JPS63259964A - Manufacture of organic electrolyte cell - Google Patents

Manufacture of organic electrolyte cell

Info

Publication number
JPS63259964A
JPS63259964A JP9560487A JP9560487A JPS63259964A JP S63259964 A JPS63259964 A JP S63259964A JP 9560487 A JP9560487 A JP 9560487A JP 9560487 A JP9560487 A JP 9560487A JP S63259964 A JPS63259964 A JP S63259964A
Authority
JP
Japan
Prior art keywords
positive electrode
heating
compact
battery
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9560487A
Other languages
Japanese (ja)
Inventor
Masaki Nakai
中井 正樹
Hidesuke Oguro
小黒 秀祐
Toshihiko Izumikawa
泉川 敏彦
Kiyoto Watanabe
清人 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9560487A priority Critical patent/JPS63259964A/en
Publication of JPS63259964A publication Critical patent/JPS63259964A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture

Abstract

PURPOSE:To increase discharge capacity so as to stabilize internal resistance and battery size by heating a positive compact to a specific low temperature, and then heating to a specific high temperature. CONSTITUTION:A positive compact 4 is heated to a relatively low temperature in the range 80-180 deg.C, removing partially adhered or bound water and melting the binder to a small extent to confer slight adhesive properties. The compact is then heated to a high temperature in the range 200-300 deg.C to completely eliminate remaining water, completely melt the binder and strengthen its adhesion. As the expansion of the compact 4 due to heating is small, the cell can be provided with a larger compact 4 in advance and its capacity can therefore be increased. Further, as water is completely eliminated from the compact, increase of internal resistance or cell expansion can be prevented.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、有機電解質電池の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing an organic electrolyte battery.

従来の技術 従来、有jIi電解質電池、特に負極活物質にリチウム
、正極活物質に二酸化マンガンを用いた扁平形二酸化マ
ンガンリチウム電池は、その高電圧。
BACKGROUND ART Conventionally, high voltage electrolyte batteries, particularly flat manganese dioxide lithium batteries that use lithium as a negative electrode active material and manganese dioxide as a positive electrode active material, have a high voltage.

高エネルギー、高信頼性から、電卓1時計等の小型電子
機器に多く用いられている。
Due to its high energy and high reliability, it is often used in small electronic devices such as calculators and watches.

このような高信頼性、高エネルギーの電池を形成するた
め、従来、有機電解質電池にとって悪影響をおよぼす本
分の除去に最大の注意がはられれてきた。特に正極につ
いては、活物質である二酸化化マンガンが結晶水を有し
、更に吸湿性が大であるため、通常の電解二酸化マンガ
ンを250〜450℃で熱処理したものに導電材と、フ
ッ素樹脂等がバインダーを混合し、電池形状にあわせた
成型体にしたものを、電池組立前に210〜220℃以
上の温度で加熱し結合水や付着水を除去して用いていた
In order to form such highly reliable and high energy batteries, the greatest attention has conventionally been paid to eliminating components that have an adverse effect on organic electrolyte batteries. In particular, for the positive electrode, the active material, manganese dioxide, has crystal water and is highly hygroscopic. The molded product was mixed with a binder and molded to match the shape of the battery, and then heated at a temperature of 210 to 220° C. or higher to remove bound water and attached water before battery assembly.

発明が解決しようとする問題点 このような従来の加熱方式においては、活物質。The problem that the invention aims to solve In such conventional heating methods, the active material.

導電材、バインダーを急激に高温で加熱するため、成型
体の加熱膨張が大きく、所定の大きさの電池に組込むた
めには、あらかじめ成型体自身を小さく作っておかねば
ならず、電池の充填容量が少なくなってしまうという問
題があった。
Because the conductive material and binder are rapidly heated to high temperatures, the molded product undergoes large thermal expansion, and in order to incorporate it into a battery of a given size, the molded product itself must be made small in advance, which reduces the filling capacity of the battery. There was a problem that the number of

更に加熱は、バインダーを溶融させ、成型体の結着強度
が上がるという作用もあるわけであるが、急激な加熱に
より成型体表面でのバインターノ溶融、シンタリングが
急速に起こり、成型体内部の水分の一部を阻害するため
、成型体内に水分が残存し、電池の内部抵抗の上昇や、
ガス発生による電池膨張の要因となった。特に厚みの大
きな電池においては、この正極成型体自身の厚さも厚く
なるため、いっそう水分が抜けにくくなり、この傾向が
顕著であった。
Furthermore, heating has the effect of melting the binder and increasing the bonding strength of the molded body, but rapid heating causes binder melting and sintering on the surface of the molded body, causing moisture inside the molded body to increase. Moisture remains in the molded body, increasing the internal resistance of the battery and
This caused the battery to expand due to gas generation. Particularly in batteries with large thicknesses, the positive electrode molded body itself becomes thicker, making it even more difficult for moisture to escape, and this tendency was remarkable.

本発明は上記のような従来の欠点を解消し、充塞容量が
大きく、内部抵抗、電池寸法の安定した有機電解質電池
を提供することを目的としたものである。
It is an object of the present invention to overcome the above-mentioned conventional drawbacks and to provide an organic electrolyte battery with a large charging capacity, stable internal resistance, and stable battery dimensions.

問題点を解決するための手段 このような問題を解決するために本発明は正極成型体を
低温加熱して、付着水や結合水の一部を取シ除き、かつ
バインダーを少し溶融させ、ゆるい結着性をもたせた後
、高温加熱して残存する水分を完全に除去するとともに
バインダーも完全溶融させ、成型体の結着を強固にする
ものである。
Means for Solving the Problems In order to solve these problems, the present invention heats the positive electrode molded body at a low temperature to remove some of the adhering water and bound water, and melts the binder a little to make it loose. After imparting binding properties, it is heated at a high temperature to completely remove remaining moisture and also completely melt the binder, thereby strengthening the binding of the molded body.

作  用 このようにして加熱された正極成型体を用いた電池は、
成型体の加熱による膨張が小さいため、あらかじめ成型
体を大きく作っておくことができる。これは電池容量の
増大につながる。また成型体内部の水分の除去も確実に
なされるため、水分に起因する電池の内部抵抗の増大や
、電池膨張を抑制することができるという利点もある。
Function: A battery using a positive electrode molded body heated in this way has the following properties:
Since the molded body expands little due to heating, the molded body can be made large in advance. This leads to an increase in battery capacity. Furthermore, since the moisture inside the molded body is reliably removed, there is an advantage that an increase in the internal resistance of the battery due to moisture and expansion of the battery can be suppressed.

実施例 以下本発明の詳細な説明する。Example The present invention will be explained in detail below.

図はリチウムー二酸化マンガン系有機電解質電池を示す
。図において、1は負極封目板、2は正極ケース、3は
絶縁性ガスケット、4は正極合剤(正極成型体)であり
、二酸化マンガン100重量部、カーボン4重量部、バ
インダーとして6フフ化プロピレンと4フン化エチレン
との共重合体を混合し、直径18m、厚さ1.611m
1 +重量2.21の円板上極板に成型したものである
。更にこの正極成型体を140℃の雰囲気中で4時間加
熱した後、260℃の雰囲気中で4時間加熱し、冷却し
たものである。5は負極リチウム、6はポリプロピレン
製セパレータで負極リチウム6と正極合剤4の間に配置
されている。更にセパレータe、正極合剤4にはプロピ
レンカーボネイト、ジメトキシエタン、過塩素酸リチウ
ムからなる有機電解液が含浸されている。7はステンレ
ス製の正極リングであり、正極合剤4に嵌合されている
The figure shows a lithium-manganese dioxide-based organic electrolyte battery. In the figure, 1 is a negative electrode sealing plate, 2 is a positive electrode case, 3 is an insulating gasket, and 4 is a positive electrode mixture (positive electrode molded body), which includes 100 parts by weight of manganese dioxide, 4 parts by weight of carbon, and 6 fufluoride as a binder. Mixed copolymer of propylene and tetrafluoroethylene, diameter 18m, thickness 1.611m
1 + weight 2.21 and is molded into a disk upper electrode plate. Further, this positive electrode molded body was heated in an atmosphere of 140° C. for 4 hours, then heated in an atmosphere of 260° C. for 4 hours, and then cooled. 5 is a negative electrode lithium; 6 is a polypropylene separator disposed between the negative electrode lithium 6 and the positive electrode mixture 4. Furthermore, the separator e and the positive electrode mixture 4 are impregnated with an organic electrolytic solution consisting of propylene carbonate, dimethoxyethane, and lithium perchlorate. 7 is a positive electrode ring made of stainless steel, and is fitted into the positive electrode mixture 4.

このような構成で直径23画、厚さ2−6m1ll +
電気容量が250 mAhの扁平形電池を形成した。
With this configuration, the diameter is 23 strokes and the thickness is 2-6ml +
A flat battery with a capacitance of 250 mAh was formed.

なお、この例では、正極合剤(正極成型体)の加熱を1
40℃4時間、260℃4時間としたが、正極成型体の
膨張度合をしらべるため、初回の加熱温度を(室温)2
6℃〜200℃、2回目の加熱温度を200〜320℃
について、その正極成型体の膨張寸法を調査した。その
結果を表−1に示す。表−1からあきらかなように、室
温から高?品へ急激に加熱したものについては正極成型
体の膨張が大きくなっている。また同様に初回の加熱が
60℃と低いところ、200℃と高いところについても
同様に膨張が大となっている。このように正極成型体の
膨張が大であると、正極リングとの嵌合がきつくなり、
電池組立上不都合を生じるので、結果として正極成型体
を小さく成型しなければならない。それは電池容量の減
少につながる。
In this example, the positive electrode mixture (positive electrode molded body) is heated for 1
The heating temperature was 4 hours at 40°C and 4 hours at 260°C, but the initial heating temperature was changed to (room temperature) 2 to check the degree of expansion of the positive electrode molded body.
6℃~200℃, second heating temperature 200~320℃
The expansion dimensions of the positive electrode molded body were investigated. The results are shown in Table-1. As is clear from Table 1, from room temperature to high temperature? When the product was rapidly heated, the positive electrode molded product expanded significantly. Similarly, the expansion is large in the case where the initial heating is as low as 60°C and in the case where the initial heating is as high as 200°C. If the positive electrode molded body expands greatly in this way, the fit with the positive electrode ring becomes tight.
This causes inconvenience in battery assembly, and as a result, the positive electrode molded body must be molded small. That leads to a decrease in battery capacity.

また、初回の加熱温度を26℃(室温)、60℃、80
℃、140℃、180℃、2oo℃とし、2回目の加熱
を200〜320℃のものについて電池を作成し、内部
抵抗と60℃20日後で電池寸法の膨張を調べたところ
表−2に示すよな結果が得られた。
In addition, the initial heating temperature was set to 26℃ (room temperature), 60℃, and 80℃.
℃, 140℃, 180℃, and 2oo℃, and the second heating was made at 200 to 320℃, and the internal resistance and expansion of battery dimensions after 20 days at 60℃ were investigated, as shown in Table 2. Good results were obtained.

表−2からあきらかなように初回(低温)の加熱では8
0〜180℃の範囲が電池の内部抵抗。
As is clear from Table 2, the initial (low temperature) heating was 8
The range from 0 to 180°C is the internal resistance of the battery.

電池と膨張寸法とも小さくなっている。Both the battery and expansion dimensions are smaller.

2回目(高温)の加熱では200℃では合剤中の結合剤
の除去が不十分で、また320℃ではバインダーの分解
が起こり、それぞれ内部抵抗が高くなっている。
In the second (high temperature) heating, the removal of the binder in the mixture was insufficient at 200°C, and decomposition of the binder occurred at 320°C, resulting in a high internal resistance.

表−1正極成型体の膨張寸法 表−2電池の内部抵抗と膨張寸法 また加熱時間については、初回(低温)の加熱は3o分
以上必要であった。30分以下では正極成型体内部の付
着水分の除去が不十分である。加熱の時間は長くてもさ
しつかえないが、品質の安定性や経済性を考慮すると、
1時間〜72時間が適切である。
Table 1: Expansion dimensions of positive electrode molded body Table 2: Internal resistance and expansion dimensions of the battery, as well as heating time, the initial (low temperature) heating required 30 minutes or more. If the heating time is less than 30 minutes, the moisture adhering inside the positive electrode molded body will not be sufficiently removed. There is no problem even if the heating time is long, but considering the stability of quality and economic efficiency,
1 hour to 72 hours is suitable.

2回目(高温)の加熱は、1時間以上必要である。1時
間以内では強固に結合した結合水分完全に除去すること
は困難で、かつバインダー溶融による結着性の増加も不
十分である。長時間の加熱は初回の加熱同様、経済性の
面を考慮し、2時間〜120時間が適切である。
The second heating (high temperature) requires 1 hour or more. Within one hour, it is difficult to completely remove the strongly bonded water, and the increase in binding properties due to binder melting is also insufficient. As with the initial heating, the long-term heating is appropriate for 2 to 120 hours, considering economic efficiency.

発明の効果 以上のように本発明によれば、正極成型体を80〜18
0℃で加熱した後に更に220〜300℃で加熱して用
いることにより、正極成型体の膨張を抑制でき、正極リ
ングとの嵌合が容易で充填量の増加が可能になる。また
電池の内部抵抗も小さく、高温保存における電池膨張も
小さく、安定した電池を得ることができるという効果が
得られる。
Effects of the Invention As described above, according to the present invention, the positive electrode molded body is 80 to 18
By heating at 0° C. and then further heating at 220 to 300° C., expansion of the positive electrode molded body can be suppressed, fitting with the positive electrode ring is easy, and the filling amount can be increased. Further, the internal resistance of the battery is low, and the battery expansion during high temperature storage is also low, so that a stable battery can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例における扁平形電池の縦断面図を示
す。 1・・・・・・負極封口板、2・・・・・・正極ケース
、3・旧・・ガスケット、4・・・・・・正極合剤(正
極成型体)、6・・・・・・負極、6・・・・・・セパ
レータ、7・・・・・・正極リング。
The figure shows a longitudinal cross-sectional view of a flat battery in an embodiment of the present invention. 1... Negative electrode sealing plate, 2... Positive electrode case, 3... Old gasket, 4... Positive electrode mixture (positive electrode molded body), 6......・Negative electrode, 6... Separator, 7... Positive electrode ring.

Claims (2)

【特許請求の範囲】[Claims] (1)軽金属を活物質とした負極と、二酸化マンガンを
活物質としこれに導電材としてカーボン、バインダーと
してフッ素樹脂を混合してなる正極と、有機電解液から
なる電池であって、正極成型体を80〜180℃で加熱
した後、更に220〜300℃で加熱することを特徴と
する有機電解質電池の製造法。
(1) A battery consisting of a negative electrode made of a light metal as an active material, a positive electrode made of manganese dioxide as an active material mixed with carbon as a conductive material, and a fluororesin as a binder, and an organic electrolyte, which is a molded positive electrode. A method for producing an organic electrolyte battery, which comprises heating at 80 to 180°C, and then further heating at 220 to 300°C.
(2)正極成型体の加熱が、100〜180℃の温度で
少なくとも30分以上なされた後、220〜300℃の
温度で1時間以上であることを特徴とする特許請求の範
囲第1項記載の有機電解質電池の製造法。
(2) The positive electrode molded body is heated at a temperature of 100 to 180°C for at least 30 minutes, and then heated to a temperature of 220 to 300°C for one hour or more. A method for manufacturing an organic electrolyte battery.
JP9560487A 1987-04-17 1987-04-17 Manufacture of organic electrolyte cell Pending JPS63259964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9560487A JPS63259964A (en) 1987-04-17 1987-04-17 Manufacture of organic electrolyte cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9560487A JPS63259964A (en) 1987-04-17 1987-04-17 Manufacture of organic electrolyte cell

Publications (1)

Publication Number Publication Date
JPS63259964A true JPS63259964A (en) 1988-10-27

Family

ID=14142154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9560487A Pending JPS63259964A (en) 1987-04-17 1987-04-17 Manufacture of organic electrolyte cell

Country Status (1)

Country Link
JP (1) JPS63259964A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163034A (en) * 1992-11-24 1994-06-10 Fuji Elelctrochem Co Ltd Manufacture of positive electrode for nonaqueous electrolyte battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163034A (en) * 1992-11-24 1994-06-10 Fuji Elelctrochem Co Ltd Manufacture of positive electrode for nonaqueous electrolyte battery

Similar Documents

Publication Publication Date Title
TWI345847B (en) Lithium secondary batteries with enhanced safety and performance
JP5355203B2 (en) Lithium primary battery and manufacturing method thereof
WO2020259436A1 (en) Method for improving stability and processability of ternary positive electrode material
JP3831017B2 (en) Nonaqueous electrolyte battery and separator for nonaqueous electrolyte battery
JP2000315481A (en) Nonaqueous electrolyte secondary battery
JPS63259964A (en) Manufacture of organic electrolyte cell
WO2015141120A1 (en) Lithium primary battery
JP2013089528A (en) Electrode plate for battery and battery
JP4649696B2 (en) Method for producing electrode for non-aqueous electrolyte secondary battery
JP2004327305A (en) Manufacturing method of lithium secondary battery
JPS63226019A (en) Manufacture of polarizing electrode
JPH1174002A (en) Secondary battery integrated with solar cell and watch
JPH05182650A (en) Thin type battery
JP2005032688A (en) Non-aqueous electrolyte secondary battery
JPH05182657A (en) Negative electrode and manufacture thereof for lithium secondary battery
JPH11126613A (en) Nonaqueous electrolyte secondary battery
JPS5836828B2 (en) Battery manufacturing method
JPS6146948B2 (en)
JP3104264B2 (en) Coin type non-aqueous electrolyte secondary battery
CN100483837C (en) Secondary lithium ion battery in large multiplying power
JPH0378745B2 (en)
JPH07282843A (en) Nonaqueous electrolyte secondary battery
JP2001250585A (en) Charging method of lithium ion secondary battery
JP2001085061A (en) Electrochemical device
JP2001085000A (en) Thin battery and manufacturing method therefor