JPS63257478A - Surface wave actuator - Google Patents

Surface wave actuator

Info

Publication number
JPS63257478A
JPS63257478A JP62090814A JP9081487A JPS63257478A JP S63257478 A JPS63257478 A JP S63257478A JP 62090814 A JP62090814 A JP 62090814A JP 9081487 A JP9081487 A JP 9081487A JP S63257478 A JPS63257478 A JP S63257478A
Authority
JP
Japan
Prior art keywords
surface wave
moving body
body plate
actuator
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62090814A
Other languages
Japanese (ja)
Other versions
JPH0734660B2 (en
Inventor
Kazue Hashimoto
和重 橋本
Teru Fujii
藤井 輝
Tatsuya Araya
新家 達弥
Hidetoshi Inaba
因幡 英敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62090814A priority Critical patent/JPH0734660B2/en
Publication of JPS63257478A publication Critical patent/JPS63257478A/en
Publication of JPH0734660B2 publication Critical patent/JPH0734660B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0095Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing combined linear and rotary motion, e.g. multi-direction positioners
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/08Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors using travelling waves, i.e. Rayleigh surface waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves

Landscapes

  • Control Of Position Or Direction (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To miniaturize and lighten an actuator by forming said actuator as a structure with electrostrictive elements stuck on an elastic body and by giving said actuator a composite wave of transverse vibration and longitudinal vibration. CONSTITUTION:A surface wave actuator is composed of a moving body plate 1, an upper base 2, a lower base 3, a surface wave generator structure 6 and a high-frequency power Vi for supply to said structure. Said moving body plate 1 moves in the directions of three axes X, Y, theta on a plane by a surface wave generated by the surface wave generator structure 6 when said power Vi is applied to said structure 6. Also, said generator structure 6 is composed of electrostrictive elements for longitudinal vibration and for transverse vibration and an elastic plate 5, which are respectively connected with the upper and lower bases 2-3. Thus, said moving body plate 1 held between upper and lower surface wave generator structure 6 can be moved by the transmission of the progressive energy of a composite wave generated from said structure 6. Therefore, the moving body plate is moved in the directions of three axes on a plane by the control of these three composite waves.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、平面上の位置決め装置に係り、特にXYθ移
動に好適な表面波利用のアクチェエータに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a positioning device on a plane, and particularly to an actuator using surface waves suitable for XYθ movement.

[従来の技術〕 近年、エレクトロニクス技術の高度化に伴ないエレクト
ロメカ製品の高密度化高精度化が進められつつある。
[Background Art] In recent years, as electronics technology has become more sophisticated, electromechanical products have become more dense and precise.

それにつれ製品の組立工程において高精度且つコンパク
ト化した位置決め機構が要求され、特にXY軸に加えθ
軸の位置決め機構のニーズが生じてきている。
As a result, highly accurate and compact positioning mechanisms are required in the product assembly process, and in particular, in addition to the XY axes, θ
A need has arisen for a shaft positioning mechanism.

従来においては、特開昭57−175488号、昭和5
8年度24巻5号応用機械工学「振動片影超音波モータ
と表面波形超音波モータ」記載の様にX方向あるいけ回
転方向の定まった1軸方向の位置決め装置はあるが平面
上XYθの3軸に移動可能とするためにはこれらの装置
を組み合わせ積層構造を取る方式とする必要がある。
In the past, Japanese Patent Application Laid-Open No. 57-175488, 1973
As described in 8th year Vol. 24, No. 5 Applied Mechanical Engineering "Vibrating half-shadow ultrasonic motor and surface wave ultrasonic motor", there is a uniaxial positioning device with a fixed rotational direction in the In order to be able to move around the axis, it is necessary to combine these devices into a laminated structure.

又、さらに、一層構造になったXYθ移動可能の移動テ
ーブルとして、昭55年度精機学会秋季大会学術講演会
論文集P77記載の「マイクロボジシに/グ用ステージ
」がある。
Furthermore, as a movable table having a single-layered structure and capable of XYθ movement, there is a "micro body/gu stage" described on page 77 of the academic lecture collection of the Autumn Conference of the Japan Society of Precision Machinery Engineers in 1982.

同様に一層構造においてXYθ移動可能テーブルとして
昭61年度8月号精密工学会誌P1443記載の「圧電
素子を用いたXYθテーブル」がある。
Similarly, as an XYθ movable table with a single layer structure, there is an “XYθ table using piezoelectric elements” described in P1443 of the August 1986 issue of the Journal of the Japan Society for Precision Engineering.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の従来技術は、積層構造のため形状及び重量が大き
くなり1層構造にてXYθ等の多軸方向を同時に駆動す
るという点において配慮されておらず装置の小形化軽量
化において問題があった。
The above conventional technology has a laminated structure, which increases its shape and weight, and it does not take into account the fact that it drives in multiple axes such as XYθ simultaneously with a single layer structure, which causes problems in reducing the size and weight of the device. .

又5 「マイクロボジシl二/グ用ステージ」や「圧電
素子を用い九X’lθテーブル」の様にXYθ移動可能
な移動テーブルが考えられているが、前者においては一
層構造であるもののとンジ部の部材そのものの弾性変形
を利用するため、ストロークの点において制約が生じ長
ストロークでの使用ができないこと、後者においては、
長ストロークにて使用することは可能であるが、微動移
動量を1ステツプとしてこれを複数ステップ送って移動
する方式であるため、長ストロークに使用するには移動
時間が大きくなってしまうという問題があった。
Furthermore, moving tables capable of moving in XYθ have been considered, such as the ``stage for microbodies'' and the ``9X'lθ table using piezoelectric elements,'' but although the former has a single-layer structure, the Since the elastic deformation of the member itself is utilized, there are restrictions in terms of stroke and it cannot be used with long strokes.
It is possible to use it with long strokes, but since the fine movement amount is taken as one step and this is sent in multiple steps, there is a problem that the travel time becomes long when used with long strokes. there were.

)″″#′A″1“・4゛“1化’)IS46j、M“
1な1層構造であって、XYθδ軸を駆動することので
きる長ストロークに適したアクチ晶二一タを提供するこ
とにある。
)""#'A"1"・4゛"1ization') IS46j, M"
The object of the present invention is to provide an actuator which has a single layer structure and is suitable for long strokes and can drive in the XYθδ axes.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、表面波モータを応用し、移動させる動体板
上に、弾性体上に電歪素子を貼り付けた表面波発生機構
を、3組以上平面的にそれぞれが互いに平行関係になる
事のない様に配置して挾み込む構成を取り、それぞれの
表面波発生機構の電歪素子に高周波電圧を印加すること
で表面波を発生させて、その表WI波がもつ波の進行エ
ネルギーを動体板に伝える事で動体板を動かす方式とし
、それぞれの表面波発生機構が発生する表面波による動
体板を移動させようとする力を制御すZlことで、達成
される。
The above purpose is to apply a surface wave motor to move three or more surface wave generation mechanisms, each consisting of an electrostrictive element attached to an elastic body, on a moving body plate, so that they are parallel to each other in a plane. By applying a high frequency voltage to the electrostrictive element of each surface wave generation mechanism, a surface wave is generated, and the traveling energy of the surface WI wave is transferred to the moving object. This is achieved by using a system in which the moving body plate is moved by transmitting information to the plate, and by controlling the force that attempts to move the moving body plate due to the surface waves generated by each surface wave generating mechanism.

〔作用〕[Effect]

表面波発生機構は、弾性体上に電歪素子が貼り付けられ
た機構となっており、電歪素子に印加電圧を加えると縦
振動用電歪素子が縦振動を、横振動用電歪素子が横振動
を発生することとなるためこれにより表面波発生機構は
横撮動と縦振動の合成波を与えることができるようにな
る。
The surface wave generation mechanism is a mechanism in which an electrostrictive element is pasted on an elastic body. When an applied voltage is applied to the electrostrictive element, the electrostrictive element for longitudinal vibration generates longitudinal vibration, and the electrostrictive element for transverse vibration generates longitudinal vibration. generates transverse vibration, which allows the surface wave generation mechanism to provide a composite wave of transverse imaging and longitudinal vibration.

上下の表面波発生機構により挟着れた動体板は表面波発
生機構より発生した合成波の進行エネルギの伝達により
移動させる事ができるため、表面波発生機構3つの合成
波を制御することにより平面よXYθの3軸方向に移動
可能となる。
The moving body plate sandwiched between the upper and lower surface wave generation mechanisms can be moved by transmitting the traveling energy of the composite waves generated by the surface wave generation mechanisms, so by controlling the composite waves of the three surface wave generation mechanisms, it can be moved from a flat surface to a It becomes possible to move in the three axis directions of XYθ.

又1表面波を生じない場合には、動体板は上下の表面波
発生機構により挾まれ固く固定された状態となる。
If no surface waves are generated, the moving body plate is held between the upper and lower surface wave generating mechanisms and remains firmly fixed.

〔実施例〕〔Example〕

以下1本発明の実施例を第1図〜第8図により説明する
。第1図は本発明の1実施例である表面波アクチ為エー
タの外観図、第2図は、本発明の1実施例である表面波
アクチーエータ内にて使用する表面波発生機構6を説明
する機構断面図、第6図は第2図内表面波発生機構6の
XX矢視図、第4図は表面波発生機構6内にて用いられ
る横振動用電歪素子42の外観図、第5図は表面波発生
機構6内にて用いられる柳振動用電歪素子41の外観図
、第6図は表面波発生機構6によって発生した横振動8
と縦振動9との合成表面波10を説明する原理図、第7
図は本発明の1実施例である表面波アクテ晶エータ内に
ある上下1組とした時の3組の表面波発生機構6a、6
b、6Cの発生した合成表面波10α、 10b、 1
0cの横振動力成分ベクトルi1a 、 11b、 1
1G  を説明する説明図、第8図は動体板1を各句送
りするために必要な動体板1が・必要な;1ζδ合カベ
クトル13を説明する説明図を示す。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 8. FIG. 1 is an external view of a surface wave actuator that is an embodiment of the present invention, and FIG. 2 is an illustration of a surface wave generation mechanism 6 used in the surface wave actuator that is an embodiment of the present invention. 6 is a sectional view of the internal surface wave generating mechanism 6 shown in FIG. The figure is an external view of the willow vibration electrostrictive element 41 used in the surface wave generation mechanism 6, and FIG. 6 is the lateral vibration 8 generated by the surface wave generation mechanism 6.
Principle diagram explaining the composite surface wave 10 of the vertical vibration 9 and the longitudinal vibration 9, 7th
The figure shows three sets of surface wave generating mechanisms 6a, 6 when one set is upper and lower in a surface wave actuator, which is an embodiment of the present invention.
b, 6C generated synthetic surface waves 10α, 10b, 1
Transverse vibration force component vector i1a, 11b, 1 of 0c
FIG. 8 is an explanatory diagram illustrating the 1ζδ sum vector 13 necessary for moving the moving body plate 1 to advance each phrase.

まず、第1図にて本発明の実施例について説明する。本
発明の1実施例である表面波アクチ具エータは、移動さ
せるべき動体板1と上ペース2と下ベース3と表面波発
生機構6(本実施例においては上下1組として5組用い
ているため、それぞれの組を64.6に、6Qと呼んで
いる)と、表面波発生機4116に高周波電圧を供給す
る高周波電源(vl及びV2 )とから構成されている
。動体板1け通常上ベース2、あるいは下ベース3に表
面波発生機S取り付はネジ7により取りつりられた表面
波発生機構6によって挾まれ締めつけ固定された状態に
なっている。そして、表面波発生機構6に高周波電源v
1.v2によって供給された高周波電圧が印加された時
、表面波発生機構6が発生した表面波によって動体板1
は平面上XYθ3軸方向に動く。
First, an embodiment of the present invention will be described with reference to FIG. A surface wave actuator, which is an embodiment of the present invention, includes a moving body plate 1 to be moved, an upper pace 2, a lower base 3, and a surface wave generating mechanism 6 (in this embodiment, five sets are used as one upper and lower set). Therefore, each set is called 64.6 and 6Q) and a high frequency power source (vl and V2) that supplies a high frequency voltage to the surface wave generator 4116. When the surface wave generator S is mounted on the upper base 2 or the lower base 3, the movable body plate 1 is held in place by the surface wave generating mechanism 6, which is attached by screws 7, and is tightened and fixed. Then, a high frequency power supply v is applied to the surface wave generation mechanism 6.
1. When the high frequency voltage supplied by V2 is applied, the surface wave generated by the surface wave generating mechanism 6 causes the moving body plate 1 to
moves in three axes of XYθ on a plane.

表面波発生機構6は第2図の様になっている。The surface wave generating mechanism 6 is shown in FIG.

即ち、2個の表面波発生機s6は上ペース2及び下ベー
ス3にそれぞれ表面波発生機構取り付はネジ7によって
取り付けられ、上ベース2と下ベース3をネジ固定した
際、動体板1を上下から挾み込み通常締め付は固定した
状態になっている。
That is, the two surface wave generators s6 are attached to the upper pace 2 and the lower base 3 with the screws 7, respectively, and when the upper base 2 and the lower base 3 are fixed with the screws, the moving body plate 1 is It is inserted from the top and bottom and is normally tightened in a fixed state.

表面波発生機構は縦振動用電歪素子41と横振動用電歪
素子42と弾性板5で構成されている。それぞれの電歪
素子は弾性板5に貼り付けられ、弾性板5と上ベース2
(又は下ベース5)とは表面波発生機構取り付はネジ7
とで連結されている。
The surface wave generation mechanism includes an electrostrictive element 41 for longitudinal vibration, an electrostrictive element 42 for horizontal vibration, and an elastic plate 5. Each electrostrictive element is attached to an elastic plate 5, and the elastic plate 5 and the upper base 2
(or lower base 5) is the surface wave generation mechanism installation screw 7
It is connected with.

第5図は第2図のXX矢視図を示している。FIG. 5 shows a view taken along the XX arrow in FIG.

第4図は表面波発生機構6内に用いられる横振動用の電
歪素子42の外観図を示す。今電歪素子42に高周波印
加電圧v2を与えると印加周波数に応じた横振動8を得
ることができる。
FIG. 4 shows an external view of an electrostrictive element 42 for transverse vibration used in the surface wave generating mechanism 6. Now, by applying a high frequency applied voltage v2 to the electrostrictive element 42, it is possible to obtain a transverse vibration 8 according to the applied frequency.

第5図は表面波発生機構6内に用いられる縦振動用の電
歪素子41の外観図を示す。今電歪素子41に高周波印
加電圧v1を与えると印加周波数に応じた縦振動9を得
ることができる。
FIG. 5 shows an external view of an electrostrictive element 41 for longitudinal vibration used in the surface wave generating mechanism 6. Now, when a high frequency applied voltage v1 is applied to the electrostrictive element 41, longitudinal vibration 9 can be obtained according to the applied frequency.

それぞれの電歪素子によって発生した横振動8及び縦振
動9より合成された合成表面波10は、第6図に示す様
に弾性体50表面に生じた横振動8と弾性体自体に伝わ
る縦振動9との合成により作られ、動体板1に合成表面
波10が伝搬され動体板1は第6図内矢印の方向へ移動
することができる。
As shown in FIG. 6, a composite surface wave 10 synthesized from the transverse vibration 8 and longitudinal vibration 9 generated by each electrostrictive element is composed of the transverse vibration 8 generated on the surface of the elastic body 50 and the longitudinal vibration transmitted to the elastic body itself. 9, the composite surface wave 10 is propagated to the moving body plate 1, and the moving body plate 1 can move in the direction of the arrow in FIG.

ここで、動体板1が実際に進行に関与する波は横振動9
であるから、動体板1に与える進行エネルギの大小は横
振動8の大小により決定する。横振動8の振幅は、横振
動用電歪素子42に印加する高周波電圧v2の振幅に比
例することから、動体板1が受ける進行エネルギの大小
は高周波電圧v2の振幅で制御することができる。ただ
し、ここで動体板1が受ける進行エネルギを有効に得る
ためには電歪素子の共振点を利用することが望ましく、
ここでは横振動用電歪素子4にの振幅を共振点となる様
に設定すると良い。
Here, the wave actually involved in the movement of the moving body plate 1 is the transverse vibration 9
Therefore, the magnitude of the traveling energy given to the moving body plate 1 is determined by the magnitude of the lateral vibration 8. Since the amplitude of the lateral vibration 8 is proportional to the amplitude of the high frequency voltage v2 applied to the lateral vibration electrostrictive element 42, the magnitude of the traveling energy that the moving body plate 1 receives can be controlled by the amplitude of the high frequency voltage v2. However, in order to effectively obtain the traveling energy received by the moving body plate 1, it is desirable to use the resonance point of the electrostrictive element.
Here, it is preferable to set the amplitude of the transverse vibration electrostrictive element 4 so as to reach a resonance point.

更に合成波の伝搬する進行方向(第6図中矢印方向)の
正転、逆転は横振動8を与える電歪素子42に印加する
高周波電圧の位相を18p反転制御することで可能とな
る。
Furthermore, normal rotation and reverse rotation of the propagating direction of the composite wave (arrow direction in FIG. 6) is made possible by controlling the phase of the high frequency voltage applied to the electrostrictive element 42 which gives the transverse vibration 8 by 18p inversion control.

ここで、動体板1に加わる縦振動成分は、上下−組の表
面波発生機86の発生する縦振動9をキャンセルする様
に使用するため、動体板1内体の動作には影響を及ぼす
ことはない。
Here, since the longitudinal vibration component applied to the moving body plate 1 is used to cancel the longitudinal vibration 9 generated by the upper and lower surface wave generators 86, it does not affect the operation of the internal body of the moving body plate 1. There isn't.

以上の方法により表面波発生機構6は動体板1に合成表
面波10を与えることができる。
By the above method, the surface wave generating mechanism 6 can provide the composite surface wave 10 to the moving body plate 1.

今、表面波発生機構6は第1図に示す様に上下1組とす
ると、3組取り付けられており、これらによりそれぞれ
合成表面波10α、 104 、1oeを発生する。
Now, as shown in FIG. 1, three sets of surface wave generating mechanisms 6 are installed, one set for upper and lower sides, and these generate synthetic surface waves 10α, 104, and 1oe, respectively.

ここで、前述した様に、合成表面波10それぞれが動体
板1の進行に関与する波は横振動8であるからそれぞれ
の合成波の横振動の力成分を11鼻。
Here, as mentioned above, since the waves involved in the movement of the moving body plate 1 in each of the composite surface waves 10 are the lateral vibrations 8, the force components of the lateral vibrations of each composite wave are expressed as 11.

、114.11とすれば2,11a 、11b、11(
、はそれぞれ振幅及び方向をもつことからベクトル(以
後進行方向ベクトルと呼ぶ)として扱うことができる。
, 114.11, then 2, 11a , 11b, 11(
, can be treated as vectors (hereinafter referred to as traveling direction vectors) because they each have an amplitude and a direction.

第7図は表面波発生機構の発生した合成表面波→   
  → 10a、106,100の横振動力成分ベクトル114
.11&11  を説明した説明図である。
Figure 7 shows the composite surface wave generated by the surface wave generation mechanism →
→ Lateral vibration force component vector 114 of 10a, 106,100
.. 11&11 is an explanatory diagram illustrating.

ここでそれぞれの進行方向ベクトル114.11!。Here, each traveling direction vector is 114.11! .

11Cは動体板1が得た力ベクトル12−4,12b、
17Gとは比例関係にある。それぞれのベクトルを11
4゜11b、11G、 12&、126,126とすれ
ば。
11C is the force vector 12-4, 12b obtained by the moving body plate 1,
There is a proportional relationship with 17G. 11 each vector
4゜11b, 11G, 12&, 126, 126.

12a=ff(11↓) 12M =) (11j) (静止摩擦係数〕 となる。12a=ff(11↓) 12M =) (11j) (Static friction coefficient) becomes.

本実施例では、表面波発生機$6を上下1組としてそれ
ぞれ12(1’方向に5組配設する方式をとっている。
In this embodiment, a system is adopted in which 12 (5 sets) of surface wave generators $6 are arranged in the upper and lower directions, respectively (5 sets in the 1' direction).

そこでそれぞれの動体板1が得る力ベクトル12412
6.12Gの和が動体板1の受ける総合力ベクトル(1
5)となる。
Therefore, the force vector 12412 obtained by each moving body plate 1
6. The sum of 12G is the total force vector (1
5).

今、S軸方向、!軸方向、θ軸方向それぞれ3軸を移動
可能にする場合、総合力ベクトル13を、力ベクトル1
2G、124.12Gによってどの様に組み合わせれば
良いかを示したものが第8図である。
Now, in the S-axis direction! When making the three axes movable in the axial direction and the θ-axis direction, the total force vector 13 is changed to the force vector 1
FIG. 8 shows how to combine 2G and 124.12G.

1’j = 1r−+1tb −1−121c単にX軸
方向送抄を得たい場合、その条件式は()3e、()y
  を各ベクトルのX成分及びy成分とすれば、 1ブ・−= 0 * (12”’5)y=−(12’:
)yli = 1zi +1?Q となる。
1'j = 1r-+1tb -1-121c If you simply want to obtain the paper feed in the X-axis direction, the conditional expressions are ()3e, ()y
Let be the X and y components of each vector, then 1b・-=0*(12'''5)y=-(12':
)yli = 1zi +1? It becomes Q.

同様にY軸方向送りを得る場合その条件式は、12b:
12C:0 13=124 となる。又、θ軸方向送りは、力ベクトル12α1八 
1式 が偶力が働く様に加えれば良く、単にθ輸送ゆを
させたい場合、12α= 12 k = 12 cであ
れば良い。その時のモーメントMはM=j2a。
Similarly, when obtaining feed in the Y-axis direction, the conditional expression is 12b:
12C:0 13=124. In addition, the θ-axis direction feed is caused by the force vector 12α18
1 equation should be added so that a couple acts, and if you simply want to cause a θ transport distortion, 12α = 12 k = 12 c is sufficient. The moment M at that time is M=j2a.

2rである。(ここでrは表面波アクチェエータの中心
から表面波発生機構までの距離を示す。)更に、X軸方
向送り、Y軸方向送り、θ軸方向送りを同時に行わせる
場合、総合力ベクトルとその時の偶力によるモーメント
を決めてやれば良い。
It is 2r. (Here, r indicates the distance from the center of the surface wave actuator to the surface wave generation mechanism.) Furthermore, when performing X-axis direction feed, Y-axis direction feed, and θ-axis direction feed at the same time, the total force vector and the All you have to do is determine the moment due to the couple.

これにより、平面上のXYθ3軸方向へ動体板1を移動
することができる。
Thereby, the moving body plate 1 can be moved in the three axes directions of XYθ on the plane.

尚、本実施例では、表面波発生機構6が水平面上に3組
使用しているが、もし、1組の場合にはX軸方向送りの
み、2組の場合は、それぞれを直角に配置することでX
Y方向送りに用いることができる。又、4組以上の場合
には、XYθ方向送りの動作そのものは変化ないが、よ
り円滑になる。
In this embodiment, three sets of surface wave generating mechanisms 6 are used on the horizontal plane, but if one set is used, only the X-axis direction is fed, and if two sets are used, each set is arranged at right angles. That's X
It can be used for feeding in the Y direction. Furthermore, in the case of four or more sets, the XYθ direction feeding operation itself remains unchanged, but becomes smoother.

本表面波アクチェエータは一層構造にてXYθ3軸駆動
可能であり小形軽量化される利点があるが、更に、前述
した様に静止摩擦係数を利用するため表面波発生機構6
あるいは動体板1の摩耗が生じないためクリーン化を図
ることができるという利点がある。
This surface wave actuator has a single-layer structure and can be driven in three axes of XYθ, which has the advantage of being small and lightweight.In addition, as mentioned above, since it utilizes the coefficient of static friction, the surface wave generation mechanism 6
Another advantage is that the moving body plate 1 does not wear out, so it can be kept clean.

又、本構造は動体板1の大きさに影響されないから、長
ストローク化が可能であり、動体板1の送りも、横振動
用電歪素子42の印加電圧を制御して共振点で動作させ
ることにより稼動時間を短縮でき長ストロークにも対応
できる。
Moreover, since this structure is not affected by the size of the moving body plate 1, a long stroke is possible, and the feeding of the moving body plate 1 is also controlled at the resonance point by controlling the voltage applied to the electrostrictive element 42 for transverse vibration. This reduces operating time and allows for long strokes.

本表面波アクチェエータは、平面上のXYθ5軸方向の
位置決め調整に大きく寄与するが、モータとして使用し
その中心軸をソフト的に自由に移動させたい場合やロボ
ットに取り付ける駆動部の様に小形軽量化が特に要求さ
れている場合等に有効である。
This surface wave actuator greatly contributes to positioning adjustment in the XYθ5-axis directions on a plane, but it can be used as a motor to freely move its center axis using software, or as a drive unit attached to a robot.It can be made smaller and lighter. This is effective when there is a particular requirement.

更に高精度の位置決めをする際には1位置検出機能、(
変位センサ、角度センサ)を付加するシステムにすれば
良い。
For even more precise positioning, the 1-position detection function (
A system that adds a displacement sensor, angle sensor) is sufficient.

〔発明の効果〕〔Effect of the invention〕

本発明によれば1層構造にて平面上にXYθ3軸の移動
が可能にでき、従来の様に多層構造にする必要がないた
め、装置の小形軽量化を図ることができる。又、装置も
単純な為安価に製作できるd更にストロークに限界がな
いため実用範囲は非常に大きい。又、摩擦による発塵が
ないため、クリーンシステムの構築ができるうえに高精
度の位置決めを実現させるのVこ2位置検出機能を付加
するだけでよく、システムが非常に簡単にできる等の効
果もある。
According to the present invention, movement in the three axes of XYθ on a plane is possible with a single layer structure, and there is no need for a multilayer structure unlike the conventional one, so the device can be made smaller and lighter. Further, since the device is simple, it can be manufactured at low cost.Furthermore, since there is no limit to the stroke, the practical range is very wide. In addition, since there is no dust generation due to friction, it is possible to construct a clean system, and it is only necessary to add a V2 position detection function to achieve high-precision positioning, making the system extremely simple. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例である表面波アクチェエータ
の外観図、第2図は本発明の1実施例である表面波アク
チェエータ内にて使用する表面波発生機構を説明する機
構断面図、第3図は第2図の表面波発生機構のXX矢視
図、第4図は表面波発生機構内にて用いられる横振動用
電歪素子の外観図、第5図は表面波発生機構内にて用い
られる縦振動用電歪素子の外観図、第6図は表面波発生
機構によって発生した横振動と縦撮動との合成表面波を
説明する原理図、第7図は本発明の1実施例である表面
波アクチェエータ内にある上下1組とした時の3組の表
面波発生機構の発生した合成表面波の横振動力成分ベク
トルを説明する説明図、第8図は動体板を各軸通りする
プヒめに必要な動体板が必要な総合力ベクトルを説明す
る説明図である。 1−・動体板、        2・・上ベース、3・
・・下ベース、 41・・・電歪素子(縦振動用)、 42・・・電歪素子(横振動用)、 5・・・弾性体、 6・・・表面波発生機構、 7・・・表面波発生機構取付はネジ、 8・・・横振動、 9・・・縦振動、 10・・・合成表面波、 vl・・・高周波電源(縦振動用)、 v2・・・高周波電源(横振動用)。 酒 胃
FIG. 1 is an external view of a surface wave actuator that is an embodiment of the present invention, and FIG. 2 is a sectional view of a surface wave generation mechanism used in the surface wave actuator that is an embodiment of the present invention. Figure 3 is a view taken along the XX arrow of the surface wave generation mechanism in Figure 2, Figure 4 is an external view of the transverse vibration electrostrictive element used in the surface wave generation mechanism, and Figure 5 is inside the surface wave generation mechanism. Fig. 6 is a principle diagram illustrating the composite surface wave of transverse vibration and vertical imaging generated by the surface wave generation mechanism, and Fig. 7 is an illustration of the electrostrictive element for longitudinal vibration used in An explanatory diagram illustrating the transverse vibration force component vector of the composite surface waves generated by three sets of surface wave generation mechanisms when one set is upper and lower in the surface wave actuator according to the embodiment. FIG. 2 is an explanatory diagram illustrating a total force vector that requires a moving body plate to move along the axis. 1-・Moving body plate, 2・・Upper base, 3・・
...lower base, 41...electrostrictive element (for longitudinal vibration), 42...electrostrictive element (for transverse vibration), 5...elastic body, 6...surface wave generation mechanism, 7...・Surface wave generation mechanism is installed using screws, 8...Transverse vibration, 9...Longitudinal vibration, 10...Synthetic surface wave, vl...High frequency power supply (for longitudinal vibration), v2...High frequency power supply ( for lateral vibration). alcoholic stomach

Claims (1)

【特許請求の範囲】[Claims] 1.移動させたい動体板上に、弾性体上に電歪素子を貼
り付けた表面波発生機構を配置してそれぞれの表面波発
生機構の電歪素子に電圧を印加することにより発生した
表面波で動体板をXYθの3軸方向に移動可能とする表
面波アクチュエータ。
1. A surface wave generation mechanism with an electrostrictive element attached to an elastic body is placed on the moving object plate to be moved, and a voltage is applied to the electrostrictive element of each surface wave generation mechanism to move the moving object using the surface waves generated. A surface wave actuator that allows the plate to move in the three axes of XYθ.
JP62090814A 1987-04-15 1987-04-15 Surface wave actuator Expired - Lifetime JPH0734660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62090814A JPH0734660B2 (en) 1987-04-15 1987-04-15 Surface wave actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62090814A JPH0734660B2 (en) 1987-04-15 1987-04-15 Surface wave actuator

Publications (2)

Publication Number Publication Date
JPS63257478A true JPS63257478A (en) 1988-10-25
JPH0734660B2 JPH0734660B2 (en) 1995-04-12

Family

ID=14009064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62090814A Expired - Lifetime JPH0734660B2 (en) 1987-04-15 1987-04-15 Surface wave actuator

Country Status (1)

Country Link
JP (1) JPH0734660B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010063230A (en) * 2008-09-02 2010-03-18 Canon Inc Vibration wave motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5587902A (en) * 1978-12-27 1980-07-03 Fujitsu Ltd Dimension measuring device
JPS59198886A (en) * 1983-04-25 1984-11-10 Tokyo Electric Co Ltd Motor
JPS61131443A (en) * 1984-11-30 1986-06-19 Canon Inc Alignment device
JPS61224878A (en) * 1985-03-29 1986-10-06 Canon Inc Vibration wave motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5587902A (en) * 1978-12-27 1980-07-03 Fujitsu Ltd Dimension measuring device
JPS59198886A (en) * 1983-04-25 1984-11-10 Tokyo Electric Co Ltd Motor
JPS61131443A (en) * 1984-11-30 1986-06-19 Canon Inc Alignment device
JPS61224878A (en) * 1985-03-29 1986-10-06 Canon Inc Vibration wave motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010063230A (en) * 2008-09-02 2010-03-18 Canon Inc Vibration wave motor

Also Published As

Publication number Publication date
JPH0734660B2 (en) 1995-04-12

Similar Documents

Publication Publication Date Title
Kurosawa et al. Hybrid transducer type ultrasonic motor
CA1236154A (en) Actuator
US5872417A (en) Multiple degrees of freedom vibration actuator
EP1577961B1 (en) Acceleration and deceleration method using a piezoelectric motor
US7667373B2 (en) Drive unit
US7247971B2 (en) High resolution piezoelectric motor
JPH06216423A (en) Activated structure
Hou et al. Development and numerical characterization of a new standing wave ultrasonic motor operating in the 30–40 kHz frequency range
Afonin Nano-and micro-scale piezomotors.
Koshigoe et al. A unified analysis of both active and passive damping for a plate with piezoelectric transducers
Delibas et al. L1B2 piezo motor using D33 effect
CN108429486A (en) Combined flat surface 3-freedom ultrasonic motor oscillator and its driving method
Friend et al. A simple bidirectional linear microactuator for nanopositioning-the" Baltan" microactuator
JPS63257478A (en) Surface wave actuator
US6072266A (en) Vibration actuator
JP2017052622A (en) Linear feeder
Cai et al. A technique for modelling multiple piezoelectric layers
JPS6022478A (en) Stator of surface wave linear motor
JPH0636673B2 (en) Drive
US11711033B2 (en) Piezoelectric motor with bending travelling wave
KR100712591B1 (en) Omni-directional ultrasonic piezoelectric actuator system
JP2971971B2 (en) Ultrasonic actuator
WO2019230367A1 (en) Actuator and tactile sensation presentation device
JP4928127B2 (en) Drive device and control method of drive device
JP2016151298A (en) Exciter and active vibration control device using the same