JPS63258923A - Production of aromatic polyether ketone - Google Patents

Production of aromatic polyether ketone

Info

Publication number
JPS63258923A
JPS63258923A JP9398987A JP9398987A JPS63258923A JP S63258923 A JPS63258923 A JP S63258923A JP 9398987 A JP9398987 A JP 9398987A JP 9398987 A JP9398987 A JP 9398987A JP S63258923 A JPS63258923 A JP S63258923A
Authority
JP
Japan
Prior art keywords
reaction
formula
aromatic
alkali metal
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9398987A
Other languages
Japanese (ja)
Other versions
JPH0423649B2 (en
Inventor
Isaburo Fukawa
府川 伊三郎
Tsuneaki Tanabe
恒彰 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP9398987A priority Critical patent/JPS63258923A/en
Publication of JPS63258923A publication Critical patent/JPS63258923A/en
Publication of JPH0423649B2 publication Critical patent/JPH0423649B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyethers (AREA)

Abstract

PURPOSE:To produce, in high efficiency, high-crystallinity aromatic polyether ketone having high heat resistance, flame retardancy and solvent resistance by reaction of an aromatic dihalide of specific structure in the presence of an alkali metal (bi)carbonate under heating. CONSTITUTION:In the presence of an alkali metal carbonate or bicarbonate such as potassium carbonate, an aromatic dihalide of formula I (X<1>, X<2> are halogen) are heated at temperature of 250-400 deg.C to effect reaction to give an aromatic polyether ketone of formula II, preferably of over 0.7 intrinsic viscosity. The compound of formula I is novel and obtained by Friedel-Craft reaction of terephthaloyl dichloride and 2 or more times molar amount of diphenyl ether to give 4,4'-diphenoxyterephthalophenone followed by Friedel-Craft condensation reaction between the product and 2 or more molar amount of p-halogenobenzoyl chloride.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は芳香族ポリエーテルケトンの新規な製造方法に
関するものである。さらに詳しくいえば、本発明は、エ
ーテル基及びケトン基を介してフェニレン基が連結した
化学構造を有し、耐熱性、難燃性、耐溶剤性、機械的性
質、熱可塑成形性などの物性が優れた高結晶性の芳香族
ポリエーテルケトンを効率よく、工業的有利に製造する
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a novel method for producing aromatic polyetherketones. More specifically, the present invention has a chemical structure in which phenylene groups are linked via an ether group and a ketone group, and has physical properties such as heat resistance, flame retardance, solvent resistance, mechanical properties, and thermoplastic moldability. The present invention relates to an efficient and industrially advantageous method for producing highly crystalline aromatic polyetherketones with excellent properties.

従来の技術 従来、エーテル基及びケトン基を介してフェニレン基が
連結した化学構造を有する高分子化合物としては、例え
ば、構造式 をもつものや、構造式 をもつものが知られておりこれらは優れた耐熱性、難燃
性、機械的強度を有するため、成形材料として注目され
ている(特公昭57−22938号公報、特公昭56−
33419号公報、特公昭60−32642号公報)。
Conventional technology Conventionally, as polymer compounds having a chemical structure in which phenylene groups are linked via an ether group and a ketone group, for example, those having a structural formula and those having a structural formula are known, and these have excellent properties. It is attracting attention as a molding material because of its heat resistance, flame retardance, and mechanical strength (Japanese Patent Publication No. 57-22938, Japanese Patent Publication No. 56-1982).
33419, Japanese Patent Publication No. 60-32642).

そして、これらの高分子重合体を製造する方法としては
、活性化された芳香族シバライドとジヒドロキシ芳香族
化合物とを、アルカリ存在下(二親核的重縮合させる方
法(特公昭57−2293B号公報、特公昭60−32
4542号公報)及び芳香族酸ハライドと芳香族エーテ
ル化合物とをフリーデルクラフト反応により親電子的重
縮合させる方法(特公昭56−33419号公報)など
が提案されている。
As a method for producing these polymers, an activated aromatic cybaride and a dihydroxy aromatic compound are subjected to dinucleophilic polycondensation in the presence of an alkali (Japanese Patent Publication No. 57-2293B , Special Public Service 1986-32
4542) and a method of electrophilic polycondensation of an aromatic acid halide and an aromatic ether compound by Friedel-Crafts reaction (Japanese Patent Publication No. 56-33419).

ところで、前者の方法と後者の方法とは、反応形式や生
成する重合体の分子構造が異なるばかりでなく、得られ
る高分子化合物の物性も異なり、例えば後者のフリーデ
ルクラフト反応により得ら(1)に比べて結晶性が低く
、このため200〜350′Cという、高温(=おける
モジュラスが低くなる傾向がある。これはフリーデルク
ラフト反応(=おいては、パラ配向以外にオルト配向や
メタ配向による結合が生成し、重合体鎖に異種結合や分
校を生じるためと思われる。
By the way, the former method and the latter method not only differ in the reaction format and the molecular structure of the produced polymer, but also in the physical properties of the resulting polymer. ), and as a result, the modulus at high temperatures (200 to 350'C) tends to be low. This is thought to be due to the formation of bonds due to orientation, which causes heterobonds and branching in the polymer chains.

また、フリーデルクラフト反応においては、より高融点
のポリエーテルケトン、例えば構造式0式% のものも知られているが、この反応では重合時末端に不
安定なキサントヒトロール基を生成するため、安定化に
還元処理という特別な操作が必要であるという別の問題
点を有している。
Furthermore, in the Friedel-Crafts reaction, polyetherketones with a higher melting point, such as those with the structural formula 0%, are also known, but this reaction produces unstable xanthohydrol groups at the terminals during polymerization. Another problem is that a special operation called reduction treatment is required for stabilization.

このよう(:、フリーデルタラット反応により得られる
芳香族ポリエーテルケトンは、ポリマー構造的に親核的
重合反応により得られた同等物とは異なり、また実用的
性能においても劣るため、これまでのところ工業化され
る(=至っていない。
In this way, the aromatic polyetherketone obtained by the Friedelta-lat reaction differs in polymer structure from the equivalent obtained by the nucleophilic polymerization reaction, and is inferior in practical performance. However, it has not yet become industrialized.

一方、親核的重合反応については、前記構造式(1)や
(II)の重合体を製造することは可能であるが(特公
昭57−22938号公報、特公昭60−32642号
公報)、それらよシ融点の高い重合体、例えばするには
重合温度をより高くする必要があ門、このような条件で
芳香族スルホン溶媒を使用する従来の重合方法(特開昭
52−96700号公報)を行うと分枝な生じたシ、ゲ
ル化するため所望の重合体を製造することができない。
On the other hand, regarding nucleophilic polymerization reactions, it is possible to produce polymers of the above structural formulas (1) and (II) (Japanese Patent Publication No. 57-22938, Japanese Patent Publication No. 60-32642), For polymers with higher melting points than those, for example, it is necessary to raise the polymerization temperature, and the conventional polymerization method using aromatic sulfone solvent under such conditions (Japanese Patent Application Laid-Open No. 52-96700) If this is done, branching occurs and gelation occurs, making it impossible to produce the desired polymer.

そこで、本発明者らは、結晶化度が訓<、シかも構造式
(1)や(II)で示される従来の芳香族ポリエーテル
ケトンよりも融点、ガラス転移温度が高くて、耐熱性、
難燃性、耐溶剤性、機械的性質、熱可塑成形性などの物
性が優れた芳香族ポリエーテルケト/を開発するために
鋭意研究を重ね、先に、原料として4.4′−ビス(p
−ハロゲノベンゾイル)ジフェニルエーテルと4.4′
−ジヒドロキンテレフタロフェノンとを用いるか、又は
4,4′−ビス(p−ヒドロキンベンゾイル)ジフェニ
ルエーテルと4.4′−ジハロテレフタロフェノンとを
用い、これらな特定の重合溶媒を使用して、特定の条件
下で重縮合させることにより、前記の優れた物性を有す
る、 式 で表わされる繰シ返し単位をもつ結晶性重合体が得られ
ることを見い出した。
Therefore, the present inventors discovered that the melting point and glass transition temperature are higher than the conventional aromatic polyetherketones represented by the structural formulas (1) and (II), and the crystallinity is lower than that of the conventional aromatic polyetherketones.
In order to develop aromatic polyether keto/ which has excellent physical properties such as flame retardancy, solvent resistance, mechanical properties, and thermoplastic moldability, we first developed 4,4'-bis(4,4'-bis( p
-halogenobenzoyl)diphenyl ether and 4.4'
- dihydroquine terephthalophenone, or 4,4'-bis(p-hydroquine benzoyl) diphenyl ether and 4,4'-dihaloterephthalophenone, using these specific polymerization solvents. It has been discovered that by polycondensation under specific conditions, a crystalline polymer having the above-mentioned excellent physical properties and having a repeating unit represented by the formula can be obtained.

しかしながら、このような製造方法においては、副反応
が起こりやすい、2種類の原料が必要である、雨上ツマ
−のモル比を合わせないと高分子量体が得られない、得
られる重合体は末端に熱に不安定なフェノール基を有す
るため、末端安定化の操作が必要である、などの問題が
あって、必ずしも満足しうるものではなかった。
However, in such a production method, side reactions are likely to occur, two types of raw materials are required, a high molecular weight product cannot be obtained unless the molar ratio of the Ame-gami-summer is matched, and the resulting polymer has terminal Since it has a phenol group that is unstable to heat, there are problems such as the need for terminal stabilization, which has not always been satisfactory.

発明が解決しようとする問題点 本発明は、このような問題を解決し、耐熱性、難燃性、
耐溶剤性、機械的性質、熱可塑成形性などの物性が優れ
た、前記式(V)で表わされる繰シ返し単位を有する芳
香族ポリエーテルケトンを効率よく、工業的有利に製造
する方法を提供することを目的としてなされたものであ
る。
Problems to be Solved by the Invention The present invention solves these problems and improves heat resistance, flame retardancy,
A method for efficiently and industrially advantageously producing an aromatic polyetherketone having a repeating unit represented by the formula (V), which has excellent physical properties such as solvent resistance, mechanical properties, and thermoplastic moldability. It was made for the purpose of providing.

問題点を解決するための手段 本発明者らは前記目的を達成するために鋭意研究を重ね
た結果、アルカリ金属の炭酸塩又は重炭酸塩の存在下、
特定構造を有する芳香族シバライドな所定の昌度で加熱
反応させることにより、その「目的を達成しうろことを
見い出し、この知見にノ1(づいて本発明を完成するに
至った。
Means for Solving the Problems The present inventors have conducted intensive research to achieve the above object, and as a result, in the presence of an alkali metal carbonate or bicarbonate,
It was discovered that the object could be achieved by subjecting an aromatic cybaride having a specific structure to a heating reaction at a predetermined temperature, and based on this knowledge, the present invention was completed.

すなわち、本発明は、アルカリ金属の炭酸塩又は重炭酸
塩の存在下、 一般式 %式% (式中のXl及びで はそれぞれ]・ロゲン原子であり
、それらは同一であってもよいし、たがいに異なってい
てもよい) で表わされる芳香族シバライドを、250〜400℃の
範囲の温度において加熱反応させることを特徴とする、
式 %式% で表わされる繰り返し単位を有する芳香族ポリエーテル
ケトンの製造方法を提供するものである。
That is, in the present invention, in the presence of an alkali metal carbonate or bicarbonate, the general formula % formula % (in the formula, Xl and are respectively) is a rogen atom, which may be the same, which may be different from each other) is subjected to a heating reaction at a temperature in the range of 250 to 400°C,
The present invention provides a method for producing an aromatic polyetherketone having a repeating unit represented by the formula %.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明方法においては、原料単量体として前記一般式倒
で表わされる芳香族ジノ・ライドが用いられる。式(至
)のXとしてはフッ素原子及び塩素原子が好ましく、こ
のような芳香族シバライドの具体例としては、 などを挙げることができる。これらの化合物の中で式(
Vl−1)で表わされる芳香族ジフルオリドは、反応性
に富み、短時間の重合で高分子量ポリマーを与えるが高
価であり、一方式(Vl−2)で表わされる芳香族ジク
ロリドは反応速度は遅いものの安価であるので、工業的
には有利である。また、これらの芳香族シバライドは1
種用いてもよいし、2種以上を組み合わせて用いてもよ
い。
In the method of the present invention, an aromatic dinolide represented by the above general formula is used as a raw material monomer. As X in formula (to), a fluorine atom and a chlorine atom are preferable, and specific examples of such aromatic cybarides include the following. Among these compounds the formula (
Aromatic difluoride represented by formula (Vl-1) is highly reactive and gives a high molecular weight polymer in a short time polymerization, but is expensive, while aromatic dichloride represented by formula (Vl-2) has a slow reaction rate. Since it is inexpensive, it is industrially advantageous. In addition, these aromatic sybarides are 1
A species may be used, or two or more species may be used in combination.

これらの芳香族シバライドは新規な化合物であるが、例
えば、まずフリーデルクラフト反応により、テレフタル
酸ジクロリドとその2倍モル以上のジフェニルエーテル
とを反応させて4,4′−ジフェノキシテレフタロフェ
ノンを製造し、次いでこのものとその2倍モル以上のp
−ハロゲノベンゾイルクロリドとを、フリーデルクラフ
ト反応により、縮合させることによって製造することが
できるO 本発明方法において用いられるアルカリ金属の炭酸塩、
重炭酸塩としては、例えば炭酸カリウム、炭酸ナトリウ
ム、重炭酸カリウム、重炭酸ナトリウム及びこれらの混
合物が好適に用いられる。カリウム塩とナトリウム塩を
比較した場合、一般にカリウム塩の方が反応が速いが、
ナトリウム塩は触媒により反応速度が加速され、かつ副
反応が少ないなどの特徴を有している。
These aromatic cybarides are new compounds, but for example, 4,4'-diphenoxyterephthalophenone is produced by first reacting terephthalic acid dichloride with diphenyl ether in an amount twice as much in mole or more by Friedel-Crafts reaction. Then, this substance and more than twice the molar amount of p
- an alkali metal carbonate used in the method of the present invention, which can be produced by condensing O with halogenobenzoyl chloride by a Friedel-Crafts reaction;
As the bicarbonate, for example, potassium carbonate, sodium carbonate, potassium bicarbonate, sodium bicarbonate, and mixtures thereof are preferably used. When comparing potassium salts and sodium salts, potassium salts generally react faster, but
Sodium salts have characteristics such that the reaction rate is accelerated by a catalyst and there are few side reactions.

本発明においては、これらのアルカリ金1iJ’:塩1
分子から1原子の酸素原子が放出され、芳香族シバライ
ド中のハロゲン原子が2原子脱離してエーテル結合が生
成し、前記式(ト)で表わされる繰り返し単位を有する
重合体が得られる。したがって、アルカリ金属塩は、芳
香族ジノ・ライド中のノ・ロゲン原子2原子に対して、
1当量以上を用いることが肝要である。
In the present invention, these alkali gold 1iJ': salt 1
One oxygen atom is released from the molecule, and two halogen atoms in the aromatic cybaride are eliminated to form an ether bond, yielding a polymer having a repeating unit represented by the above formula (g). Therefore, the alkali metal salt is
It is essential to use 1 equivalent or more.

しかし、該アルカリ金属塩をあまり多く用いると、製造
コスト的に不利となる上、場合によっては好ましくない
副反応が生じる原因ともなる。したがって、このアルカ
リ金属塩の好ましい使用量は、芳香族シバライド1モル
当り、1〜10モルの範囲で選ばれる。また、これらの
アルカリ金属塩は微粉砕して用いると、反応速度が速く
なる。
However, if too much of the alkali metal salt is used, it will be disadvantageous in terms of production cost and may also cause undesirable side reactions. Therefore, the preferred amount of the alkali metal salt to be used is selected within the range of 1 to 10 moles per mole of aromatic cybaride. Further, when these alkali metal salts are used after being finely pulverized, the reaction rate becomes faster.

本発明方法において、触媒とじてシリカ系化合物を用い
ることにより、重合反応の速度を速めることができる。
In the method of the present invention, the speed of the polymerization reaction can be increased by using a silica compound as a catalyst.

このシリカ系化合物としては、例えば二酸化ケイ素、無
水ケイ酸、シリカなどの名称で呼ばれる各種シリカや、
シリカアルミナ(ケイ酸アルミニウム)、ゼオライト、
活性白土、セビオライト、モンモリロナイト、グイソウ
土などのシリカを含む各種鉱物系化合物などを挙げるこ
とができる。
Examples of this silica-based compound include various silicas called silicon dioxide, silicic anhydride, silica, etc.
Silica alumina (aluminum silicate), zeolite,
Examples include various mineral compounds containing silica such as activated clay, seviolite, montmorillonite, and giso earth.

これらのシリカ系化合物は、微粉砕して用いる方が反応
が迅速に進行するので好ましく、またその添加:1[に
ついては特に制限はんいが、通常原料の芳香族シバライ
ドの重!往に基づき、0.1〜100重)−11%の範
囲で選ばれる。この量が0.1重量%未’A:ljでは
触媒としての効果が十分に発揮されず、また100重晴
チを超えると、量の割には重合速度は速くならず、場合
によっては好ましくない副反応が生じるおそれがある。
It is preferable to use these silica-based compounds in finely ground form because the reaction proceeds more quickly, and their addition: 1 [Although there are no particular restrictions on the weight of aromatic cibaride used as a raw material] Based on the past, it is selected in the range of 0.1 to 100 weight) -11%. If this amount is less than 0.1% by weight, the effect as a catalyst will not be sufficiently exhibited, and if it exceeds 100% by weight, the polymerization rate will not be high enough for the amount, which may be undesirable in some cases. Side reactions may occur.

前記シリカ系化合物を触媒として用いる場合、助触媒と
して銅や銅化合物を用いると、重合速度がさら(二加速
される。反応速度が比較的遅い前記式(Vl−2)で表
わされる芳香族ジクロリドを用いる場合や、アルカリ金
属塩としてナトリウム塩を用いる場合には、このような
助触媒の使用は特(=有効である。助触媒の銅や銅化合
物としては、例えば金属銅や、−価、二価の銅化合物を
用いることができる。この−価、二価の銅化合物として
は、例えば塩化第一銅、臭化第一銅、ヨウ化第−銅など
の・・ロゲン化第−銅、塩化第二銅、臭化第二銅などの
・・ロゲン化第二銅、酸化第一銅、酸化第二銅、水酸化
銅、硫酸銅、塩基性炭酸鋼、銅アセチルアセトナート、
酢酸銅、硫化銅などが好ましく挙げられる。これらは、
結晶水を含んだ形で使用してもよいし、また2種以上を
組み合わせて使用してもよい。
When the silica-based compound is used as a catalyst, the polymerization rate is further accelerated by using copper or a copper compound as a co-catalyst. When using sodium salt as the alkali metal salt or when using sodium salt as the alkali metal salt, the use of such a co-catalyst is particularly effective.As the co-catalyst copper or copper compound, for example, metallic copper, -valent, A divalent copper compound can be used. Examples of the divalent copper compound include cuprous chloride, cuprous bromide, cuprous iodide, cuprous chloride, Cupric chloride, cupric bromide, etc. cupric chloride, cuprous oxide, cupric oxide, copper hydroxide, copper sulfate, basic steel carbonate, copper acetylacetonate,
Preferred examples include copper acetate and copper sulfide. these are,
It may be used in a form containing crystal water, or two or more types may be used in combination.

この助触媒の使用量は、シリカ系化合物100重量部に
対し、通常は0.01〜500重量部、好ましくは0.
1〜100重量部の範囲で選ばれる。
The amount of this promoter used is usually 0.01 to 500 parts by weight, preferably 0.01 to 500 parts by weight, per 100 parts by weight of the silica compound.
It is selected in a range of 1 to 100 parts by weight.

本発明方法においては、重合反応は溶媒の不在下で行っ
てもよいし、適当な溶媒中で行ってもよい。この溶媒に
つい刃は、反応゛温度において不活性でかつ安定なもの
であればよく、特に制限はない。このような溶媒として
は、例えば、アセトフェノン、ベンゾフェノン、キサン
トン、フェノキンベンゾフェノンなどのケトン類、スル
ホラン、ジフェニルスルホンなどのスルホン類、ジフェ
ニルエーテルなどのエーテル類、N−メチルピロリドン
、ヘキサメチルリン酸トリアミドなどのアミド類、ピフ
ェニル、ターフェニル、ナフタレン、デカリンなどの炭
化水素類、塩素化ビフェニルなどの・・ロゲン化炭化水
素類などが挙げられる。ここに挙げた例は沸点が高く、
常圧で反応に使用できるものであるが、重合温度よりも
沸点が低い溶媒については加圧条件下で重合することも
可能である。
In the method of the present invention, the polymerization reaction may be carried out in the absence of a solvent or in a suitable solvent. There are no particular limitations on the solvent used, as long as it is inert and stable at the reaction temperature. Examples of such solvents include ketones such as acetophenone, benzophenone, xanthone, and fenoquine benzophenone; sulfones such as sulfolane and diphenyl sulfone; ethers such as diphenyl ether; and N-methylpyrrolidone and hexamethylphosphoric triamide. Examples include amides, hydrocarbons such as piphenyl, terphenyl, naphthalene, and decalin, and logenated hydrocarbons such as chlorinated biphenyls. The example given here has a high boiling point;
Although it can be used for the reaction at normal pressure, it is also possible to polymerize under pressurized conditions if the solvent has a boiling point lower than the polymerization temperature.

反応は溶媒の極性が高い方が容易に進行するので、特に
好ましい溶媒としては極性が高く、高温で安定な゛ジフ
ェニルスルホン1ベンゾフエノン、キサントンなどを挙
げることができる。
Since the reaction proceeds more easily when the polarity of the solvent is high, particularly preferred solvents include diphenylsulfone-benzophenone, xanthone, etc., which have high polarity and are stable at high temperatures.

重合反応は、窒素やアルゴンなどの不活性ガス雰囲気下
で行うことが好ましく、また反応温度は250〜400
℃の範囲で選ばれる。この温度が250℃未満では反応
速度が遅すぎて実用的でなく、一方400℃を超えると
好ましくない副反応が起こりやすぐなる。好ましい反応
温度は、使用するアルカリ金属塩や触媒の種類などによ
り異なるので、前記範囲において適宜選択される。
The polymerization reaction is preferably carried out under an inert gas atmosphere such as nitrogen or argon, and the reaction temperature is 250 to 400 ℃.
Selected in the range of °C. If this temperature is less than 250°C, the reaction rate is too slow to be practical, while if it exceeds 400°C, undesirable side reactions are likely to occur. The preferred reaction temperature varies depending on the type of alkali metal salt and catalyst used, and is therefore appropriately selected within the above range.

このようにして、式 で表わされる繰り返し単位をもつ高分子重合体が得られ
る。
In this way, a high molecular weight polymer having repeating units represented by the formula is obtained.

この高分子重合体は、極限粘度が0゜7以上のものであ
ることが望ましい。この極限粘度が0.7未満では1成
形材料やフィルムにした場合の機械的強度が劣り、好ま
しくない。
This high molecular weight polymer desirably has an intrinsic viscosity of 0°7 or more. If the intrinsic viscosity is less than 0.7, the mechanical strength of the molding material or film will be poor, which is not preferable.

また、本発明方法で得られる重合体は結晶性が高く、D
SC(示差走査熱量計)で測定した結晶融解熱は8Ca
I/9以上、通常1O−20cal/gの範囲である。
In addition, the polymer obtained by the method of the present invention has high crystallinity and D
The heat of crystal fusion measured by SC (differential scanning calorimeter) is 8Ca
I/9 or more, usually in the range of 10-20 cal/g.

このように高い結晶融解熱を有しているので、高温でも
モジュラスが高く、また、ガラス繊維による熱変形温度
の改善効果が大きい。
Since it has such a high heat of crystal fusion, the modulus is high even at high temperatures, and the effect of improving the heat distortion temperature by glass fiber is large.

発明の効果 本発明の芳香族ポリエーテルケトンの製造方法において
は、不安定なフェノール類を使用しないため副反応が少
なく、また1種類の原料しか必要としないので原料の確
保が容易である上、重合反応も単純であるなどの利点を
有している。さらに、得られる重合体は両末端がハロゲ
ン基となり、不安定なフェノール基を含まないという特
徴を有している。
Effects of the Invention In the method for producing aromatic polyetherketone of the present invention, there are fewer side reactions because unstable phenols are not used, and since only one type of raw material is required, it is easy to secure raw materials. It also has the advantage that the polymerization reaction is simple. Furthermore, the resulting polymer has halogen groups at both ends and is characterized by containing no unstable phenol groups.

本発明方法により得られる芳香族ポリエーテルケトンは
高融点、高分子量、高結晶性でゲル及び分枝を含まず、
かつ熱可塑性の重合体であり、優れた耐熱性及び優れた
機械的性質を有し、また濃硫酸以外の溶剤には室温でほ
とんど溶解せず、極めて優れた耐溶剤性を示す。
The aromatic polyetherketone obtained by the method of the present invention has a high melting point, high molecular weight, high crystallinity, does not contain gels or branches,
It is a thermoplastic polymer, has excellent heat resistance and excellent mechanical properties, and is hardly soluble in solvents other than concentrated sulfuric acid at room temperature, exhibiting extremely excellent solvent resistance.

したがって、本発明方法で得られる結晶性芳香族ポリエ
ーテルケトンは高温での厳しい条件で使用される成形材
料として好適である。この重合体は任意の所望の形状、
例えば成形品、被覆、フィルム、繊維などにして用いる
ことができ、さらに各種のエンジニアリングプラスチッ
ク、耐熱性樹脂、ガラス繊維、炭素繊維、無機質などと
混合し、アロイ化やコンポジット化して使用することが
できる。
Therefore, the crystalline aromatic polyetherketone obtained by the method of the present invention is suitable as a molding material used under severe conditions at high temperatures. This polymer can be formed into any desired shape,
For example, it can be used in the form of molded products, coatings, films, fibers, etc. It can also be mixed with various engineering plastics, heat-resistant resins, glass fibers, carbon fibers, inorganic materials, etc. to form alloys and composites. .

実施例 次に実施例により本発明をさらに詳細に説明するが、本
発明はこれらの例によってなんら限定されるものではな
い。
EXAMPLES Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples in any way.

なお、本発明の重合体は、わずかに濃硫酸にとけるのみ
で、一般の有機溶媒には不溶であるので、平均分子量を
求めることが困難である。したがって、極限粘度をもっ
て分子量の尺度とする。
The polymer of the present invention is only slightly soluble in concentrated sulfuric acid and is insoluble in general organic solvents, so it is difficult to determine its average molecular weight. Therefore, the intrinsic viscosity is used as a measure of molecular weight.

また、重合体の物性は次のようにして測定した。Further, the physical properties of the polymer were measured as follows.

測定サンプルは、重合によシ得られた固体若しくは粉末
をよく粉砕して測定に供した。
The measurement sample was prepared by thoroughly pulverizing a solid or powder obtained by polymerization.

(1)極限粘度 密度1.64 g /dの濃硫酸を使用し、溶液100
cI113当シ重合体0゜1gを含む溶液と溶液100
 ct”5 ゛シ重合体0.57を含む溶液を調製し、
その粘度を25℃で測定し、式 %式% 〔ただし、ηrθ1は相対粘度、Cは濃度(97100
m1)であり、C→0は(ηrelt )7 c  の
値を濃度Cが0の点に外挿したことを意味する〕を用い
て求めた。
(1) Using concentrated sulfuric acid with an intrinsic viscosity density of 1.64 g/d, a solution of 100
Solution containing 0.1 g of cI113 polymer and solution 100
Prepare a solution containing 0.57 ct”5゛si polymer,
The viscosity was measured at 25°C, and the formula % formula % [where ηrθ1 is the relative viscosity, C is the concentration (97100
m1), and C→0 means extrapolating the value of (ηrelt)7c to the point where the concentration C is 0.

(2)結晶融点(Tm)、ガラス転移温度(Tg)、結
晶融解熱(△H) 重合体粉末をいったん400℃まで昇温したのも、急冷
したサンプルについて、DSC(示差走査熱111計)
により昇温速度10で/minで測定した。
(2) Crystal melting point (Tm), glass transition temperature (Tg), crystal heat of fusion (△H) The temperature of the polymer powder was once raised to 400°C, and the rapidly cooled sample was subjected to DSC (Differential Scanning Calorimetry 111).
The temperature was measured at a heating rate of 10/min.

成 テレフタル酸ジクロリド20・3 y (0,1モル)
、ジフェニルエーテル51.1g(0,3モル)及び塩
化アルミニウム26.69 (0,2モル)を、OCに
冷却した0−ジクロロベンゼン350g/中に溶解し、
かきまぜながら4.5時間反応した。次いで、反応混合
物を大[?Lのメタノール・塩酸混合液中に加え、沈殿
してきた固体をろ別し、水及びメタノールで数回洗浄し
た。
Synthetic terephthalic acid dichloride 20.3 y (0.1 mol)
, 51.1 g (0.3 mol) of diphenyl ether and 26.69 (0.2 mol) aluminum chloride are dissolved in 350 g/0-dichlorobenzene cooled to OC,
The reaction was continued for 4.5 hours while stirring. The reaction mixture was then diluted with a large [? The precipitated solid was filtered out and washed several times with water and methanol.

このものは、融点が218Cで、4.4’−ジフェノキ
シテレフタロフェノンの標品と一致した。
This product had a melting point of 218C, which was consistent with the standard product of 4,4'-diphenoxyterephthalophenone.

(2)芳香族ジフルオリド(IV−1)の合成前記で得
られた4、4′−ジフェノキンテレフタロフェノン4.
7 g(0,01モル)と塩化アルミニウム6.00す
(0゜0715モル)を、O−ジクロロベンゼン60m
1中に溶解し、これに、かきまぜながら、室111配で
4−フルオロベ/ソ°イルクロリド4.0g(0・02
5モル)を滴下した。滴下終了後、徐々に温度を上げて
、60℃で3時間反応し、反応を完結させた。次いで、
反応混合物をメタノール°塩酸混合液中に加え、沈殿し
た固体をろ別したのち、水、アセト/、N−メチルピロ
リドン、アセトンの順で洗浄し、精製した。
(2) Synthesis of aromatic difluoride (IV-1) 4,4'-diphenoquine terephthalophenone obtained above 4.
7 g (0.01 mol) and 6.00 s (0.0715 mol) of aluminum chloride were added to 60 m of O-dichlorobenzene.
4.0 g of 4-fluorobe/solyl chloride (0.02
5 mol) was added dropwise. After the dropwise addition was completed, the temperature was gradually raised and the reaction was carried out at 60° C. for 3 hours to complete the reaction. Then,
The reaction mixture was added to a mixture of methanol and hydrochloric acid, and the precipitated solid was filtered off and purified by washing with water, aceto/N-methylpyrrolidone, and acetone in this order.

このものは、融点308℃で、元素分析(二より、式 で表わされる化合物であることが確認された。この化合
物のIRスペクトルを第1図に示す。
This compound had a melting point of 308° C., and elemental analysis (2) confirmed that it was a compound represented by the formula. The IR spectrum of this compound is shown in FIG.

参考例2 芳香族ジクロリド(Vl−2)の製造参考例
1で合成した4、4′−ジフェノギンテレフタロフェノ
ン26.8 ’! (0,057モル)と塩化アルミニ
ウム34.3 g(0,257モル)を、室lん1で〇
−ジクロロベンゼン350m/に溶解し、これに、かき
まぜなから4−クロロベンゾイルクロリド25.0&(
0゜146モル)を滴下した。その後温度を徐々に上げ
、60′Cで3時間反応し、反応を完結させた。
Reference Example 2 Production of aromatic dichloride (Vl-2) 4,4'-diphenogine terephthalophenone synthesized in Reference Example 1 26.8'! (0,057 mol) and 34.3 g (0,257 mol) of aluminum chloride were dissolved in 350 ml of 〇-dichlorobenzene in chamber 1, and 25.0 mol of 4-chlorobenzoyl chloride was added to the solution while stirring. (
0°146 mol) was added dropwise. Thereafter, the temperature was gradually raised and the reaction was carried out at 60'C for 3 hours to complete the reaction.

次いで、反応混合物を大量のメタノール・塩酸混合液中
に加え、沈殿した固体をろ別したのち、水、アセトン、
N−メチルピロリド/、アセトンの順で洗浄し、精製し
た。
Next, the reaction mixture was added to a large amount of methanol/hydrochloric acid mixture, the precipitated solid was filtered out, and water, acetone,
It was purified by washing with N-methylpyrrolid/and acetone in that order.

このものは、融点が623℃であり、元素分析により、
式 %式% で表わされる芳香族ジクロリドであることが確認された
。この化合物のIRスペクトルを第2図に示す。
This substance has a melting point of 623°C, and elemental analysis shows that
It was confirmed that it was an aromatic dichloride represented by the formula %. The IR spectrum of this compound is shown in FIG.

実施例1 200*lフラスコに、参考例1で得られた芳香族ジフ
ルオリド(Vl−1)21.4g(0゜03モル)、炭
酸カリウム6.21 g(0,045モル)、シリカ〔
日本アエロジル(株)製、アエロジル300 ) 2゜
Og及びジフェニルスルホン459を仕込み、窒素置換
したのち、室温から1時間かけて310℃(二昇温して
、その温度で0.5時間反応させた。
Example 1 In a 200*l flask, 21.4 g (0.03 mol) of the aromatic difluoride (Vl-1) obtained in Reference Example 1, 6.21 g (0.045 mol) of potassium carbonate, and silica [
Aerosil 300 (manufactured by Nippon Aerosil Co., Ltd.) 2°Og and diphenylsulfone 459 were charged, and after purging with nitrogen, the temperature was raised from room temperature to 310°C over 1 hour (2 degrees) and reacted at that temperature for 0.5 hour. .

次いで、反応混合物をとり出し、粉砕したのち、lB水
、渇アセトンで3回洗浄して21゜5gの淡黄固体を得
た。この生成物は濃硫酸に完全に溶解し、黄色溶液とな
った。また、濃硫酸中0゜1重量%、25℃の極限粘度
は1.15であった。さらにこの生成物を400℃でプ
レスすることにより、淡黄色の強じんなフィルムが得ら
れた。
Next, the reaction mixture was taken out, pulverized, and washed three times with 1B water and dry acetone to obtain 21.5 g of pale yellow solid. This product completely dissolved in concentrated sulfuric acid, resulting in a yellow solution. Further, the intrinsic viscosity at 25° C. at 0°1% by weight in concentrated sulfuric acid was 1.15. Further, by pressing this product at 400°C, a pale yellow strong film was obtained.

実施例2〜5 原料モノマーの芳香族シバライド、触媒のシリカ系化合
物、アルカリ金属塩、助触媒の銅化合物の種類や量、及
び反応時間を別表に示すように変え、実施例1と同様に
して重合体を得た。これらの重合体の極限粘度な該表に
示す。
Examples 2 to 5 The procedure was repeated in the same manner as in Example 1, except that the aromatic cibaride as the raw material monomer, the silica-based compound as the catalyst, the alkali metal salt, the type and amount of the copper compound as the co-catalyst, and the reaction time were changed as shown in the attached table. A polymer was obtained. The intrinsic viscosities of these polymers are shown in the table.

注1)フルオリド: v 号co60(防cべ)co% o−@)−co(X
Fクロリド: C1+co舎0号COΦと0舎0 %CCOCl2シリ
カ二日本アエロジル(抜脱、アエロジル600 ケイ酸アルミニウム:和光純薬(株)製、A1□0.・
3S10□ セオライト:東洋曹達(株)製、TSZ−410−KO
A活性白土二日本活性白土(内装、K−5003)室1
1配から1時間かけて310℃に昇高したのち、310
℃で反応した時間
Note 1) Fluoride: V co60 (anti-C) co% o-@)-co(X
F chloride: C1 + cosha No. 0 COΦ and 0sha 0% CCOCl2 silica Nippon Aerosil (extraction, Aerosil 600) Aluminum silicate: manufactured by Wako Pure Chemical Industries, Ltd., A1□0.・
3S10□ Theolite: manufactured by Toyo Soda Co., Ltd., TSZ-410-KO
A activated white clay 2 Japanese activated white clay (interior, K-5003) Room 1
After rising to 310℃ for 1 hour from the first temperature, the temperature reached 310℃.
Reaction time at °C

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、それぞれ参考例1及び2で得られ
た、本発明の原料として用いられる芳香族シバライドの
IRスペクトル図である。
FIG. 1 and FIG. 2 are IR spectra of aromatic cybaride obtained in Reference Examples 1 and 2, respectively, and used as a raw material of the present invention.

Claims (1)

【特許請求の範囲】 1 アルカリ金属の炭酸塩又は重炭酸塩の存在下、一般
式 ▲数式、化学式、表等があります▼ (式中のX^1及びX^2はそれぞれハロゲン原子であ
り、それらは同一であってもよいし、たがいに異なって
いてもよい) で表わされる芳香族ジハライドを、250〜400℃の
範囲の温度において加熱反応させることを特徴とする、
式 ▲数式、化学式、表等があります▼ で表わされる繰り返し単位を有する芳香族ポリエーテル
ケトンの製造方法。
[Claims] 1. In the presence of an alkali metal carbonate or bicarbonate, the general formula ▲ includes a mathematical formula, a chemical formula, a table, etc. ▼ (X^1 and X^2 in the formula are each a halogen atom, (They may be the same or different from each other) are heated to react at a temperature in the range of 250 to 400°C
A method for producing an aromatic polyetherketone having a repeating unit represented by the formula ▲There are mathematical formulas, chemical formulas, tables, etc.▼.
JP9398987A 1987-04-16 1987-04-16 Production of aromatic polyether ketone Granted JPS63258923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9398987A JPS63258923A (en) 1987-04-16 1987-04-16 Production of aromatic polyether ketone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9398987A JPS63258923A (en) 1987-04-16 1987-04-16 Production of aromatic polyether ketone

Publications (2)

Publication Number Publication Date
JPS63258923A true JPS63258923A (en) 1988-10-26
JPH0423649B2 JPH0423649B2 (en) 1992-04-22

Family

ID=14097810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9398987A Granted JPS63258923A (en) 1987-04-16 1987-04-16 Production of aromatic polyether ketone

Country Status (1)

Country Link
JP (1) JPS63258923A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10981852B2 (en) 2017-05-18 2021-04-20 Arkema France Ripening of 1,4-bis (4-phenoxybenzoyl)benzene
US11358924B2 (en) 2017-05-18 2022-06-14 Arkema France Dissociation of a 1,4-bis (4-phenoxybenzoyl)benzene-lewis acid complex in an aqueous solution
US11434188B2 (en) 2018-11-09 2022-09-06 Arkema France Method for manufacturing 1,4-bis (4-phenoxybenzoyl)benzene at an elevated temperature
WO2023167177A1 (en) * 2022-03-02 2023-09-07 株式会社大阪ソーダ Polyether ketone ketone and method for producing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10981852B2 (en) 2017-05-18 2021-04-20 Arkema France Ripening of 1,4-bis (4-phenoxybenzoyl)benzene
US11358924B2 (en) 2017-05-18 2022-06-14 Arkema France Dissociation of a 1,4-bis (4-phenoxybenzoyl)benzene-lewis acid complex in an aqueous solution
US11434188B2 (en) 2018-11-09 2022-09-06 Arkema France Method for manufacturing 1,4-bis (4-phenoxybenzoyl)benzene at an elevated temperature
WO2023167177A1 (en) * 2022-03-02 2023-09-07 株式会社大阪ソーダ Polyether ketone ketone and method for producing same

Also Published As

Publication number Publication date
JPH0423649B2 (en) 1992-04-22

Similar Documents

Publication Publication Date Title
JPS6032642B2 (en) Thermoplastic aromatic polyetherketone
US4931530A (en) Novel aromatic polyether and a process for producing an ether
JPS61221227A (en) Improved production of poly(aryl ether ketone)
JPS604210B2 (en) Manufacturing method for electrical insulation polymerization
JPS62116628A (en) Production of poly(aryl ether ketone) in presence of alkali or alkaline earth metal salt
EP0185317B1 (en) Crystalline aromatic polyketone and process for producing the same
JPS63258923A (en) Production of aromatic polyether ketone
JPS62148524A (en) Production of thermoplastic aromatic polyether
JPH02117921A (en) New aromatic polyether sulfone copolymer and production thereof
US5239042A (en) Amorphous polymers and process for the production thereof
JPH0433294B2 (en)
JPH0475251B2 (en)
JPH0417971B2 (en)
JPS62141024A (en) Thermoplastic aromatic polyether anthraquinone and its production
JPS62529A (en) Crystalline poly(ether thioether aromatic ketone) copolymer and its production
JPH0433295B2 (en)
JPS60197727A (en) Aromatic polyether-ketone copolymer and its production
JPH0433298B2 (en)
JPH0432094B2 (en)
JPH0424363B2 (en)
JPH07113061B2 (en) Novel polyetherketone copolymer
JPS62151421A (en) Thermoplastic aromatic polyether ketone copolymer and production thereof
JPH01259029A (en) Aromatic polyether ketone and production thereof
JPH0412892B2 (en)
JPH0412728B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees