 0.000 description 1
- 235000010575 Pueraria lobata Nutrition 0.000 description 1
- HAYXDMNJJFVXCI-UHFFFAOYSA-N arsenic(5+) Chemical compound [As+5] HAYXDMNJJFVXCI-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
Landscapes
- Design And Manufacture Of Integrated Circuits (AREA)
- Non-Volatile Memory (AREA)
Abstract
Description
【発明の詳細な説明】
〔−東上の利用分野〕
本発明は、浮遊ゲート型不揮発性半導体記憶装置に関し
、特に大集積EP几0−に用いられる冗長回路に関する
。DETAILED DESCRIPTION OF THE INVENTION [-Field of Application of Togami] The present invention relates to a floating gate type nonvolatile semiconductor memory device, and particularly to a redundant circuit used in a large-scale integrated EP.
従来から、大集積記憶装置の歩留)向上に、冗長回路(
不良救済回路)を用いるのが有効であると言われている
。そこで、不良ヱjトに接続している配線を非導通状態
にすることが必要となる。Traditionally, redundant circuits (
It is said that it is effective to use a defect relief circuit. Therefore, it is necessary to make the wiring connected to the defective area non-conductive.
それには種々の方法があるが(例えば、多結晶シリコン
配線を大電流fe流すことにより切断する方法、配線に
レーザーを照射して切断する方法等)、EPROMセル
・プレイにお1ハては、紫外線を照射してもすぐには消
去されないような万策を施し九PROM 素子を用い
るのが、プロセス簡略化の面からは望ましいと考えられ
る。There are various methods for this (for example, a method of cutting polycrystalline silicon wiring by passing a large current FE, a method of cutting by irradiating the wiring with a laser, etc.), but the first method for EPROM cell play is: From the viewpoint of process simplification, it is considered desirable to use nine PROM elements that do not erase immediately even when irradiated with ultraviolet rays.
従来のこの種の技術を、第5図を用いて説明する。A conventional technique of this kind will be explained using FIG. 5.
紫外線が酸化膜中を伝播し、冗長回路内のPfl累子の
浮遊ゲートに到達するとプログラムの内容が消去される
のであるから、セル部を紫外線に対し、可能な限υ遮断
する(ドレインゲートに接紐する配線を引き出すため、
完全に遮断することはできない。)というのが基本的な
考え方である。When ultraviolet rays propagate through the oxide film and reach the floating gate of the Pfl resistor in the redundant circuit, the program contents will be erased. Therefore, the cell area should be shielded from ultraviolet rays as much as possible (the drain gate should be To pull out the connecting wire,
It cannot be completely blocked. ) is the basic idea.
第5図(a)は従来例の主要部を示す半導体チップの平
面因(ただし、便宜上、最上層のソース1!極104は
破線で示し、拡散層に斜線を施してるる)、第5図(b
)は第5図(alのA−A’線断面因である。FIG. 5(a) is a plan view of a semiconductor chip showing the main parts of a conventional example (however, for convenience, the source 1! pole 104 in the top layer is shown with a broken line, and the diffusion layer is shaded). (b
) is a cross-sectional view taken along line A-A' of FIG. 5 (al).
PROM素子(浮遊ゲート型MUD)ランジスタ)とソ
ース拡散層に連結したnjJ不純物拡散層2′で一部欠
落部を有して囲い(図の実施例では3万)アルミニワム
膜で280M素子の上方t−覆い、n現不純物拡散層2
′とコンタクト孔3で接続することによ)上方及び横3
万からの紫外線の入射を阻止する。そのアルミニクム膜
はソース電極となる。The njJ impurity diffusion layer 2' connected to the PROM element (floating gate type MUD transistor) and the source diffusion layer has a partially missing part and is surrounded by an aluminum film (30,000 in the example shown) above the 280M element. - Covering, n-current impurity diffusion layer 2
’ by connecting with contact hole 3) upper and lateral 3
Blocks ultraviolet rays from entering the room. The aluminum film becomes the source electrode.
ゲート信号線5(第二層の多結晶シリコン配線)ドレイ
ン信号線6(ドレイン拡散層7とコンタクト8で接げさ
れt第二層の多結晶シリコン配線)は、n型不純物拡散
層4の形成されていない欠落部(図では下刃)から外に
引き出す。Gate signal line 5 (second layer polycrystalline silicon wiring) and drain signal line 6 (second layer polycrystalline silicon wiring connected to drain diffusion layer 7 through contact 8) are connected to the formation of n-type impurity diffusion layer 4. Pull it out from the missing part (lower blade in the figure) that is not attached.
の出入口(すなわち、ロ型不純物拡散層金形成していな
い部分)から入射して、酸化膜中を伝播してくるものに
限られる。当然伝播距離が大きい程PROM素子に到達
し九時の紫外線の強度が弱まるため、消去されにくくな
る。また、紫外線が入射する部分の酸化膜の断面積が小
さい程、すなわち、第5図(ト)のT。Xが小さい根、
入射できる紫外線の量は減少し、セルは消去されにくく
なる。It is limited to those that enter through the entrance and exit of the oxide film (that is, the portion where the R-type impurity diffusion layer is not formed with gold) and propagate through the oxide film. Naturally, the longer the propagation distance, the weaker the intensity of the 9 o'clock ultraviolet light will be when it reaches the PROM element, making it more difficult to erase. Moreover, the smaller the cross-sectional area of the oxide film in the part where the ultraviolet rays are incident, that is, T in FIG. 5(G). Roots with small X,
The amount of UV light that can enter is reduced, making the cell more difficult to erase.
上述した従来の浮遊ゲート型不揮発性半導体記、l置″
′″″PR,OM素頬消舖間6ゞけ社6に、ドレイン信
号線、ゲート信号線の出入口からの紫外線の入射量を減
らすことを考えるとs Toxを小さくする必要がるる
か、セル・プレイ全体の酸化膜厚を減らすと、寄生M(
JS)ランジスタの反転電圧が低下するという問題が生
じる。また、ドレイン信号線、ゲート信号線の出入口の
部分のみの酸化膜厚を減らせばよいけれども、工程数の
増加、製造プロセスの複雑化を招かずにこれを実現する
手段は知られていない。The conventional floating gate type non-volatile semiconductor described above,
``''''PR, OM bare cheek extinguishing machine 6. When considering reducing the amount of ultraviolet rays incident from the entrance and exit of the drain signal line and gate signal line, is it necessary to reduce s Tox?・If the oxide film thickness of the entire play is reduced, the parasitic M(
JS) A problem arises in that the inversion voltage of the transistor decreases. Further, although it would be sufficient to reduce the oxide film thickness only at the entrance and exit portions of the drain signal line and gate signal line, there is no known means to achieve this without increasing the number of steps or complicating the manufacturing process.
本発明の浮遊ゲート型不揮発性半導体記憶装置は、第一
導電型半導体基板に、浮遊ゲート電極及び制御ゲート電
極を有するメモリートランジスタからなるメモリーセル
マトリクス及び前記メモリートランジスタと同型のトラ
ンジスタt−PROM素子として有する冗長回路が集積
されてなる浮遊ゲート型不揮発生半導体記憶装置におい
て、前記P −ROM素子の制御ゲート電極及びドレイ
ン拡散層にそれぞれ接続されたゲート信号線及びドレイ
ン信号flA直下部に欠落部を有して前記PROM素子
を取囲み前記PROM素子のソース拡散層に連結して設
けられた第二導電型不純物拡散層と、前記欠落部とその
近傍に前記浮遊ゲート直下の第一のゲート絶縁膜と同じ
厚さの第一の絶縁膜を介してそれぞれ設けらnた、前記
浮遊ゲート電極と同じ厚さの第一の多結晶シリコン層か
らなる前記ゲート信号線の部分領域及び前記ドレイン信
号線の部分領域と、これらの部分領域のそれぞれの表面
に設けられ、前記制御ゲート電極直下の第二のゲート絶
縁膜と同じ厚さの第二の絶縁膜と、前記第一、第二の絶
縁膜を覆って選択的に設けられ、前記制御ゲート電極と
同時に形成された第2の多結晶シリコン層からなる短絡
防止膜と、前記第二導電型不純物拡散層と並行して設け
られた1層間絶縁膜のコンタクト孔を介してそれぞれ前
記第二導電型不純物拡散層及び前記短絡防止膜と接続し
、前記P−ROM素子とその近傍の上方を覆う金属膜と
を有するというものである。The floating gate type nonvolatile semiconductor memory device of the present invention includes a memory cell matrix consisting of a memory transistor having a floating gate electrode and a control gate electrode, and a transistor t-PROM element of the same type as the memory transistor, on a first conductivity type semiconductor substrate. In a floating gate non-volatile semiconductor memory device in which a redundant circuit is integrated, a missing portion is provided directly below a gate signal line and a drain signal flA connected to a control gate electrode and a drain diffusion layer of the P-ROM element, respectively. a second conductivity type impurity diffusion layer surrounding the PROM element and connected to the source diffusion layer of the PROM element, and a first gate insulating film immediately below the floating gate in the missing part and in the vicinity thereof. A partial region of the gate signal line and a portion of the drain signal line are each formed of a first polycrystalline silicon layer having the same thickness as the floating gate electrode, and are provided through a first insulating film having the same thickness. and a second insulating film provided on the surface of each of these partial regions and having the same thickness as the second gate insulating film directly under the control gate electrode, and covering the first and second insulating films. a short-circuit prevention film made of a second polycrystalline silicon layer selectively provided at the same time as the control gate electrode; and an interlayer insulating film provided in parallel with the second conductivity type impurity diffusion layer. A metal film is provided, which is connected to the second conductivity type impurity diffusion layer and the short-circuit prevention film through contact holes, respectively, and covers the P-ROM element and its vicinity.
次に、本発明の実施例について図面を参照して説明する
。Next, embodiments of the present invention will be described with reference to the drawings.
第1図(a)は本発明の第1の実施例の主要部を示す半
導体チップの平面図(他し、便宜上、最上ノーの金属膜
に破線で示し、拡散層には斜線を施しであるが、切断面
を意味しているわけではない)、第1図(b)は第1図
(a)のA−A’i断面図、第1図(C1は第1図(a
lのB−8’線断面図である。FIG. 1(a) is a plan view of a semiconductor chip showing the main parts of the first embodiment of the present invention (for convenience, the uppermost metal film is shown with broken lines, and the diffusion layer is shown with diagonal lines). 1(b) is a sectional view taken along the line A-A'i in FIG. 1(a), and FIG.
FIG. 1 is a sectional view taken along line B-8' of FIG.
この実施例は、p型ウェル51を形成しhp型シリコン
基板50に、浮遊ゲート’ft@及び制御ゲート電極金
有するメモリートランジスタからなるメモリーセルマト
リクス及び前述のメモリートランジスタと同型のトラン
ジスタ2PR,OM 素子として有する冗長回路が集
積されてなる浮遊ゲート型不揮発、)’L半導体記憶装
置において、前述のPROM素子の制御ゲート電極l及
びドレイン拡散層7にそれぞれ接続されたゲート信号線
5及びドレイン信号線6直下部に欠落部を有して前述の
PROM素子を取囲み前述のPROM素子のソース拡散
層2に連結して設けられたnfi不純物拡散層2′と、
前述の欠落部とその近傍に前述の浮遊ゲート直下の第一
のゲート絶縁膜(9)と同じ厚さの第一の絶縁膜12を
介してそれぞれ設けられた、前述の浮遊ゲート電極と同
じ厚さの第一の多結晶クリコン層からなるゲート信号線
の部分領域13a及びドレイン信号線の部分領域13b
と、これらの部分領域のそれぞれの表面に設けられ、制
御ゲート電極l直下の第二のゲート絶縁膜11と同じ厚
さの第二の絶縁膜14と、第一、第二の絶縁膜12.1
4を覆って選択的に設けられ、制御ゲート電極lと同時
に形成されt第二の多結晶シリコン層からなる短絡防止
膜15と 、%型不純物拡散層2′と並行して設けられ
た、眉間絶縁$62のコンタクト孔を介してそれぞれn
型不純物拡散層2′及び短絡防止膜15と接続し、前述
のPROM素子とその近傍の上方を覆う金属膜(4)と
を有するというものである。In this embodiment, a p-type well 51 is formed in an hp-type silicon substrate 50, a memory cell matrix is formed of a memory transistor having a floating gate 'ft@ and a control gate electrode, and a transistor 2PR, OM element of the same type as the aforementioned memory transistor. In a floating gate non-volatile semiconductor memory device in which a redundant circuit is integrated, a gate signal line 5 and a drain signal line 6 are connected to the control gate electrode l and drain diffusion layer 7 of the PROM element, respectively. an NFI impurity diffusion layer 2' having a cutout directly below and surrounding the PROM element and being connected to the source diffusion layer 2 of the PROM element;
A first insulating film 12 having the same thickness as the first gate insulating film (9) immediately below the floating gate is provided in the missing portion and the vicinity thereof, and the same thickness as the floating gate electrode is provided. A partial region 13a of the gate signal line and a partial region 13b of the drain signal line are made of the first polycrystalline silicon layer.
, a second insulating film 14 provided on the surface of each of these partial regions and having the same thickness as the second gate insulating film 11 directly under the control gate electrode l, and the first and second insulating films 12 . 1
A short-circuit prevention film 15 made of a second polycrystalline silicon layer is selectively provided covering the control gate electrode 1, and is formed simultaneously with the control gate electrode 1. each through contact holes of insulation $62
A metal film (4) is connected to the type impurity diffusion layer 2' and the short-circuit prevention film 15, and covers the above-mentioned PROM element and its vicinity.
すなわち、ドレイン拡散層7は、コンタクト8によシ第
二の多結晶シリコン層16に接続しておシ、ドレイン信
号線6の一部を構成する。17は同じく第二の多結晶シ
リコン層でゲート信号線5の一部を構成する。メモリー
ト2ンジスタと同型の280M素子を、n型不純物拡散
層2′がほぼ完全に取囲み、囲われた領域内で16.1
7がそれぞれコンタク)18.19によ〕、第一層の多
結晶シリコン層13a、13bに接続する。これら第一
層の多結晶シリコン層が、n型不純物拡散層2′の欠落
部上を横断し、その部分で第二の多結晶シリコン層13
a、13bを、薄い酸化膜である第二の絶縁11111
4を介して覆っている。そして、n型不純物拡散層2′
は、PROM素子を完全に囲い込むべく、コンタクト孔
3によシ、ソース電極4と接続している。That is, the drain diffusion layer 7 is connected to the second polycrystalline silicon layer 16 through the contact 8 and constitutes a part of the drain signal line 6. Similarly, 17 is a second polycrystalline silicon layer that constitutes a part of the gate signal line 5. A 280M element of the same type as a memory transistor 2 transistor is almost completely surrounded by an n-type impurity diffused layer 2', and 16.1
7 are connected to the first polycrystalline silicon layers 13a and 13b by contacts 18 and 19, respectively. These first polycrystalline silicon layers cross over the missing portions of the n-type impurity diffusion layer 2', and the second polycrystalline silicon layer 13 crosses over the missing portions of the n-type impurity diffusion layer 2'.
a, 13b as a second insulator 11111 which is a thin oxide film.
Covered through 4. And n-type impurity diffusion layer 2'
is connected to the source electrode 4 through the contact hole 3 so as to completely surround the PROM element.
かかる構造において、第1図1b)から明らかなように
、ドレイン信号線6、ゲート信号線5の出入口での紫外
線の入射は薄い酸化シリコン膜からなる第一の絶縁膜1
2及び第二の絶縁膜14の部分でのみ可能で桑シ、従来
の構造に比べ、飛躍的に紫外線の入射量を減らすことが
できる。In such a structure, as is clear from FIG. 1b), the incidence of ultraviolet rays at the entrances and exits of the drain signal line 6 and gate signal line 5 is caused by the first insulating film 1 made of a thin silicon oxide film.
This is possible only in the second and second insulating films 14, and the amount of incident ultraviolet rays can be dramatically reduced compared to the conventional structure.
次に、本発明の製造方法について述べる。Next, the manufacturing method of the present invention will be described.
第2図(a)〜(f)は、本発明の第1の実施例の製造
方法を説明するための工程順に配置した半導体チップの
縦断面図であシ、最終工程では第1図(C)と同じ図に
なる。第3図1!3〜(f)は同じく本発明の第1の実
施例を説明するための工程順に配置した半導体チップの
横断面図であシ、最終工程では第1図(b)と同じにな
る。2(a) to 2(f) are vertical cross-sectional views of semiconductor chips arranged in the order of steps for explaining the manufacturing method of the first embodiment of the present invention. ). Fig. 3 1! 3 to (f) are cross-sectional views of the semiconductor chip arranged in the order of steps for explaining the first embodiment of the present invention, and the final process is the same as Fig. 1 (b). become.
まず、第2図(a)、第3図ta> K示すように、P
屋シリコン基板50の表面の一部に、P型ウェル51を
形成し、その後、通常の選択酸化法によシ表面の一部に
厚い二酸化シリコン膜からなるフィールド酸化膜52を
形成し、更に、第一のゲート絶縁膜等を形成すべく第一
の絶縁膜12を設ける。次に気相成長法等によシ、第一
の多結晶シリコン層53を形成しパターニングを行う。First, as shown in Fig. 2(a) and Fig. 3 ta>K, P
A P-type well 51 is formed on a part of the surface of a silicon substrate 50, and then a field oxide film 52 made of a thick silicon dioxide film is formed on a part of the surface by a normal selective oxidation method. A first insulating film 12 is provided to form a first gate insulating film and the like. Next, a first polycrystalline silicon layer 53 is formed and patterned using a vapor phase growth method or the like.
次に、第2図(b)、第3図(b)に示すように熱酸化
法によシ、薄いシリコン酸化膜54を形成し、写真蝕刻
法によシ後に第二の多結晶シリコン層と接続すべき部位
のシリコン酸化膜54を除去し、コンタクト孔55,5
6.57を設ける。lOはPROM素子の浮遊ゲート電
極、13aはゲート信号線の部分領域、13bはドレイ
ン信号線の部分領域であシいずれも第一の多結晶シリコ
ン層で形成される。Next, as shown in FIGS. 2(b) and 3(b), a thin silicon oxide film 54 is formed by thermal oxidation, and a second polycrystalline silicon layer is formed by photolithography. The silicon oxide film 54 in the portions to be connected to the contact holes 55, 5 is removed.
6.57 shall be provided. 10 is a floating gate electrode of a PROM element, 13a is a partial region of a gate signal line, and 13b is a partial region of a drain signal line, all of which are formed of the first polycrystalline silicon layer.
次に気相成長法等によ)第二の多結晶シリコン層58を
形成し、さらに熱酸化法によシ薄い酸化シリコン膜59
を形成する。Next, a second polycrystalline silicon layer 58 is formed (by a vapor phase growth method, etc.), and a thin silicon oxide film 59 is further formed by a thermal oxidation method.
form.
次に、第2図(C)、第3図(C)に示すように、エツ
チングされ難いホトレジストのようなマスク材60を選
択的に形成して、これをマスクにしてエツチングを行な
う。次に、第2図(d)、第3図(d)K示すようにマ
スク材60を除去し、第一の多結晶シリコン層を残すべ
き部分に新たにアスク材61を形成し53at−更にパ
ターニング除去する。この時、PROM素子を形成すべ
きところでは、酸化シリコン膜59が耐エツチングのマ
スクとなって、第二の多結晶7リコン層58にセルフ・
アラインに533がパターニングされる。Next, as shown in FIGS. 2(C) and 3(C), a mask material 60 such as a photoresist that is difficult to be etched is selectively formed, and etching is performed using this as a mask. Next, as shown in FIGS. 2(d) and 3(d)K, the mask material 60 is removed, and a new mask material 61 is formed in the area where the first polycrystalline silicon layer is to be left. Remove patterning. At this time, in the area where the PROM element is to be formed, the silicon oxide film 59 serves as an etching-resistant mask, and the second polycrystalline silicon layer 58 is self-protected.
533 is patterned in alignment.
次に、第2図(C)、第3図(e)に示すように、マス
ク材61f:除去し、熱酸化法によ)、第二の絶縁膜1
4t−形成し1例えばヒ素のイオン注入を行い、ドレイ
ン拡散層7、ソース拡散層2及びn型不純物拡散層2′
を形成する。Next, as shown in FIG. 2(C) and FIG. 3(e), the mask material 61f (removed and thermally oxidized), the second insulating film 1
1. For example, arsenic ion implantation is performed to form a drain diffusion layer 7, a source diffusion layer 2, and an n-type impurity diffusion layer 2'.
form.
次に第2図(f)、第3図(f)に示すように、層間絶
縁111I62を形成し、コンタクト孔63a、63b
。Next, as shown in FIG. 2(f) and FIG. 3(f), interlayer insulation 111I62 is formed, and contact holes 63a, 63b are formed.
.
・・・・・・を開孔し、アルミニウムを被層した後、パ
ターニングを行いソース電極4t−形成する。After opening a hole and covering it with aluminum, patterning is performed to form a source electrode 4t.
第4図(a)は本発明の第2の実施例の主要部を示す半
導体チップの平面図、第4図(b)は第4図(a)のA
−A’線断面図である。FIG. 4(a) is a plan view of a semiconductor chip showing the main parts of the second embodiment of the present invention, and FIG. 4(b) is an A of FIG. 4(a).
-A' line sectional view.
80si、80b、80cは、第二の多結晶クリコン層
を形成する前に酸化膜を除去′しておく部位(ダイレク
ト・コンタクト)である。第4図(b)から明らかなよ
うに、この実施例では第1の実施例に比ベトレイン信号
線6.ゲート信号線5の出入口での酸化膜の断面積がさ
らに小さくなっているため、紫外線の入射量をよ〕低減
できるという利点がある@
なお、以上の実施例に訃いて短絡防止膜15f:設ける
理由は次の通)である。80si, 80b, and 80c are portions (direct contacts) from which the oxide film is removed before forming the second polycrystalline silicon layer. As is clear from FIG. 4(b), in this embodiment, the train signal line 6. Since the cross-sectional area of the oxide film at the entrance and exit of the gate signal line 5 is further reduced, there is an advantage that the amount of incident ultraviolet rays can be further reduced. The reason is as follows.
ゲート信号線5.ドレイン信号IIII!6の上に従来
例のように層間絶縁膜があると紫外線が入プ易りが、そ
うかといってこれを除去し、大きなコンタクト孔を設け
ると、これらの信号線上の薄−酸化シリコン膜に損傷が
生じソース電極と短絡してしまう。しかし1本発明のよ
うに短絡防止膜があれば、コンタクト孔を設けるとき前
述の酸化シリコン膜は保護されているから問題はない。Gate signal line5. Drain signal III! If there is an interlayer insulating film on top of 6 as in the conventional example, ultraviolet rays will easily enter, but if this is removed and a large contact hole is provided, the thin silicon oxide film on these signal lines will be exposed. Damage occurs and a short circuit occurs with the source electrode. However, if there is a short-circuit prevention film as in the present invention, there is no problem because the silicon oxide film mentioned above is protected when forming the contact hole.
この短絡防止膜は紫外線を通さないので都合がよいわけ
である。This short-circuit prevention film is convenient because it does not allow ultraviolet rays to pass through.
本発明は浮遊ゲート屋トランジスタを製造するのと同じ
プロセス数で実現できることは以上の説明から明らかで
ある@
n型不純物拡散廣て取囲まれた領域にPROM素子が一
つ設けら詐ている例について説明し九が、複数のPRO
M素子を設けてもよいことは改めて詳細に説明するまで
もなく明らかなことである。It is clear from the above explanation that the present invention can be realized with the same number of processes as manufacturing a floating gate transistor. There are nine explanations for multiple PROs.
It is obvious that M elements may be provided without further detailed explanation.
以上説明したように、本発8Aは冗長回路のPROM素
子をソース拡散層で囲い、ドレイン信号線及びゲート信
号線t%第一の多結晶シリコン層でソース拡散層に連結
し九第二導電型不純物拡散層上を横断させて引き出し、
さらにその横断している部分で、第一の多結晶シリコン
層を薄い酸化膜を介して第二の多結晶シリコン層で覆い
、この第二の多結晶シリコン層上をも含め、PROMi
子又はP−BυM素子群を完全に囲うように第二4電凰
不純物拡散層と金属層とを接続させることによ!!>、
’<L米例に比ベトレイン信号線ゲート信号線の出入口
での酸化膜の断面積を容易にかつ安定に小さくし、紫外
線の入射量を飛躍的に低減できて、よシ消去されにくい
PROM素子を得ることができ、浮遊ゲート型不揮発性
半導体装置の信頼性が向上する効来がある。As explained above, in the present invention 8A, the PROM element of the redundant circuit is surrounded by the source diffusion layer, and the drain signal line and the gate signal line are connected to the source diffusion layer by the first polycrystalline silicon layer. Pull it out across the impurity diffusion layer,
Further, in the traversing portion, the first polycrystalline silicon layer is covered with a second polycrystalline silicon layer through a thin oxide film, and the PROMi
By connecting the second fourth impurity diffusion layer and the metal layer so as to completely surround the element group or the P-BυM element group! ! >,
PROM element that can easily and stably reduce the cross-sectional area of the oxide film at the entrance and exit of the train signal line gate signal line and dramatically reduce the amount of incident ultraviolet rays, making it difficult to erase. This has the effect of improving the reliability of floating gate type nonvolatile semiconductor devices.
第1図(alは本発明の第一の実施例の主要部を示す半
導体チップの平面図、第1図(blは、第1図(alの
A−A’線fR面図、第1図(C)は、第1図(a)の
B−B’線断面N、第2図(a)〜(f)及び第3図(
a) 〜(f)はそれぞれ本発明の第1の実施例の製造
方法を説明する友めの半導体チップの縦断面図及び横断
面図を示す工程図、第4図(alは本発明の第2の実施
例の主要部を示す半導体チップの平面図、第4図(b)
は第4図(a)のA−A′線断面図、第5図(a)は、
従来の実施例の主要部を示す半導体チップの平面図、第
5図(blは第5図(a)のA−A’線断面図である。
l・・・・・・制御ゲート電極、2・・・・・・ソース
拡散ノー、2′・・・・・・n型不純物拡散層、3・・
・・・・コンタクト孔。
4・・・・・・ソース電極、5・・・・・・ゲート信号
線、6・・・・・・ドレイン信号線、7・・・・・・ド
レイン拡散I彌、8・・・・・・コンタクト、9・・・
・・・第一のゲート絶縁膜、°10・・・・・・浮遊ゲ
ート電極、11・・・・・・第二のゲート絶縁膜、12
・・・・・・第一の絶縁膜、13a・・・・・・ゲート
信号線の部分領域、13b・・・・・・ドレイン信号線
の部分領域、14・・・・・・第二の絶縁膜% 15・
・・・・・短絡防止膜、50・・・・・・pffL/1
7=+ン基板、51・旧・・pWワエル、52・・・・
・・フィールド酸化膜、53a〜53d・・・・・・第
一の多結晶シリコン層、54・・・・・・シリコン酸化
膜、55〜57・・・・・・コンタクト孔、58・川・
・第二の多結晶シリコン層、59・・・・・・薄い酸化
シリコン[,60,61・・・・・・レジスト材、62
・川・・/M絶縁膜%63a、63b・・・・・・コン
タクト孔。
13b
葛3図
第4区
第、5図FIG. 1 (al is a plan view of a semiconductor chip showing the main parts of the first embodiment of the present invention, FIG. 1 is a plan view of a semiconductor chip showing main parts of the first embodiment of the present invention, (C) shows cross section N along line BB' in Fig. 1(a), Fig. 2(a) to (f), and Fig. 3(
a) to (f) are process diagrams showing a vertical cross-sectional view and a cross-sectional view of a companion semiconductor chip, respectively, for explaining the manufacturing method of the first embodiment of the present invention, and FIG. FIG. 4(b) is a plan view of a semiconductor chip showing the main parts of the second embodiment.
is a sectional view taken along the line A-A' in Fig. 4(a), and Fig. 5(a) is
FIG. 5 is a plan view of a semiconductor chip showing the main parts of a conventional embodiment (bl is a cross-sectional view taken along the line AA' in FIG. 5(a). l... Control gate electrode, 2 ...Source diffusion no, 2'...N-type impurity diffusion layer, 3...
...Contact hole. 4...Source electrode, 5...Gate signal line, 6...Drain signal line, 7...Drain diffusion I, 8...・Contact, 9...
...First gate insulating film, °10...Floating gate electrode, 11...Second gate insulating film, 12
...First insulating film, 13a... Partial region of gate signal line, 13b... Partial region of drain signal line, 14... Second Insulating film% 15・
...Short circuit prevention film, 50...pffL/1
7=+N board, 51・old...pW Wael, 52...
...Field oxide film, 53a-53d...First polycrystalline silicon layer, 54...Silicon oxide film, 55-57...Contact hole, 58.
・Second polycrystalline silicon layer, 59...Thin silicon oxide [,60,61...Resist material, 62
・River.../M insulating film %63a, 63b...Contact hole. 13b Kuzu 3 figure 4th section, 5th figure
Claims (1)
ート電極を有するメモリートランジスタからなるメモリ
ーセルマトリクス及び前記メモリートランジスタと同型
のトランジスタをPROM素子として有する冗長回路が
集積されてなる浮遊ゲート型不揮発性半導体記憶装置に
おいて、前記PROM素子の制御ゲート電極及びドレイ
ン拡散層にそれぞれ接続されたゲート信号線及びドレイ
ン信号線直下部に欠落部を有して前記PROM素子を取
囲み前記PROM素子のソース拡散層に連結して設けら
れた第二導電型不純物拡散層と、前記欠落部とその近傍
に前記浮遊ゲート直下の第一のゲート絶縁膜と同じ厚さ
の第一の絶縁膜を介してそれぞれ設けられた、前記浮遊
ゲート電極と同じ厚さの第一の多結晶シリコン層からな
る前記ゲート信号線の部分領域及び前記ドレイン信号線
の部分領域と、これらの部分領域のそれぞれの表面に設
けられ、前記制御ゲート電極直下の第二のゲート絶縁膜
と同じ厚さの第二の絶縁膜と、前記第一、第二の絶縁膜
を覆つて選択的に設けられ、前記制御ゲート電極と同時
に形成された第二の多結晶シリコン層からなる短絡防止
膜と、前記第二導電型不純物拡散層と並行して設けられ
た、層間絶縁膜のコンタクト孔を介してそれぞれ前記第
二導電型不純物拡散層及び前記短絡防止膜と接続し、前
記PROM素子とその近傍の上方を覆う金属膜とを有す
ることを特徴とする浮遊ゲート型不揮発性半導体記憶装
置。A floating gate type nonvolatile semiconductor in which a memory cell matrix consisting of a memory transistor having a floating gate electrode and a control gate electrode and a redundant circuit having a transistor of the same type as the memory transistor as a PROM element are integrated on a first conductivity type semiconductor substrate. In the storage device, the PROM element is surrounded by a missing part directly below the gate signal line and the drain signal line connected to the control gate electrode and the drain diffusion layer of the PROM element, respectively, and is connected to the source diffusion layer of the PROM element. a second conductivity type impurity diffusion layer provided in a connected manner, and a first insulating film having the same thickness as the first gate insulating film directly under the floating gate provided in the missing portion and its vicinity, respectively. , provided on the surface of each of the gate signal line partial region and the drain signal line partial region made of a first polycrystalline silicon layer having the same thickness as the floating gate electrode, and the control a second insulating film having the same thickness as the second gate insulating film directly under the gate electrode; and a second insulating film selectively provided to cover the first and second insulating films and formed at the same time as the control gate electrode. A short-circuit prevention film made of a second polycrystalline silicon layer and a contact hole of an interlayer insulating film provided in parallel with the second conductivity type impurity diffusion layer are connected to the second conductivity type impurity diffusion layer and the short circuit, respectively. A floating gate type nonvolatile semiconductor memory device, comprising a metal film connected to a prevention film and covering above the PROM element and its vicinity.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9437087A JPH0644629B2 (en) | 1987-04-16 | 1987-04-16 | Floating gate type nonvolatile semiconductor memory device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9437087A JPH0644629B2 (en) | 1987-04-16 | 1987-04-16 | Floating gate type nonvolatile semiconductor memory device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63260082A true JPS63260082A (en) | 1988-10-27 |
JPH0644629B2 JPH0644629B2 (en) | 1994-06-08 |
Family
ID=14108427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9437087A Expired - Lifetime JPH0644629B2 (en) | 1987-04-16 | 1987-04-16 | Floating gate type nonvolatile semiconductor memory device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0644629B2 (en) |
-
1987
- 1987-04-16 JP JP9437087A patent/JPH0644629B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0644629B2 (en) | 1994-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0287577A (en) | Floating gate type nonvolatile semiconductor storage device | |
JPH0697457A (en) | Nonvolatile memory device and its manufacture | |
JPS5974677A (en) | Semiconductor device and manufacture thereof | |
JPH0519817B2 (en) | ||
KR100314708B1 (en) | Manufacturing Method of Semiconductor Device with Built-in Pyrom Cell | |
KR100229611B1 (en) | Manufacturing method of liquid crystal display device | |
JP3548834B2 (en) | Manufacturing method of nonvolatile semiconductor memory | |
US7655569B2 (en) | Method of manufacturing semiconductor device | |
JPS63260082A (en) | Floating gate type nonvolatile semiconductor memory device | |
JPH07202142A (en) | Semiconductor device | |
JP2005183763A (en) | Method of manufacturing semiconductor device including non-volatile memory | |
JPH0387063A (en) | Memory cell array of planar cell structure | |
JPH08148658A (en) | Semiconductor storage device, and its manufacture | |
JPH0766947B2 (en) | Floating gate type nonvolatile semiconductor memory device | |
JPH04273168A (en) | Nonvolatile semiconductor memory device | |
JP3260043B2 (en) | Method of manufacturing semiconductor device and in-process screening electrode | |
JPH11251458A (en) | Manufacture of semiconductor device | |
JPH0661457A (en) | Write method of rom | |
JPH01298738A (en) | Manufacture of semiconductor device | |
JPS6292477A (en) | Manufacture of semiconductor memory | |
JPS58225649A (en) | Semiconductor device and preparation thereof | |
JPH0373571A (en) | Semiconductor memory device and manufacture thereof | |
JPH05275655A (en) | Parallel-type masked rom of ion implantation program type | |
KR19990085774A (en) | A semiconductor device having a fuse exposure window and a method of manufacturing the same | |
JP2002299445A (en) | Fuse element structure and its manufacturing method |